A NOVEL EDGE DETECTION METHOD USING K-MEANS CLUSTERING

المؤلفون

  • Walaa Mohammed Khalaf Computer & Software Engineering Department, Al-Mustansiriayah University, Baghdad, Iraq مؤلف
  • Kadhum Al-Majdi Computer & Software Engineering Department, Al-Mustansiriayah University, Baghdad, Iraq مؤلف
  • Noor Hashim Hamed Computer & Software Engineering Department, Al-Mustansiriayah University, Baghdad, Iraq مؤلف

الكلمات المفتاحية:

edge detection، clustering، image processing

الملخص

In this paper, a new approach is introduced to detect the edges of any kind of grayscale image by using the k-means clustering algorithm, where three novel features are proposed by taking the advantage of the similarity of the image pixel with its eight surrounding neighbors through feeding these features as attributes to the clustering system. This method of edge detection does not use either any smoothing filter or threshold values. The experimental results show that an acceptable detection of the edges is done.

التنزيلات

Key Dates

منشور

2016-11-01

كيفية الاقتباس

Mohammed Khalaf, W. ., Al-Majdi, K., & Hashim Hamed, N. (2016). A NOVEL EDGE DETECTION METHOD USING K-MEANS CLUSTERING. مجلة الهندسة والتنمية المستدامة, 20(6), 207-215. https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/709

المؤلفات المشابهة

1-10 من 149

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.