Enhancement of Roadway Embankment Using Geofoam Blocks and Cement Columns: Application of Three-Dimensional Plaxis Program

Authors

  • Zainab Ahmed Alkaissi Highway and Transportation Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author https://orcid.org/0000-0002-1894-9797

DOI:

https://doi.org/10.31272/jeasd.28.6.14

Keywords:

Displacement, Embankment Analysis, Enhancement, Numerical Analysis, Stress, Strain

Abstract

Enhancement of roadway embankment utilizing several techniques, such as cement columns and applying EPS (expanded polystyrene) Geofoam blocks as subbase materials, helps develop the efficiency of embankment performance under the applied traffic loading for local materials. A PLAXIS 3D (ver.20) finite element program is used for the simulation models of roadway embankments. The results showed that applying the cement column reduced the vertical deformation of the roadway embankment to (50mm) corresponding to approximately (58%) of the reference model. The EPS Geofoam blocks highly lowered the vertical deformation to (20mm) about (83%) of the reference model to those in the cement column. The EPS Geofoam blocks provide a convenient solution for improving the roadway embankment with an (83%) reduction in maximum vertical displacement and sustaining traffic loading on the pavement. The reduction in displacement is well done by utilizing the EPS Geofoam blocks in a granular layer of pavement embankment. The EPS Geofoam blocks acted better in reducing vertical stresses (about 22%) higher than the cement column. This benefits the use of EPS Geofoam blocks in the base layer to enhance roadway embankment against failure.

References

A. Kumar, A. Burman, S. S. Choudhary, B. Rao, S. Kumar, and Pijush Samui, “A Study on Deep-Seated Stability of Geotextile Reinforced Earth Embankment,” Transportation Infrastructure Geotechnology, May 2024, doi: https://doi.org/10.1007/s40515-024-00415-5.

J. Vashi, A. Desai, and C. Solanki, “Analysis of Geotextile Reinforced Embankment on Difficult Subsoil Condition,” International Journal of Scientific & Engineering Research, vol. 4, no. 5, 2013, Accessed: Oct. 22, 2024. [Online]. Available: https://www.ijser.org/researchpaper/Analysis-of-Geotextile Reinforced-Embankment-on-Difficult-Subsoil-Condition.pdf

N. F. A. Zianal, M. F. Yusof, A. Madun, F. Pakir, M. K. Abu Talib, and Z. Abu Talib, “Numerical Modelling of Soft Soil Improvement Using Expanded Polystyrene Geofoam for Road Embankment,” Journal of Sustainable Underground Exploration, vol. 2, no. 1, Nov. 2022, doi: https://doi.org/10.30880/jsue.2022.02.01.007.

A. Mohajerani, M. Ashdown, L. Abdihashi, and M. Nazem, “Expanded polystyrene geofoam in pavement construction,” Construction and Building Materials, vol. 157, pp. 438–448, Dec. 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.09.113.

S. Kazemian, B. B. K. Huat, and H. Moayedi, “Undrained Shear Characteristics of Tropical Peat Reinforced with Cement Stabilized Soil Column,” Geotechnical and Geological Engineering, vol. 30, no. 4, pp. 753–759, Feb. 2012, doi: https://doi.org/10.1007/s10706-012-9492-7.

K. Deb, “A mathematical model to study the soil arching effect in stone column-supported embankment resting on soft foundation soil,” Applied Mathematical Modelling, vol. 34, no. 12, pp. 3871–3883, Dec. 2010, doi: https://doi.org/10.1016/j.apm.2010.03.026.

A. K. Das and K. Deb, “Experimental and 3D Numerical Study on Time-Dependent Behavior of Stone Column–Supported Embankments,” International Journal of Geomechanics, vol. 18, no. 4, Apr. 2018, doi: https://doi.org/10.1061/(asce)gm.1943-5622.0001110.

A. Marto, M. Hasan, M. Hyodo, and A. M. Makhtar, “Shear Strength Parameters and Consolidation of Clay Reinforced with Single and Group Bottom Ash Columns,” Arabian Journal for Science and Engineering, vol. 39, no. 4, pp. 2641–2654, Feb. 2014, doi: https://doi.org/10.1007/s13369-013-0933-2.

Y. S. Golait and A. H. Padade, “Analytical and Experimental studies on Cemented Stone Columns for Soft Clay Ground Improvement,” International Journal of Geomechanics, vol. 17, no. 4, p. 04016100, Apr. 2017, doi: https://doi.org/10.1061/(asce)gm.1943-5622.0000779.

R. Moradi, A. Marto, A. S. A. Rashid, M. M. Moradi, A. A. Ganiyu, and S. Horpibulsuk, “Bearing capacity of soft soil model treated with end-bearing bottom ash columns,” Environmental Earth Sciences, vol. 77, no. 3, Feb. 2018, doi: https://doi.org/10.1007/s12665-018-7287-8.

