A REVIEW OF POLYMER-BASED MATERIALS USED IN BIOMATERIALS FOR MEDICAL APPLICATIONS

Authors

  • Harith Al-Moameri Department of Chemical Engineering, University of Missouri-Columbia, W2033 Lafferre Hall, Columbia, MO 65211, United States Author
  • Dalia Adil Rasool Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author
  • Zainab Majid Nahi Medical Instrumentation Engineering Technical Department, Electrical Engineering Technical College, Middle Technical University, Baghdad, Iraq Author

DOI:

https://doi.org/10.31272/jeasd.26.5.1

Keywords:

Biomaterial, gel, biomedical, polymer, biomechanics, tissue, hydrogels

Abstract

The research provides a concise overview of numerous biomedical and biomechanics uses for polymer-based materials in medical applications. Polymer-based materials are used to repair or enhance the functionality of tissues or organs damaged or disjointed in the context of implants and medical equipment, thereby enhancing patients’ well-being. The critical criterion for selecting the biomaterial is its appropriateness to the body. Polymer-based material must have certain essential characteristics to enable lengthy-term use. This family of materials, which may execute stimuli-induced active motions, includes shape-changing and shape-memory polymers as examples. Significant interest in the area of biomedicine has developed for these materials over the last 20 years, especially in minimally invasive surgeries. In this regard, the development of novel antimicrobial technologies for biomedical implementations depends heavily on polymeric biomaterials and would continue to do so. This review article focuses on the properties and applications of smart polymers application, biomolecule conjugates of smart polymers on surfaces, and Forms of smart polymeric biomaterials. This article presents an overview of the scope of application of the three polymeric-based materials.

References

He, X., et al., (2018). Incorporation of microfibrillated cellulose into collagen-hydroxyapatite scaffold for bone tissue engineering. International Journal of Biological Macromolecules. Vol. 115385-392. DOI: 10.1016/j.ijbiomac.2018.04.085.

Guo, Z., Poot, A.A., and Grijpma, D.W., (2021). Advanced polymer-based composites and structures for biomedical applications. European Polymer Journal. Vol. 149110388. DOI: 10.1016/j.eurpolymj.2021.110388.

Hoffman, A.S., (1987). Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. Journal of Controlled Release. Vol. 6, Issue 1, pp. 297-305. DOI: 10.1016/0168-3659(87)90083-6.

Hoffman, A.S. and Stayton, P.S., (2007). Conjugates of stimuli-responsive polymers and proteins. Progress in Polymer Science. Vol. 32, Issue 8, pp. 922-932. DOI: 10.1016/j.progpolymsci.2007.05.005.

Nair, L.S. and Laurencin, C.T., (2007). Biodegradable polymers as biomaterials. Progress in Polymer Science. Vol. 32, Issue 8, pp. 762-798. DOI: 10.1016/j.progpolymsci.2007.05.017.

Vert, M., (2007). Polymeric biomaterials: Strategies of the past vs. strategies of the future. Progress in Polymer Science. Vol. 32, Issue 8, pp. 755-761. DOI: 10.1016/j.progpolymsci.2007.05.006.

Al-Moameri, H.H., Jaf, L.A., and Suppes, G.J., (2018). Simulation Approach to Learning Polymer Science. Journal of Chemical Education. Vol. 95, Issue 9, pp. 1554-1561. DOI: 10.1021/acs.jchemed.8b00236.

Kamarudin, S.H., et al., (2022). A Review on Antimicrobial Packaging from Biodegradable Polymer Composites. Polymers. Vol. 14, Issue 1, pp. 174. DOI: 10.3390/polym14010174.

Lai, J.J. and Stayton, P.S., (2015). Improving lateral-flow immunoassay (LFIA) diagnostics via biomarker enrichment for mHealth. Methods Mol Biol. Vol. 125671-84. DOI: 10.1007/978-1-4939-2172-0_5.

Khan, T. and Chauhan, A., (2022). Chapter 6 - Polymer-based bionanomaterials for biomedical applications, in Bionanotechnology : Emerging Applications of Bionanomaterials, A. Barhoum, J. Jeevanandam, and M.K. Danquah, Editors, Elsevier. p. 187-225. DOI: 10.1016/B978-0-12-823915-5.00006-X.

Chen, G. and Hoffman, A.S., (1995). Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH. Nature. Vol. 373, Issue 6509, pp. 49-52. DOI: 10.1038/373049a0.

