INFLUENCE OF SUBCRITICAL WATER PRETREATMENT TEMPERATURE ON PINEAPPLE WASTE BIOGAS EFFICIENCY: EXPERIMENTAL AND KINETIC STUDY

Authors

  • Adila Fazliyana Aili Hamzah Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Author https://orcid.org/0000-0001-8233-3076
  • Muhammad Hazwan Hamzah Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Author https://orcid.org/0000-0001-7684-0370
  • Hasfalina Che Man Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia Author
  • Nur Syakina Jamali Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Author
  • Shamsul Izhar Siajam Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia. Author https://orcid.org/0000-0002-1207-0538

DOI:

https://doi.org/10.31272/jeasd.28.2.1

Keywords:

Biogas, Gompertz, Pineapple waste, Pretreatment, Subcritical Water

Abstract

Anaerobic digestion of pineapple waste appears to be an effective method for non-renewable energy substitution through biogas production. The potential power generation from the exploitation of pineapple waste as fuel is estimated to be roughly 20.8 MW. Nevertheless, the intricate composition of pineapple waste, characterized by the complex arrangement of its structure, poses a significant challenge in attaining a substantial amount of biogas production. This study pretreated pineapple waste with subcritical water to increase biogas production. Two temperature settings (120⁰C and 200⁰C) were used for pretreatment. Combined pre-treatment at low temperatures and short time (120⁰C, 5 minutes, 10 water to solid ratio) resulted in 31.6% higher biogas production than untreated. However, pretreatment at high temperatures and longer reaction time (200⁰C,25 min) reduced the biogas production by 9% as compared to untreated. Using the Modified Gompertz kinetic model, pretreatment improved the lag phase and increased biogas production to 14.41 mL/day. The lignocellulosic composition of pre-treated pineapple waste decreased, while process parameters such as total ammonia nitrogen removal and pH improved after the pretreatment. Subcritical water pretreatment, particularly when conducted at high temperatures, did not yield any enhancements in the anaerobic digestion of pineapple waste. As a result, it is not advisable to employ this method for these purposes.

References

A.F. Aili Hamzah, M.H. Hamzah, H. Che Man, N.S. Jamali, S.I. Siajam, M.H. Ismail, Recent Updates on the Conversion of Pineapple Waste (Ananas comosus) to Value-Added Products, Future Perspectives, Agronomy. 11 (2021) 2221, 1–27. https://doi.org/10.3390/agronomy11112221.

M.F.M. Ahmad Zamri, A. Akhiar, M.E. Mohd Roslan, M.H. Mohd Marzuki, J.M. Saad, A.H. Shamsuddin, Valorisation of organic fraction municipal solid waste via anaerobic co-digestion of Malaysia tropical fruit for biogas production, IOP Conf. Ser. Earth Environ. Sci. 476 (2020) 012077. https://doi.org/10.1088/1755-1315/476/1/012077.

T. A. Adnan, E. A. Mohammed, A.-S. T. Al-Madhhachi, Water Quality Index of Tigris River Within Baghdad City: A Review, J. Eng. Sustain. Dev. 25 (2022) 34–43. https://doi.org/10.31272/jeasd.25.3.4.

A.F.O. Al-jaf, J.A.. Al-ameen, Comparison of a Traditional Landfill and a Mechanically-Biologically Treated Waste Landfill (Case study; Kirkuk landfill), Tikrit J. Eng. Sci. 28 (2021) 73–79. https://doi.org/10.25130/tjes.28.2.06.

N. H. Abd Al Satar, D. E. Sachit, Assessment Of Hospital Wastewater Quality and Management in Bab-Al Muadham Region at Baghdad, J. Eng. Sustain. Dev. 25 (2022) 44–50. https://doi.org/10.31272/jeasd.25.3.5.

C.-Y. Lin, C. Lu, Development perspectives of promising lignocellulose feedstocks for production of advanced generation biofuels: A review, Renew. Sustain. Energy Rev. 136 (2021) 110445. https://doi.org/10.1016/j.rser.2020.110445

J. Meegoda, B. Li, K. Patel, L. Wang, A Review of the Processes, Parameters, and Optimization of Anaerobic Digestion, Int. J. Environ. Res. Public Health. 15 (2018) 2224, 1–16. https://doi.org/10.3390/ijerph15102224.

S.O. Dahunsi, Liquefaction of pineapple peel: Pretreatment and process optimization, Energy. 185 (2019) 1017–1031. https://doi.org/10.1016/j.energy.2019.07.123.

D. Wang, F. Shen, G. Yang, Y. Zhang, S. Deng, J. Zhang, Y. Zeng, T. Luo, Z. Mei, Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresour. Technol. 249 (2018) 117–124. https://doi.org/10.1016/j.biortech.2017.09.197.

