Path Loss of Indoor Hotspot and Indoor Factory Environments for 5G Wireless Networks

Authors

  • Intisar Al-Mejibli Bioinformatics Department, Biomedical Informatics College, University of Information Technology and Communications, Baghdad, Iraq https://orcid.org/0000-0001-8363-935X
  • Hussein A. Mohammed Department of Quality Assurance and University Performance, University of Information Technology and Communications, Baghdad, Iraq https://orcid.org/0000-0002-3621-3505
  • Haider Kadhim Hoomod Computer Science Department, College of Education, Mustansiriyah University, Baghdad, Iraq https://orcid.org/0000-0002-7185-886X
  • Nawaf Rasheed Alharbe Department of Computer Science and Information, Community College, Taibah University, Badr, Saudi Arabia https://orcid.org/0000-0002-1900-420X

DOI:

https://doi.org/10.31272/jeasd.2473

Keywords:

Computer Networks, Indoor Factory (InF), Indoor Hotspot (InH), Path Loss, Wireless Network and communications

Abstract

The increased exploration of wireless communication networks in various fields has significant implications for automating daily human tasks and creating smart environments. However, to make such implementations successful, it is essential to investigate the characteristics of wireless channels. Path loss is a fundamental factor in wireless network communications and measures signal strength. The main objective of this proposal is to identify the criteria to be considered when designing and developing wireless sensor network WSN applications for indoor hotspot (InH) and indoor factory (InF) environments. This research investigates the 3GPP Indoor model in (InH) and (InF) environments. It considers the impact of Line-of-Sight (LOS), Non-Line-of-Sight (NLOS), and human blockage on path loss. Further, the InH scenario has been compared to the InF scenario. The results show that path loss in NLOS conditions is more variable than in LOS conditions, regardless of the human obstruction. In general, the results demonstrate the difference in path loss between InH and InF scenarios falls within a range of 9.1275–7.175 dB.

References

. X. Chen, Randomly Deployed Wireless Sensor Networks. Elsevier BV, 2020. doi: https://doi.org/10.1016/c2019-0-00221-x.

. A. Aremice, A. H. Miry, and T. M. Salman, “Vehicle Black Box Implementation for Internet of Vehicles Based Long Range Technology,” Journal of Engineering and Sustainable Development, vol. 27, no. 2, pp. 245–255, Mar. 2023, doi: https://doi.org/10.31272/jeasd.27.2.8.

. A. Aramice, N. Abbas, and T. M. Salman, “Optimal Long-Range-Wide-Area-Network Parameters Configuration for Internet of Vehicles Applications in Suburban Environments,” Journal of Engineering and Sustainable Development, vol. 27, no. 6, pp. 754–770, Nov. 2023, doi: https://doi.org/10.31272/jeasd.27.6.7.

. Anouar Nechi et al., “Practical Trustworthiness Model for DNN in Dedicated 6G Application,” 2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Montreal, QC, Canada, no. pp. 312-317, Jun. 2023, doi: https://doi.org/10.1109/wimob58348.2023.10187759.

. V. E. Balas and S. Pal, “Healthcare Paradigms in the Internet of Things Ecosystem,” Elsevier eBooks, Jan. 2021, doi: https://doi.org/10.1016/c2019-0-00358-5.

. R. Raman, R Ravi Kumar, N. Garg, K. Joshi, B. G. Pillai, and U. Joshi, “Analysis of Potential Health and Environmental Risks Associated with 6G Wireless Communication Networks,” 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), IEEE, May 2023, doi: https://doi.org/10.1109/icacite57410.2023.10183322.

. M. S. Mahmood and Y. Y.Al-Aboosi, “EFFECTS OF MULTIPATH PROPAGATION CHANNEL IN TIGRIS RIVER,” Journal of Engineering and Sustainable Development, vol. 27, no. 2, pp. 256–271, Mar. 2023, doi: https://doi.org/10.31272/jeasd.27.2.9.

. S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson, and J. Ansari, “Ultra-reliable and low-latency Communication for Wireless Factory automation: from LTE to 5G,” IEEE Xplore, Sep. 01, 2016. https://ieeexplore.ieee.org/abstract/document/7733543 (accessed Nov. 17, 2022).

. L. Hua, L. Xiaolu, X. Renchao, and F. Wei, “Integrated Architecture for Networking and Industrial Internet Identity,” ZTE Communications, vol. 18, no. 1, pp. 24–35, Jun. 2020, doi: https://doi.org/10.12142/ztecom.202001005.

. [M. Noor-A-Rahim et al., “Wireless Communications for Smart Manufacturing and Industrial IoT: Existing Technologies, 5G and beyond,” Sensors, vol. 23, no. 1, p. 73, Jan. 2023, doi: https://doi.org/10.3390/s23010073.

. [G. Korzeniewski and R. C. Álvarez, “Industrial Wireless Channel Measurements in a 2.4 GHz ISM Radio Band Using a low-cost SDR-based Channel Sounder,” RECIBE, REVISTA ELECTRÓNICA DE COMPUTACIÓN, INFORMÁTICA, BIOMÉDICA Y ELECTRÓNICA, vol. 9, no. 1, pp. E1-1E1-25, Jun. 2020, doi: https://doi.org/10.32870/recibe.v9i1.150.

. W. Wang and Elena Simona Lohan, “Applicability of 3GPP Indoor Hotspot Models to the Industrial Environments,” 8th International Conference on Localization and GNSS: Seamless Indoor-Outdoor Localization, Proceedings, Institute of Electrical and Electronics Engineers Inc., Jun. 2018, doi: https://doi.org/10.1109/icl-gnss.2018.8440902.

