The Effect of Maximum Reaction Temperature of Polyurethane Foam on the Effective Thermal Conductivity

Authors

  • Massara Ali Fadhel Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq https://orcid.org/0009-0001-3067-0836
  • Harith H. Al-Moameri Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq https://orcid.org/0000-0001-5985-0235
  • Tawfeeq W. Mohammed Materials Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq https://orcid.org/0000-0001-9316-2540

DOI:

https://doi.org/10.31272/jeasd.2507

Keywords:

Blowing agent, Ethylene glycol, Polyurethane, Reaction temperature, Thermal conductivity

Abstract

The thermal conductivity of polyurethane foams may be sensitive to many pronounced parameters related to their components and conditions of formation. This study aims to investigate the effect of maximum reaction temperature during forming the foam on the resultant thermal conductivity value. The study used samples from different cases and conditions to monitor the reaction. The cases include standard, with n-pentane or water as blowing agents and ethylene glycol as activation agents. Two conditions have been selected: with and without post-heating. The results have shown that thermal conductivity increases with the increase in the maximum reaction temperature for certain cases (1 g and 2 g). However, for 4 g, there is a decrease in the k-value. In general, the lowest k-value has been noticed for the case of using 1 g of n-pentane (0.033 W/m.K) compared to the reference case that does not use further addition of agents (0.043 W/m.K). The variation of the k-values due to the increasing mass of the agents shows an increment behavior.

References

. S. M. Abbas, K. K. Resan, A. K. Muhammad, and M. Al-Waily, “Mechanical And Fatigue Behaviors Of Prosthetic For Partial Foot Amputation With Various Composite Materials Types Effe Ct," International Journal of Mechanical Engineering and Technology (IJMET), vol. 9, no. 9, pp. 383 394, 2018, Accessed: 2024. [Online]. Available: http://iaeme.com/Home/issue/IJMET?Volume=9&Issue=9

. S. D. Salman, M. J. Sharba, Z. Leman, M. T. H. Sultan, M. R. Ishak, and F. Cardona, “Tension-Compression Fatigue Behavior of Plain Woven Kenaf/Kevlar Hybrid Composites,” BioResources, vol. 11, no. 2, Feb. 2016, doi: https://doi.org/10.15376/biores.11.2.3575-3586.

. N. S. Ali, N. M. Jabbar, S. M. Alardhi, H. Sh. Majdi, and T. M. Albayati, “Adsorption of Methyl Violet Dye onto a Prepared bio-adsorbent from Date seeds: isotherm, kinetics, and Thermodynamic Studies,” Heliyon, vol. 8, no. 8, p. e10276, Aug. 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e10276.

. J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, "Polyurethane types, Synthesis, and Applications – a Review," RSC Advances, vol. 6, no. 115, pp. 114453–114482, 2016, doi: https://doi.org/10.1039/c6ra14525f.

. A. K. Maurya, F. M. de Souza, and R. K. Gupta, “Polyurethane and Its Composites: Synthesis to Application,” ACS Symposium Series, vol. 1, pp. 1–20, Nov. 2023, doi: https://doi.org/10.1021/bk-2023-1452.ch001.

. M. Ates, S. Karadag, A. A. Eker, and B. Eker, “Polyurethane Foam Materials and Their Industrial Applications,” Polymer International, vol. 71, no. 10, pp. 1157–1163, Aug. 2022, doi: https://doi.org/10.1002/pi.6441.

. K. A. Ter-Zakaryan, A. D. Zhukov , E. Yu. Bobrova, I. V. Bessonov , and E. A. Mednikova , “Foam Polymers in Multifunctional Insulating Coatings,” Polymers, vol. 13, no. 21, p. 3698, Oct. 2021, doi: https://doi.org/10.3390/polym13213698.