B. Ahmed, K. Aboudi, V.K. Tyagi, C.J. Álvarez-Gallego, L.A. Fernández-Güelfo, L.I. Romero-García, A.A. Kazmi, Improvement of anaerobic digestion of lignocellulosic biomass by hydrothermal pretreatment, Appl. Sci. 9 (2019) 3852, 1–17. https://doi.org/10.3390/app9183853.

H. Zhang, L. Wang, Z. Dai, R. Zhang, C. Chen, G. Liu, Effect of organic loading, feed-to-inoculum ratio, and pretreatment on the anaerobic digestion of tobacco stalks, Bioresour. Technol. 298 (2020) 122474. https://doi.org/10.1016/j.biortech.2019.122474.

V.B. Barua, A.S. Kalamdhad, Anaerobic biodegradability test of water hyacinth after microbial pretreatment to optimise the ideal F/M ratio, Fuel. 217 (2018) 91–97. https://doi.org/10.1016/j.fuel.2017.12.074.

F. Almomani, Prediction of biogas production from chemically treated co-digested agricultural waste using artificial neural network, Fuel. 280 (2020) 118573. https://doi.org/10.1016/j.fuel.2020.118573

E. Antwi, N. Engler, M. Nelles, A. Schüch, Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues, Waste Manag. 88 (2019) 131–140. https://doi.org/10.1016/j.wasman.2019.03.034.

S.O. Dahunsi, C.O. Osueke, T.M.A. Olayanju, A.I. Lawal, Co-digestion of Theobroma cacao (Cocoa) pod husk and poultry manure for energy generation: Effects of pretreatment methods, Bioresour. Technol. 283 (2019) 229–241. https://doi.org/10.1016/j.biortech.2019.03.093.

B. Wichitsathian, J. Yimrattanabavorn, W. Wonglertarak, Enhancement of biogas production from pineapple waste by acid-alkaline pretreatment, IOP Conf. Ser. Earth Environ. Sci. 471 (2020) 012005. https://doi.org/10.1088/1755-1315/471/1/012005.

T.-T. Nguyen, C.-Y. Chu, C.-M. Ou, Pre-treatment study on two-stage biohydrogen and biomethane productions in a continuous co-digestion process from a mixture of swine manure and pineapple waste, Int. J. Hydrogen Energy. 46 (2021) 11325–11336. https://doi.org/10.1016/j.ijhydene.2020.05.264.

S.O. Dahunsi, J.O. Ogunwole, A.A. Owoseni, G.O. Olutona, Y.T. Nejo, O.E. Atobatele, Valorization of pineapple peel and poultry manure for clean energy generation, Food Energy Secur. (2021) e228. https://doi.org/10.1002/fes3.228.

A.F. Aili Hamzah, M.H. Hamzah, H. Che Man, N.S. Jamali, S.I. Siajam, P.L. Show, Subcritical Water Pretreatment for Anaerobic Digestion Enhancement: A Review, Pertanika J. Sci. Technol. 31 (2023) 1011–1034. https://doi.org/10.47836/pjst.31.2.19.

A.F. Aili Hamzah, M.H. Hamzah, N.I. Mazlan, H. Che Man, N.S. Jamali, S.I. Siajam, P.L. Show, Optimization of subcritical water pre-treatment for biogas enhancement on co-digestion of pineapple waste and cow dung using the response surface methodology, Waste Manag. 150 (2022) 98–109. https://doi.org/10.1016/j.wasman.2022.06.042.

M. Park, N. Kim, S. Jung, T.-Y. Jeong, D. Park, Optimization and comparison of methane production and residual characteristics in mesophilic anaerobic digestion of sewage sludge by hydrothermal treatment, Chemosphere. 264 (2021) 128516,1–11. https://doi.org/10.1016/j.chemosphere.2020.128516.

A.F.A. Hamzah, M.H. Hamzah, H.C. Man, N.S. Jamali, S.I. Siajam, P.L. Show, Biogas Production Through Mono- and Co-digestion of Pineapple Waste and Cow Dung at Different Substrate Ratios, BioEnergy Res. (2022) 1–12. https://doi.org/10.1007/s12155-022-10478-2.

C. He, J. Hu, F. Shen, M. Huang, L. Zhao, J. Zou, D. Tian, Q. Jiang, Y. Zeng, Tuning hydrothermal pretreatment severity of wheat straw to match energy application scenarios, Ind. Crops Prod. 176 (2022) 114326. https://doi.org/10.1016/j.indcrop.2021.114326.

A. Shitu, S. Izhar, T.M. Tahir, Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work, Glob. J. Environ. Sci. Manag. 1 (2015) 255–264. https://doi.org/10.7508/gjesm.2015.03.008

APHA, Standard Methods for Examination of Water and Wastewater, 20th ed, 1998. https://doi.org/10.1016/j.jhazmat.2010.04.118.

TAPPI, T.A.P.P.I. standards: Testing methods, recommended practices, specifications of the Technical Association of the Pulp and Paper Industry, Technical Association of the Pulp and Paper Industry, New York, 1950.