. Emad Ahmed Hussien and G. Abdulkareem, “RAYLEIGH FADING CHANNEL ESTIMATION BASED ON GENERALIZED REGRESSION NEURAL NETWORK,” Journal of Engineering and Sustainable Development, vol. 27, no. 3, pp. 363–374, May 2023, doi: https://doi.org/10.31272/jeasd.27.3.6.

. S. Sabeeh, “Radio Resource Management for c-v2x Communication Systems,” Ph.D. Thesis, Poznan University of Technology, 2022.

. T. T. Oladimeji, P. Kumar, and N. O. Oyie, “Propagation Path Loss Prediction Modelling in Enclosed Environments for 5G networks: a Review,” Heliyon, vol. 8, no. 11, p. e11581, Nov. 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e11581.

. Y. Hu and G. Leus, “Self-Estimation of Path-Loss Exponent in Wireless Networks and Applications,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp. 5091–5102, Nov. 2015, doi: https://doi.org/10.1109/tvt.2014.2380823.

. J. Miranda et al., “Path Loss Exponent Analysis in Wireless Sensor Networks: Experimental Evaluation,” IEEE Xplore, Jul. 01, 2013. https://ieeexplore.ieee.org/abstract/document/6622857 (accessed Mar. 28, 2022).

. M. K. Elmezughi, T. J. Afullo, and N. O. Oyie, “Performance Study of Path Loss Models at 14, 18, and 22 GHz in an Indoor Corridor Environment for Wireless Communications,” Africa Research Journal, vol. 112, no. 1, pp. 32–45, Mar. 2021, doi: https://doi.org/10.23919/saiee.2021.9340535.

. M. El Hajj, G. Zaharia, G. El Zein, H. Farhat, and S. Sadek, “Millimeter-Wave Propagation Measurements at 60 GHz in Indoor Environments,” 2019 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, pp. 1–4, Jul. 2019, doi: https://doi.org/10.1109/isscs.2019.8801751.

. M. M. Abdulwahid, A. Sh., M. F. Mosleh, and R. A. Abd-Alhameed, “Investigation of Millimeter-Wave Indoor Propagation at Different Frequencies,” 4th Scientific International Conference Najaf, SICN 2019, Institute of Electrical and Electronics Engineers Inc., Apr. 2019, doi: https://doi.org/10.1109/sicn47020.2019.9019358.

. A. M. Al-Samman et al., “Millimeter Wave Propagation Measurements and Characteristics for 5G System,” Applied Sciences, vol. 10, no. 1, p. 335, Jan. 2020, doi: https://doi.org/10.3390/app10010335.

. D. Sun, Y. Liu, and S. Li, “Simulation and Analysis of 60GHz Millimeter-Wave Propagation Characteristics in Corridor Environment,": 2018 International Conference on Microwave and Millimeter Wave Technology, ICMMT- Proceedings, Institute of Electrical and Electronics Engineers Inc, May 2018, doi: https://doi.org/10.1109/icmmt.2018.8563468.

. X. Bian, Y. Liu, and S. Li, “Analysis of Millimeter-Wave Channel Characteristics in Urban Microcell Environment Based on the SBR Method,” International Conference on Microwave and Millimeter Wave Technology, ICMMT 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc, Sep. 2020, doi: https://doi.org/10.1109/icmmt49418.2020.9386788.

. S. A. Aldossari, “Predicting Path Loss of an Indoor Environment Using Artificial Intelligence in the 28-GHz Band,” Electronics, vol. 12, no. 3, p. 497, Jan. 2023, doi: https://doi.org/10.3390/electronics12030497.

. Md Abdus Samad, D.-Y. Choi, and K. Choi, “Path Loss Measurement and Modeling of 5G Network in Emergency Indoor Stairwell at 3.7 and 28 GHz,” PloS One, vol. 18, no. 3, pp. e0282781–e0282781, Mar. 2023, doi: https://doi.org/10.1371/journal.pone.0282781.

. H. J. Liebe, G. A. Hufford, and M. G. Cotton, “Propagation Modeling of Moist Air and Suspended water/ice Particles at Frequencies below 1000 GHz,” Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible through MM-Wave Radiation, pp. 3–11, 1993.

. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design,” IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, Sep. 2015, doi: https://doi.org/10.1109/tcomm.2015.2434384.

. S. Sun et al., “Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843–2860, 2016, doi: https://doi.org/10.1109/TVT.2016.2543139.

. S. Misra, "Millimeter Wave Wireless Communications (Rappaport, T. et al.; 2014) [Book review]," IEEE Wireless Communications, vol. 22, no. 5, pp. 6–7, Oct. 2015, doi: https://doi.org/10.1109/mwc.2015.7306370.

Downloads

Key Dates

Received

2024-06-18

Revised

2024-11-28

Accepted

2024-12-10

Published Online First

2025-02-14

Published

2025-03-01

How to Cite

Al-Mejibli, I., Mohammed, H. A. ., Hoomod, H. K. ., & Nawaf Rasheed Alharbe. (2025). Path Loss of Indoor Hotspot and Indoor Factory Environments for 5G Wireless Networks. Journal of Engineering and Sustainable Development, 29(2), 170-176. https://doi.org/10.31272/jeasd.2473

Similar Articles

1-10 of 564

You may also start an advanced similarity search for this article.