. H. Zhang et al., “Polyurethane Foam with High-Efficiency Flame Retardant, Heat Insulation, and Sound Absorption Modified by Phosphorus-Containing Graphene Oxide,” ACS Applied Polymer Materials, vol. 6, no. 3, pp. 1878–1890, Jan. 2024, doi: https://doi.org/10.1021/acsapm.3c02706.

. L. D. Hung Anh and Z. Pásztory, “An Overview of Factors Influencing Thermal Conductivity of Building Insulation Materials,” Journal of Building Engineering, vol. 44, no. 102604, p. 102604, Dec. 2021, doi: https://doi.org/10.1016/j.jobe.2021.102604.

. T. W. M. Salih and L. A. A. Jawad, “Evaluating the Thermal Insulation Performance of Composite Panels Made of Natural Luffa Fibres and urea-formaldehyde Resin for Buildings in the Hot Arid Region,” Advances in Building Energy Research, vol. 16, no. 5, pp. 696–710, Jul. 2022, doi: https://doi.org/10.1080/17512549.2022.2098534.

. J. Wang, C. Zhang, Y. Deng, and P. Zhang, “A Review of Research on the Effect of Temperature on the Properties of Polyurethane Foams,” Polymers, vol. 14, no. 21, p. 4586, Jan. 2022, doi: https://doi.org/10.3390/polym14214586.

. T. Stovall, “Closed Cell Foam Insulation: a Review of Long Term Thermal Performance Research,” OSTI OAI (U.S. Department of Energy Office of Scientific and Technical Information), Dec. 2012, doi: https://doi.org/10.2172/1093061.

. Z. Wang, C. Wang, Y. Gao, Z. Li, Y. Shang, and H. Li, “Porous Thermal Insulation Polyurethane Foam Materials,” Polymers, vol. 15, no. 18, p. 3818, Jan. 2023, doi: https://doi.org/10.3390/polym15183818.

. S. Hee Kim, H. Lim, J. Chul Song, and B. Kyu Kim, “Effect of Blowing Agent Type in Rigid Polyurethane Foam,” Journal of Macromolecular Science, Part A, vol. 45, no. 4, pp. 323–327, Feb. 2008, doi: https://doi.org/10.1080/10601320701864260.

. M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik, “Mechanical, Morphological and Thermal Properties of Rigid Polyurethane Foam: Effect of the Fillers,” Cellular Polymers, vol. 26, no. 4, pp. 245–259, Jul. 2007, doi: https://doi.org/10.1177/026248930702600402.

. U. Berardi and J. Madzarevic, “Microstructural Analysis and Blowing Agent Concentration in Aged Polyurethane and Polyisocyanurate Foams,” Applied Thermal Engineering, vol. 164, p. 114440, Jan. 2020, doi: https://doi.org/10.1016/j.applthermaleng.2019.114440.

. H. H. Al-Moameri, B. J. Nabhan, Tawfeeq Wasmi M, and M. A. Abdulrehman, “Impact of Blowing agent-blends on Polyurethane Foams Thermal and Mechanical Properties,” AIP conference proceedings, vol. 2213, pp. 020177–020177, Jan. 2020, doi: https://doi.org/10.1063/5.0000153.

. V. Yakushin, U. Cabulis, V. Fridrihsone, S. Kravchenko, and R. Pauliks, “Properties of Polyurethane Foam with fourth-generation Blowing Agent,” e-Polymers, vol. 21, no. 1, pp. 763–769, Jan. 2021, doi: https://doi.org/10.1515/epoly-2021-0081.

. H. Al-Moameri, Y. Zhao, R. Ghoreishi, and G. J. Suppes, “Simulation of Liquid Physical Blowing Agents for Forming Rigid Urethane Foams,” Journal of Applied Polymer Science, vol. 132, no. 34, May 2015, doi: https://doi.org/10.1002/app.42454.

. A. Shalbafan, K. C. Chaydarreh, and J. Welling, “Effect of Blowing Agent Concentration on Rigid Polyurethane Foam and the Properties of foam-core Particleboard,” Wood Material Science & Engineering, vol. 16, no. 2, pp. 85–93, Jun. 2019, doi: https://doi.org/10.1080/17480272.2019.1626480.