Zainab Ahmed Alkaissi, “Numerical Analysis Of Controlled Modulus Column Foundation System Supported Embankments,” Journal of Engineering, vol. 15, no. 2, pp. 3691–3709, Jun. 2009, doi: https://doi.org/10.31026/j.eng.2009.02.13.

N. F. A. Zianal, M. F. Yusof, A. Madun, F. Pakir, M. K. Abu Talib, and Z. Abu Talib, “Numerical Modelling of Soft Soil Improvement Using Expanded Polystyrene Geofoam for Road Embankment,” Journal of Sustainable Underground Exploration, vol. 2, no. 1, Nov. 2022, doi: https://doi.org/10.30880/jsue.2022.02.01.007.

N. F. A. Zianal, M. F. Yusof, A. Madun, F. Pakir, M. K. Abu Talib, and Z. Abu Talib, “Numerical Modelling of Soft Soil Improvement Using Expanded Polystyrene Geofoam for Road Embankment,” Journal of Sustainable Underground Exploration, vol. 2, no. 1, Nov. 2022, doi: https://doi.org/10.30880/jsue.2022.02.01.007.

A. Lyratzakis, Y. Tsompanakis, and P. N. Psarropoulos, “Mitigation of vibrations in high-speed railway cuttings using expanded-polystyrene blocks,” Transportation Geotechnics, vol. 29, p. 100572, Jul. 2021, doi: https://doi.org/10.1016/j.trgeo.2021.100572.

J. O. Avesani Neto and D. Rodrigues, “Instrumented load tests and layered elastic theory analysis of a large-scale EPS block embankment,” Transportation Geotechnics, vol. 26, p. 100442, Jan. 2021, doi: https://doi.org/10.1016/j.trgeo.2020.100442.

T. A. Pham and D. Dias, “3D numerical study of the performance of geosynthetic-reinforced and pile-supported embankments,” Soils and Foundations, Aug. 2021, doi: https://doi.org/10.1016/j.sandf.2021.07.002.

A. J. Puppala, P. Ruttanaporamakul, and S. S. C. Congress, “Design and construction of lightweight EPS geofoam embedded geomaterial embankment system for control of settlements,” Geotextiles and Geomembranes, vol. 47, no. 3, pp. 295–305, Jun. 2019, doi: https://doi.org/10.1016/j.geotexmem.2019.01.015.

N. F. A. Zianal, M. F. Yusof, A. Madun, F. Pakir, M. K. Abu Talib, and Z. Abu Talib, “Numerical Modelling of Soft Soil Improvement Using Expanded Polystyrene Geofoam for Road Embankment,” Journal of Sustainable Underground Exploration, vol. 2, no. 1, Nov. 2022, doi: https://doi.org/10.30880/jsue.2022.02.01.007.

M. E. Abd El Raouf, “Stability of Geogrid Reinforced Embankment on Soft Clay,” JES. Journal of Engineering Sciences, vol. 48, no. 5, pp. 830–844, Sep. 2020, doi: https://doi.org/10.21608/jesaun.2020.112941.

Z. A. Alkaissi, “ANALYSIS OF GEOTEXTILE EMBANKMENT BY ANSYS,” Journal of Engineering, vol. 17, no. 1, pp. 12–26, Jan. 2011, doi: https://doi.org/10.31026/j.eng.2011.01.02.

Z. A. Alkaissi, “Effect of high temperature and traffic loading on rutting performance of flexible pavement,” Journal of King Saud University - Engineering Sciences, vol. 32, no. 1, pp. 1–4, Jan. 2020, doi: https://doi.org/10.1016/j.jksues.2018.04.005.

Z. A. Alkaissi and H. Adnan, “Prediction Model of Elastic Modulus for Granular Road Bases,” Sustainable Development Research (ISSN 2690-9898 e-ISSN 2690-9901), vol. 2, no. 1, p. p35, Apr. 2020, doi: https://doi.org/10.30560/sdr.v2n1p35.

Z. Ahmed Alkaissi and Y. Mawla Al-Badran, “Finite Element Modeling Of Rutting For Flexible Pavement,” Journal of Engineering and Sustainable Development, vol. 2018, no. 03, pp. 01-13, May 2018, doi: https://doi.org/10.31272/jeasd.2018.3.1.

Downloads

Key Dates

Received

2023-01-13

Revised

2024-10-23

Accepted

2024-10-24

Published Online First

2024-11-01

Published

2024-11-01

How to Cite

Ahmed Alkaissi, Z. (2024). Enhancement of Roadway Embankment Using Geofoam Blocks and Cement Columns: Application of Three-Dimensional Plaxis Program. Journal of Engineering and Sustainable Development, 28(6), 809-814. https://doi.org/10.31272/jeasd.28.6.14

Similar Articles

1-10 of 491

You may also start an advanced similarity search for this article.