Study and Analysis of Below Knee Osseointegration Prosthesis

Authors

  • Saif M. Abbas Prosthetic and Orthotic Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq https://orcid.org/0000-0002-4171-0602
  • Jumaa S. Chiad Mechanical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq https://orcid.org/0000-0002-5181-3525
  • Ayad M. Takhakh Takhakh Mechanical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq https://orcid.org/0000-0002-7242-0405

DOI:

https://doi.org/10.31272/jeasd.2598

Keywords:

Composite material, Osseointegration, Prosthetic Foot, Prosthetic model, Simulation (Ansys)

Abstract

Osseointegration is a medical metal implant into the residual bone of an amputated limb. The prosthesis can be connected to this implant. Different prosthetic components were thoroughly assessed using a mix of experimental testing and simulation results. The prosthetic foot's outstanding mechanical qualities were revealed during tensile testing on composite materials made of carbon and glass fibers. The mechanical properties of these materials yield stress Ϭy =70MPa, ultimate tensile strength Ϭult =162 MPa, and Young's modulus =2 GPa. For osseointegrated prosthetic components, the implant material yield stress Ϭy =470MPa, ultimate tensile strength Ϭult =558 MPa, and Young's modulus =2.7 GPa, Ti-13Nb-13Zr alloy, demonstrated excellent tensile and compression capabilities. Important information on both metallic and composite materials' durability under cyclic loads was obtained via fatigue testing.  The numerical simulations were carried out utilizing the ANSYS 17.2 program. The analysis shows the safety factor for a prosthetic model with below knee osseointegration is 1.563. So that the Von-Mises stress and total deformation were acceptable. The integration of actual data, such as the results of tensile, compression, and fatigue tests, with numerical simulations, highlights the significance of materials and mechanical analysis in developing prosthetic technology, promising improved mobility and quality of life for amputees.

References

. J. Hoellwarth, K. Tetsworth, R. Rozbruch, B. Handal, A. Coughlan, and M. Al Muderis, “Osseointegration for Amputees: Current Implants, Techniques, and Future Directions,” JBJS. Rev. vol.8. no.3, pp 0043, 2020. https://doi.org/10.2106/jbjs.rvw.19.00043

. S.M., Abbas, K.K., Resan, A.K. Muhammad, and M., Al-Waily, “Mechanical and fatigue behaviors of prosthetic for partial foot amputation with various composite materials types effect”. International Journal of Mechanical Engineering and Technology, vol. 9, no. 9, pp.383-394. 2018. https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_9_ISSUE_9/IJMET_09_09_042.pdf

. P. Branemark, B. Hansson, R. Adell, U. Breine, J. Lindstrom, and O. Hallen, “A 15-Year Study of Osseointegrated Implants in the Treatment of the Edentulous Jaw,” Scand J Plast Reconstr Surg Suppl, vol.16, pp. 1–132, 2020. https://doi.org/10.1016/s0300-9785(81)80077-4.

. Y. Li, and L. Fellander-Tsai, “The bone anchored prostheses for amputee's historical development, current status, and future aspects,” Biomaterials, vol. 273, pp. 120836, 2021. https://doi.org/10.1016/j.biomaterials.2021.120836

. R. Leijendekkers et al., “Comparison of bone-anchored prostheses and socket prostheses for patients with a lower extremity amputation: a systematic review,” Disabil Rehabil; vol. 39, pp. 1045–1058, 2017. https://doi.org/10.1080/09638288.2016.1186752

. P. Frolke, R. Leijendekkers, and H. van de Meent, “Osseointegrated prosthesis for patients with an amputation,” multidisciplinary team approach in the Netherlands Osseointegrierte Prothese fur Patienten nach Amputation. Unfallchirurg; vol.120: 293–299, 2017. https://doi.org/10.1007/s00113-016-0302-1

. R. Atallah et al., “Osseointegrated transtibial implants in patients with peripheral vascular disease: a multicenter case series of 5 patients with 1-year follow up,” J Bone Joint Surg Am; vol.99 no. 18. pp. 1516–1523, 2017. https://doi.org/10.2106/jbjs.16.01295

. R. Leijendekkers et al., “Longterm outcomes following lower extremity press-fit bone-anchored prosthesis surgery: a 5-year longitudinal study protocol,” BMC Musculoskelet Disord; vol.17, no.1, pp. 484, 2016. https://doi.org/10.1186/s12891-016-1341-z

. S. Jonsson, K. Caine-Winterberger, and R Branemark, “Osseointegration amputation prostheses on the upper limbs: methods, prosthetics, and rehabilitation,” Prosthet Orthot Int.; vol. 35, pp. 190–200, 2017. https://doi.org/10.1177/0309364611409003

. R. Branemark, O. Berlin, K. Hagberg, P. Bergh, B. Gunterberg, and B. Rydevik, “A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation,” Bone Joint J.; vol. 96, pp. 106–113,2014. https://doi.org/10.1302/0301-620x.96b1.31905

. J. Tillander, K. Hagberg, L. Hagberg, and R. Branemark, “Osseointegrated titanium implants for limb prostheses attachments: infectious complications,” Clin Orthop Relat Res.; vol. 468, pp. 2781–2788, 2010. https://doi.org/10.1007/s11999-010-1370-0

. K. Hagberg, E. Haggstrom, M. Uden, and R. Branemark, “Socket versus bone-anchored trans-femoral prostheses: hip range of motion and sitting comfort,” Prosthet Orthot Int. vol. 29, pp. 153–163, 2005. https://doi.org/10.1080/03093640500238014

. A. Nebergall, C. Bragdon, A. Antonellis, J. Karrholm, R. Branemark, and H. Malchau, “Stable fixation of an osseointegrated implant system for above-the-knee amputees,” Acta Orthop. vol.83, pp. 121–128, 2012. https://doi.org/10.3109/17453674.2012.678799

. S. Abbas, and A. Kubba, “Fatigue Characteristics and Numerical Modelling Prosthetic for Chopart Amputation,” Modelling and Simulation in Engineering vol. 2020, https://doi.org/10.1155/2020/4752479

. S. Abbas, “Fatigue Characteristics and Numerical Modeling Socket for Patient with Above Knee Prosthesis,” Defect and Diffusion Forum Journal vol. 398, pp. 76-82, 2020. DOI: 10.4028/www.scientific.net/DDF.398.76.