. M. Corcuera et al., “Effect of Diisocyanate Structure on Thermal Properties and Microstructure of Polyurethanes Based on Polyols Derived from Renewable Resources,” AIP Conference Proceedings, vol. 122, no. 6, pp. 290–293, Jan. 2010, doi: https://doi.org/10.1063/1.3455612.

. M. Kurańska, A. Prociak, U. Cabulis, M. Kirpluks, J. Ryszkowska, and M. Auguścik, “Innovative Porous polyurethane-polyisocyanurate Foams Based on Rapeseed Oil and Modified with Expandable Graphite,” Industrial Crops and Products, vol. 95, pp. 316–323, Jan. 2017, doi: https://doi.org/10.1016/j.indcrop.2016.10.039.

. S. An, G. J. Suppes, and T. K. Ghosh, “Simulation of the Optimized Thermal Conductivity of a Rigid Polyurethane Foam during Its Foaming Process,” Fibers and Polymers, vol. 20, no. 2, pp. 358–374, Feb. 2019, doi: https://doi.org/10.1007/s12221-019-8703-8.

. S. H. Kim, B. K. Kim, and H. Lim, “Effect of Isocyanate Index on the Properties of Rigid Polyurethane Foams Blown by HFC 365mfc,” Macromolecular Research, vol. 16, no. 5, pp. 467–472, Jul. 2008, doi: https://doi.org/10.1007/bf03218546.

. F. E. Firdaus, "The Effect of Ethylene Glycol to Soy Polyurethane Foam Classifications," World Academy of Science, Engineering, and Technology, International Journal of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 6, no. 9, pp. 866–868, Sep. 2012.

. H. Tian, Y. Yao, W. Liu, K. Wang, L. Fu, and A. Xiang, “Polyethylene glycol: an Effective Agent for isocyanate-based Polyimide Foams with Enhanced Foaming Behavior and Flexibility,” High Performance Polymers, vol. 31, no. 7, pp. 810–819, Sep. 2018, doi: https://doi.org/10.1177/0954008318801906.

. M. Valizadeh, M. Rezaei, and A. Eyvazzadeh, “Effect of Nanoclay on the Mechanical and Thermal Properties of Rigid Polyurethane/Organoclay Nanocomposite Foams Blown with Cyclo and Normal Pentane Mixture,” Key Engineering Materials, vol. 471–472, pp. 584–589, Feb. 2011, doi: https://doi.org/10.4028/www.scientific.net/kem.471-472.584.

. A. A. Septevani, David, D. J. Martin, P. Song, and P. K. Annamalai, “Tuning the Microstructure of Polyurethane Foam Using Nanocellulose for Improved Thermal Insulation Properties through an Efficient Dispersion Methodology,” Polymer Composites, vol. 44, no. 12, pp. 8857–8869, Sep. 2023, doi: https://doi.org/10.1002/pc.27743.

. Y. Cui, H. Wang, H. Pan, T. Yan, and C. Zong, “The Effect of Mixed Soft Segment on the Microstructure of Thermoplastic Polyurethane,” Journal of Applied Polymer Science, vol. 138, no. 45, Jul. 2021, doi: https://doi.org/10.1002/app.51346.

. H. Zhang, W.-Z. Fang, Y.-M. Li, and W.-Q. Tao, “Experimental Study of the Thermal Conductivity of Polyurethane Foams,” Applied Thermal Engineering, vol. 115, pp. 528–538, Mar. 2017, doi: https://doi.org/10.1016/j.applthermaleng.2016.12.057.

. U. Berardi and M. Naldi, “The Impact of the Temperature Dependent Thermal Conductivity of Insulating Materials on the Effective Building Envelope Performance,” Energy and Buildings, vol. 144, pp. 262–275, Jun. 2017, doi: https://doi.org/10.1016/j.enbuild.201703.052.