Mokhtari, F., et al., (2021). Recent advances of polymer-based piezoelectric composites for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials. Vol. 122104669. DOI: 10.1016/j.jmbbm.2021.104669.

Heredia, K.L. and Maynard, H.D., (2007). Synthesis of protein-polymer conjugates. Org Biomol Chem. Vol. 5, Issue 1, pp. 45-53. DOI: 10.1039/b612355d.

Lo, P.K. and Sleiman, H.F., (2009). Nucleobase-templated polymerization: copying the chain length and polydispersity of living polymers into conjugated polymers. J Am Chem Soc. Vol. 131, Issue 12, pp. 4182-3. DOI: 10.1021/ja809613n.

Gody, G., et al., (2013). Rapid and quantitative one-pot synthesis of sequence-controlled polymers by radical polymerization. Nat Commun. Vol. 42505. DOI: 10.1038/ncomms3505.

Al-Moameri, H., Jaf, L., and Suppes, G.J., (2017). Viscosity-dependent frequency factor for modeling polymerization kinetics. RSC Advances. Vol. 7, Issue 43, pp. 26583-26592. DOI: 10.1039/c7ra01242j.

Hoffman, A.S., (2013). Chapter I.2.11 - Applications of “Smart Polymers” as Biomaterials, in Biomaterials Science (Third Edition), B.D. Ratner, et al., Editors, Academic Press. p. 247-258. DOI: 10.1016/B978-0-08-087780-8.00026-7.

Nishimura, S.N., Higashi, N., and Koga, T., (2017). Facile Synthesis of Multiblock Copolymers Containing Sequence-Controlled Peptides and Well-Defined Vinyl Polymers by Nitroxide-Mediated Polymerization. Chemistry. Vol. 23, Issue 60, pp. 15050-15058. DOI: 10.1002/chem.201703655.

Liu, X., et al., (2019). Quantitative Synthesis of Temperature-responsive Polymersomes by Multiblock Polymerization. Angew Chem Int Ed Engl. DOI: 10.1002/anie.201910138.

Al-Moameri, H., et al., (2015). Impact of the maximum foam reaction temperature on reducing foam shrinkage. RSC Advances. Vol. 5, Issue 22, pp. 17171-17178. DOI: 10.1039/c4ra12540a.

Lue, S.J., Chen, C.-H., and Shih, C.-M., (2011). Tuning of Lower Critical Solution Temperature (LCST) of Poly(N-Isopropylacrylamide-co-Acrylic acid) Hydrogels. Journal of Macromolecular Science, Part B. Vol. 50, Issue 3, pp. 563-579. DOI: 10.1080/00222341003784550.

Liu, Z., et al., (2013). Well-defined poly(N-isopropylacrylamide) with a bifunctional end-group: synthesis, characterization, and thermoresponsive properties. Designed Monomers and Polymers. Vol. 16, Issue 5, pp. 465-474. DOI: 10.1080/15685551.2012.747165.

Herberg, A., Yu, X., and Kuckling, D., (2019). End Group Stability of Atom Transfer Radical Polymerization (ATRP)-Synthesized Poly(N-isopropylacrylamide): Perspectives for Diblock Copolymer Synthesis. Polymers. Vol. 11, Issue 4, pp. 678. DOI: 10.3390/polym11040678.

Priest, J.H., et al., (1987). Lower Critical Solution Temperatures of Aqueous Copolymers of N-Isopropylacrylamide and Other N-Substituted Acrylamides, in Reversible Polymeric Gels and Related Systems, American Chemical Society. p. 255-264. DOI: 10.1021/bk-1987-0350.ch018.

Stayton, P.S., et al., (2005). 'Smart' delivery systems for biomolecular therapeutics. Orthod Craniofac Res. Vol. 8, Issue 3, pp. 219-25. DOI: 10.1111/j.1601-6343.2005.00336.x.

Murthy, N., et al., (2003). Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem. Vol. 14, Issue 2, pp. 412-9. DOI: 10.1021/bc020056d.

El-Sayed, M.E., Hoffman, A.S., and Stayton, P.S., (2005). Smart polymeric carriers for enhanced intracellular delivery of therapeutic macromolecules. Expert Opin Biol Ther. Vol. 5, Issue 1, pp. 23-32. DOI: 10.1517/14712598.5.1.23.