D. Kim, K. Lee, K.Y. Park, Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pre-treatment, Int. Biodeterior. Biodegrad. 101 (2015) 42–46. https://doi.org/10.1016/j.ibiod.2015.03.025.

C. Xiang, D. Tian, J. Hu, M. Huang, F. Shen, Y. Zhang, G. Yang, Y. Zeng, S. Deng, Why can hydrothermally pretreating lignocellulose in low severities improve anaerobic digestion performances?, Sci. Total Environ. 752 (2021) 141929,1–10. https://doi.org/10.1016/J.SCITOTENV.2020.141929.

L. Wenjing, P. Chao, A. Lama, F. Xindi, Y. Rong, B.R. Dhar, Effect of pre-treatments on biological methane potential of dewatered sewage sludge under dry anaerobic digestion, Ultrason. Sonochem. 52 (2019) 224–231. https://doi.org/10.1016/j.ultsonch.2018.11.022.

C. Phuttaro, C. Sawatdeenarunat, K.C. Surendra, P. Boonsawang, S. Chaiprapat, S.K. Khanal, Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield, Bioresour. Technol. 284 (2019) 128–138. https://doi.org/10.1016/j.biortech.2019.03.114.

A. Dasgupta, M.K. Chandel, Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment, Bioresour. Technol. Reports. 7 (2019) 100281, 1–13. https://doi.org/10.1016/j.biteb.2019.100281.

S.P. Simanungkalit, D. Mansur, B. Nurhakim, A. Agustin, N. Rinaldi, Muryanto, M.A. Fitriady, Hydrothermal pretreatment of palm oil empty fruit bunch, in AIP Conf. Proc., AIP Publishing LLC AIP Publishing, 2017: p. 020011. https://doi.org/10.1063/1.4973138.

A.N.L. Rachmah, A. Fatmawati, A. Widjaja, Impact of surfactant-aided subcritical water pretreatment process conditions on the reducing sugar production from oil palm empty fruit bunch, IOP Conf. Ser. Earth Environ. Sci. 963 (2022) 012005. https://doi.org/10.1088/1755-1315/963/1/012005.

J. Chen, X. Wang, B. Zhang, Y. Yang, Y. Song, F. Zhang, B. Liu, Y. Zhou, Y. Yi, Y. Shan, X. Lü, Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw, Sci. Total Environ. 770 (2021) 145321, 1–12. https://doi.org/10.1016/j.scitotenv.2021.145321.

E.S. Gaballah, A.E.-F. Abomohra, C. Xu, M. Elsayed, T.K. Abdelkader, J. Lin, Q. Yuan, Enhancement of biogas production from rape straw using different co-pretreatment techniques and anaerobic co-digestion with cattle manure, Bioresour. Technol. 309 (2020) 123311. https://doi.org/10.1016/j.biortech.2020.123311.

W. Tian, Y. Chen, Y. Shen, C. Zhong, M. Gao, D. Shi, Q. He, L. Gu, Effects of hydrothermal pretreatment on the mono- and co-digestion of waste activated sludge and wheat straw, Sci. Total Environ. 732 (2020) 139312, 1–15. https://doi.org/10.1016/j.scitotenv.2020.139312.

K. Li, R. Liu, C. Sun, Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations, Bioresour. Technol. 198 (2015) 133–140. https://doi.org/10.1016/j.biortech.2015.08.151.

J. Kainthola, A.S. Kalamdhad, V. V. Goud, R. Goel, Fungal pretreatment and associated kinetics of rice straw hydrolysis to accelerate methane yield from anaerobic digestion, Bioresour. Technol. 286 (2019) 121368. https://doi.org/10.1016/j.biortech.2019.121368.

H. Zaid, Z. Al-sharify, M.H. Hamzah, S. Rushdi, Optimization Of Different Chemical Processes Using Response Surface Methodology- A Review, J. Eng. Sustain. Dev. 26 (2022) 1–12. https://doi.org/10.31272/jeasd.26.6.1.

F. Almomani, R.R. Bhosale, Enhancing the production of biogas through anaerobic co-digestion of agricultural waste and chemical pre-treatments, Chemosphere. 255 (2020) 126805. https://doi.org/10.1016/j.chemosphere.2020.126805.

Downloads

Key Dates

Published

2024-03-01

How to Cite

Aili Hamzah, A. F. ., Hamzah, M. H., Che Man, H. ., Jamali, N. S. ., & Siajam, S. I. . (2024). INFLUENCE OF SUBCRITICAL WATER PRETREATMENT TEMPERATURE ON PINEAPPLE WASTE BIOGAS EFFICIENCY: EXPERIMENTAL AND KINETIC STUDY. Journal of Engineering and Sustainable Development, 28(02), 143-159. https://doi.org/10.31272/jeasd.28.2.1

Similar Articles

11-20 of 300

You may also start an advanced similarity search for this article.