. O. V. Soloveva, S. A. Solovev, Y. V. Vankov, and R. Z. Shakurova, “Experimental Studies of the Effective Thermal Conductivity of Polyurethane Foams with Different Morphologies,” Processes, vol. 10, no. 11, pp. 2257–2257, Nov. 2022, doi: https://doi.org/10.3390/pr10112257.

. H. Al-Moameri, R. Ghoreishi, Y. Zhao, and G. J. Suppes, “Impact of the Maximum Foam Reaction Temperature on Reducing Foam Shrinkage,” RSC Advances, vol. 5, no. 22, pp. 17171–17178, 2015, doi: https://doi.org/10.1039/c4ra12540a.

. [H. Al-Moameri, Y. Zhao, R. Ghoreishi, and G. J. Suppes, “Simulation Blowing Agent Performance, Cell Morphology, and Cell Pressure in Rigid Polyurethane Foams,” Industrial & Engineering Chemistry Research, vol. 55, no. 8, pp. 2336–2344, Feb. 2016, doi: https://doi.org/10.1021/acs.iecr.5b04711.

. S. Wang, W. Liu, D. Yang, and X. Qiu, “Highly Resilient Lignin-Containing Polyurethane Foam,” Industrial & Engineering Chemistry Research, vol. 58, no. 1, pp. 496–504, Dec. 2018, doi: https://doi.org/10.1021/acs.iecr.8b05072.

. S. Ju et al., “Preventing the Collapse Behavior of Polyurethane Foams with the Addition of Cellulose Nanofiber,” Polymers, vol. 15, no. 6, p. 1499, Jan. 2023, doi: https://doi.org/10.3390/polym15061499.

. L. Jaf, H. H. Al-Moameri, A. A. Ayash, A. A. Lubguban, R. M. Malaluan, and T. Ghosh, “Limits of Performance of Polyurethane Blowing Agents,” Sustainability, vol. 15, no. 8, pp. 6737–6737, Apr. 2023, doi: https://doi.org/10.3390/su15086737.

. J. P. Holman, Heat Transfer, 10th ed. McGraw-Hill, Inc., New York, 2010.

. J.-W. Wu, W.-F. Sung, and H.-S. Chu, “Thermal Conductivity of Polyurethane Foams,” International Journal of Heat and Mass Transfer, vol. 42, no. 12, pp. 2211–2217, Jun. 1999, doi: https://doi.org/10.1016/s0017-9310(98)00315-9.

. C. Carriço, T. Fraga, V. Carvalho, and V. Pasa, “Polyurethane Foams for Thermal Insulation Uses Produced from Castor Oil and Crude Glycerol Biopolyols,” Molecules, vol. 22, no. 7, p. 1091, Jul. 2017, doi: https://doi.org/10.3390/molecules22071091.

. T. Salih, Insulation Materials: Fundamentals and Applications, 1st ed. Mustansiriyah University, Iraq, 2021.

. S. F. Gharaibeh, W. M. Obeidat, and N. Al-Zoubi, “Effect of post-compaction Heating on Characteristics of Microcrystalline Cellulose Compacts,” e-Polymers, vol. 22, no. 1, pp. 536–543, Jan. 2022, doi: https://doi.org/10.1515/epoly-2022-0049.

Downloads

Key Dates

Received

2024-03-18

Revised

2024-08-16

Accepted

2024-08-16

Published Online First

2025-02-25

Published

2025-03-01

How to Cite

Fadhel, M. A. ., Al-Moameri, H. H., & Mohammed, T. W. (2025). The Effect of Maximum Reaction Temperature of Polyurethane Foam on the Effective Thermal Conductivity. Journal of Engineering and Sustainable Development, 29(2), 209-218. https://doi.org/10.31272/jeasd.2507

Similar Articles

1-10 of 319

You may also start an advanced similarity search for this article.