Bulmus, V., et al., (2003). A new pH-responsive and glutathione-reactive, endosomal membrane-disruptive polymeric carrier for intracellular delivery of biomolecular drugs. J Control Release. Vol. 93, Issue 2, pp. 105-20. DOI: 10.1016/j.jconrel.2003.06.001.

Tirrell, D.A., (1987). Macromolecular switches for bilayer membranes. Journal of Controlled Release. Vol. 6, Issue 1, pp. 15-21. DOI: 10.1016/0168-3659(87)90060-5.

Berry, F.J., Derrick, G.R., and Mortimer, M., (2014). Identification and characterisation of stable phases of silicotungstic acid, H4SiW12O40·nH2O. Polyhedron. Vol. 6817-22. DOI: 10.1016/j.poly.2013.10.014.

Stayton, P.S., et al., (2000). Molecular engineering of proteins and polymers for targeting and intracellular delivery of therapeutics. J Control Release. Vol. 65, Issue 1-2, pp. 203-20. DOI: 10.1016/s0168-3659(99)00236-9.

Yin, X., Hoffman, A.S., and Stayton, P.S., (2006). Poly(N-isopropylacrylamide-co-propylacrylic acid) copolymers that respond sharply to temperature and pH. Biomacromolecules. Vol. 7, Issue 5, pp. 1381-5. DOI: 10.1021/bm0507812.

Piskin, E., (2004). Molecularly designed water soluble, intelligent, nanosize polymeric carriers. Int J Pharm. Vol. 277, Issue 1-2, pp. 105-18. DOI: 10.1016/j.ijpharm.2003.06.003.

Khan, A., (2007). Preparation and characterization of N-isopropylacrylamide/acrylic acid copolymer core-shell microgel particles. J Colloid Interface Sci. Vol. 313, Issue 2, pp. 697-704. DOI: 10.1016/j.jcis.2007.05.027.

Vernon, B., Kim, S.W., and Bae, Y.H., (2000). Thermoreversible copolymer gels for extracellular matrix. J Biomed Mater Res. Vol. 51, Issue 1, pp. 69-79. DOI: 10.1002/(sici)1097-4636(200007)51:1<69::aid-jbm10>3.0.co;2-6.

Mohd Basri, M.S., et al., (2020). Optimization of Adhesion Strength and Microstructure Properties by Using Response Surface Methodology in Enhancing the Rice Husk Ash-Based Geopolymer Composite Coating. Polymers. Vol. 12, Issue 11, pp. 2709. DOI: 10.3390/polym12112709.

Shim, W.S., et al., (2005). Novel Injectable pH and Temperature Sensitive Block Copolymer Hydrogel. Biomacromolecules. Vol. 6, Issue 6, pp. 2930-2934. DOI: 10.1021/bm050521k.

Efe-Sanden, G., et al., (2019). Adhesion and Particle Removal from Surface-Tethered Poly(N-Isopropylacrylamide) Coatings Using Hydrodynamic Shear Forces. Langmuir. Vol. 35, Issue 48, pp. 15751-15758. DOI: 10.1021/acs.langmuir.9b02625.

Deligkaris, K., et al., (2010). Hydrogel-based devices for biomedical applications. Sensors and Actuators B: Chemical. Vol. 147, Issue 2, pp. 765-774. DOI: 10.1016/j.snb.2010.03.083.

Hirose, M., et al., (2000). Temperature-Responsive surface for novel co-culture systems of hepatocytes with endothelial cells: 2-D patterned and double layered co-cultures. Yonsei Med J. Vol. 41, Issue 6, pp. 803-13. DOI: 10.3349/ymj.2000.41.6.803.

Martinez, M.R., et al., (2020). Understanding the Relationship between Catalytic Activity and Termination in photoATRP: Synthesis of Linear and Bottlebrush Polyacrylates. Macromolecules. Vol. 53, Issue 1, pp. 59-67. DOI: 10.1021/acs.macromol.9b02397.

Nahain, A.A., et al., (2019). Anticoagulant Heparin Mimetics via RAFT Polymerization. Biomacromolecules. DOI: 10.1021/acs.biomac.9b01688.

Malmstadt, N., et al., (2003). A smart microfluidic affinity chromatography matrix composed of poly(N-isopropylacrylamide)-coated beads. Anal Chem. Vol. 75, Issue 13, pp. 2943-9. DOI: 10.1021/ac034274r.