. M. Al Muderis, W. Lu, K. Tetsworth, and B. Bosley, “Single-stage osseointegrated reconstruction and rehabilitation of lower limb amputees: the Osseointegration Group of Australia Accelerated Protocol-2 (OGAAP-2) for a prospective cohort study,” BMJ Open. vol. vol. 7, no. 3, pp. e 013508, 2017. https://doi.org/10.1136/bmjopen-2016-013508

. J. Sullivan, M. Uden, K. Robinson, and S. Sooriakumaran, “Rehabilitation of the trans-femoral amputee with an osseointegrated prosthesis: the United Kingdom experience,” Prosthet Orthot Int. vol. 27, no.2, pp. 114-120, 2013. https://doi.org/10.1080/03093640308726667

. R. Branemark, O. Berlin, K. Hagberg, P. Bergh, B. Gunterberg, and B. Rydevik, “A novel osseointegrated percutaneous prosthetic system for the treatment of patients with transfemoral amputation: A prospective study of 51 patients,” Bone Joint J. vol.96-B, no. 1, pp. 106-113,2014. https://doi.org/10.1302/0301-620x.96b1.31905

. R. Tranberg, R. Zugner, and J. Karrholm, “Improvements in hip- and pelvic motion for patients with osseointegrated trans-femoral prostheses,” Gait Posture. vol. 33, no. 2, pp. 165-168, 2011. https://doi.org/10.1016/j.gaitpost.2010.11.004

. E. Haggstrom, K. Hagberg, B. Rydevik, and R. Branemark, “Vibrotactile evaluation: osseointegrated versus socket-suspended transfemoral prostheses,” J Rehabil Res Dev, vol. 50, no. 10, pp. 1423-1434, 2013. https://doi.org/10.1682/jrrd.2012.08.0135

. H. Van de Meent, M. Hopman, and J. Frolke, “Walking ability and quality of life in subjects with transfemoral amputation: a comparison of osseointegration with socket prostheses,” Arch Phys Med Rehabil vol. 94, no. 11, pp. 2174-2178, 2013. https://doi.org/10.1016/j.apmr.2013.05.020

. D. Matthews et al., “UK trial of the Osseointegrated Prosthesis for the Rehabilitation for Amputees: 1995-2018,” Prosthet Orthot Int, vol. 43, no.1, pp. 112-122, 2019. https://doi.org/10.1177/0309364618791616

. S. Kunutsor, D. Gillatt, and A. Blom, “Systematic review of the safety and efficacy of osseointegration prosthesis after limb amputation,” Br J Surg. vol. 105. no. 13, pp. 1731- 1741, 2018. https://doi.org/10.1002/bjs.11005

. M. Muderis, W. Lu, V. Glatt, and K. Tetsworth, “Two-Stage Osseointegrated Reconstruction of Posttraumatic Unilateral Transfemoral Amputees,” Mil Med. vol. 183(suppl-1), pp. 496-502, 2018. https://doi.org/10.1093/milmed/usx185

. S. Abbas, A. Takhakh, and J. Chiad, “Investigating the Future of Prosthetics Using Osseointegration Technology- Review,” Al-Nahrain Journal for Engineering Sciences NJES vol. 26, no. 3, pp. 186-196, 2023 http://doi.org/10.29194/NJES.26030186NJES.

. ASTM F1713 Standard Specification for Wrought Titanium-13Niobium-13Zirconium Alloy for Surgical Implant Applications (UNS R58130) Designation: F1713−2008 (Reapproved 2013). https://doi.org/10.1520/f1713-08

. ASTM D638 Type I Standard Test Method for Tensile Properties. American Society for Testing and Materials Information, Handing Series 2000 https://doi.org/10.1520/d7812-16

. ASTM E8/E8M − 16a Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials Information, Designation: E8/E8M − 16a. https://doi.org/10.1520/jte20190549

. ASTM D3479 Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials, American Society for Testing and Materials Information, Designation: D3479/D3479M – 12. https://doi.org/10.1520/d3479_d3479m-19r23

. ASTM E 9 – 89a American Society for Testing and Materials Information, Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature Designation: E 9 – 89a, 2000.

. S. Abbas, A.Takhakh, J. Chiad, and B. Louhichi, “Study and Analysis of Ti13Nb13Zr Implants in the above Knee Osseointegration Prosthesis,” Al-Qadisiyah Journal for Engineering Sciences, vol. 17, no. 4, pp. 331–338, Dec. 2024, doi: https://doi.org/10.30772/qjes.2024.146062.1086

Downloads

Key Dates

Received

2024-04-18

Revised

2024-05-23

Accepted

2024-05-24

Published Online First

2025-02-14

Published

2025-03-01

How to Cite

Abbas, S. M., Chiad, J. S., & Takhakh, A. M. T. (2025). Study and Analysis of Below Knee Osseointegration Prosthesis. Journal of Engineering and Sustainable Development, 29(2), 190-197. https://doi.org/10.31272/jeasd.2598

Similar Articles

1-10 of 720

You may also start an advanced similarity search for this article.