Ling, D. and Hyeon, T., (2013). Chemical design of biocompatible iron oxide nanoparticles for medical applications. Small. Vol. 9, Issue 9-10, pp. 1450-66. DOI: 10.1002/smll.201202111.

Zhang, X., et al., (2021). Polyphenol scaffolds in tissue engineering. Materials Horizons. Vol. 8, Issue 1, pp. 145-167. DOI: 10.1039/D0MH01317J.

Colobatiu, L., et al., (2019). Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. Reactive and Functional Polymers. Vol. 145104369. DOI: 10.1016/j.reactfunctpolym.2019.104369.

Hu, D., Qiang, T., and Wang, L., (2017). Quaternized chitosan/polyvinyl alcohol/sodium carboxymethylcellulose blend film for potential wound dressing application. Wound Medicine. Vol. 1615-21. DOI: 10.1016/j.wndm.2016.12.003.

Ahmed, A.S., et al., (2018). PVA-PEG physically cross-linked hydrogel film as a wound dressing: experimental design and optimization. Pharm Dev Technol. Vol. 23, Issue 8, pp. 751-760. DOI: 10.1080/10837450.2017.1295067.

Rezvanian, M., Amin, M.C.I.M., and Ng, S.-F., (2016). Development and physicochemical characterization of alginate composite film loaded with simvastatin as a potential wound dressing. Carbohydrate Polymers. Vol. 137295-304. DOI: 10.1016/j.carbpol.2015.10.091.

Khamrai, M., Banerjee, S.L., and Kundu, P.P., (2017). Modified bacterial cellulose based self-healable polyeloctrolyte film for wound dressing application. Carbohydrate Polymers. Vol. 174580-590. DOI: 10.1016/j.carbpol.2017.06.094.

Aycan, D., et al., (2019). Conductive polymeric film loaded with ibuprofen as a wound dressing material. European Polymer Journal. Vol. 121109308. DOI: 10.1016/j.eurpolymj.2019.109308.

Ding, Z., Chen, G., and Hoffman, A.S., (1998). Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin. J Biomed Mater Res. Vol. 39, Issue 3, pp. 498-505. DOI: 10.1002/(sici)1097-4636(19980305)39:3<498::aid-jbm22>3.0.co;2-5.

Jin, N., et al., (2012). Tuning of thermally induced sol-to-gel transitions of moderately concentrated aqueous solutions of doubly thermosensitive hydrophilic diblock copolymers poly(methoxytri(ethylene glycol) acrylate)-b-poly(ethoxydi(ethylene glycol) acrylate-co-acrylic acid). J Phys Chem B. Vol. 116, Issue 10, pp. 3125-37. DOI: 10.1021/jp300298a.

Yu, H., et al., (2009). Synthesis and characterization of biodegradable block copolymer pluronic-b-poly(L-lysine). Journal of Applied Polymer Science. Vol. 112, Issue 6, pp. 3371-3379. DOI: 10.1002/app.29643.

Chen, M.-C., et al., (2007). Rapidly Self-Expandable Polymeric Stents with a Shape-Memory Property. Biomacromolecules. Vol. 8, Issue 9, pp. 2774-2780. DOI: 10.1021/bm7004615.

Chai, Q., Jiao, Y., and Yu, X., (2017). Hydrogels for Biomedical Applications: Their Characteristics and the Mechanisms behind Them. Gels. Vol. 3, Issue 1, pp. DOI: 10.3390/gels3010006.

Kalirajan, C. and Palanisamy, T., (2019). A ZnO–curcumin nanocomposite embedded hybrid collagen scaffold for effective scarless skin regeneration in acute burn injury. Journal of Materials Chemistry B. Vol. 7, Issue 38, pp. 5873-5886. DOI: 10.1039/C9TB01097A.

Giannelli, M., et al., (2021). Magnetic keratin/hydrotalcites sponges as potential scaffolds for tissue regeneration. Applied Clay Science. Vol. 207106090. DOI: 10.1016/j.clay.2021.106090.

Downloads

Published

2022-09-01

How to Cite

A REVIEW OF POLYMER-BASED MATERIALS USED IN BIOMATERIALS FOR MEDICAL APPLICATIONS. (2022). Journal of Engineering and Sustainable Development, 26(5), 1-13. https://doi.org/10.31272/jeasd.26.5.1

Most read articles by the same author(s)