Unsupervised Histopathological Sub-Image Analysis for Breast Cancer Diagnosis Using Variational Autoencoders, Clustering, and Supervised Learning

Authors

  • Dr.Alaa Hussein Abdulaal Department of Electrical Engineering, College of Engineering, Al-Iraqia University, Iraq . Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Iran Author https://orcid.org/0000-0003-2316-2822
  • Dr.Morteza Valizadeh Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Iran Author
  • Riyam Ali Yassin Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Iran Author
  • Dr.Baraa M. Albaker Department of Electrical Engineering, College of Engineering, Al-Iraqia University, Iraq Author
  • Ali H. Abdulwahhab Department of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey Author https://orcid.org/0000-0001-6041-5185
  • Dr.Mehdi Chehel Amirani Department of Electrical Engineering, Faculty of Electrical and Computer Engineering, Urmia University, Iran Author
  • Dr.A. F. M. Shahen Shah Department of Electronics and Communication Engineering, Yildiz Technical University, Turkey Author

DOI:

https://doi.org/10.31272/jeasd.28.6.6

Keywords:

Breast cancer diagnosis, Clustering, Convolutional Neural Network, Feature extraction, Supervised learning, Unsupervised learning, Variational Autoencoders

Abstract

This paper presents an integrated approach to breast cancer diagnosis that combines unsupervised and supervised learning techniques. The method involves using a pre-trained VGG19 model to process sub-images from the BreaKHis dataset, divided into nine parts for comprehensive analysis. This will be followed by a complete description of the architecture and workings of the variational Autoencoder (VAE) used for unsupervised Learning. The encoder network maps the input features to lower dimensions, capturing the most essential information. VAE learns a compressed representation of sub-images, facilitating a more profound understanding of underlying patterns and structures. For this reason, we then employ k-means clustering on the encoded representation to find naturally occurring clusters in our data set comprising a histopathological image. Every single sub-image is later fed into the VGG19-SVM model for classification purposes. During magnification at 100x, this model has attained a fantastic accuracy rate of 98.56%. Combining unsupervised analysis with VAE/k-means clustering and supervised classification with VGG19/SVM can integrate information from both methods, thereby improving the accuracy and robustness of such a task as sub-image classification in breast cancer histopathology.

References

J. Luo, X. Li, K.-L. Wei, G. Chen, and D.-D. Xiong, “Advances in the application of computational pathology in diagnosis, immunomicroenvironment recognition, and immunotherapy evaluation of breast cancer: a narrative review,” Journal of cancer research and clinical oncology, vol. 149, no. 13, pp. 12535–12542, Jun. 2023, doi: https://doi.org/10.1007/s00432-023-05002-8.

R. Bhargava, S. Sahoo, N. N. Esposito, and B. Chen, “Pathology of Breast Carcinoma: Diagnostic, Prognostic, and Therapeutic Issues and Challenges,” Pathology Research International, vol. 2011, p. e731470, Sep. 2011, doi: https://doi.org/10.4061/2011/731470.

R. Abduljabbar et al., “Clinical and biological significance of glucocorticoid receptor (GR) expression in breast cancer,” Breast Cancer Research and Treatment, vol. 150, no. 2, pp. 335–346, Mar. 2015, doi: https://doi.org/10.1007/s10549-015-3335-1.

A. G. Al-Ziaydi, A. M. Al-Shammari, M. I. Hamzah, H. S. Kadhim, and M. S. Jabir, “Newcastle Disease Virus Suppress Glycolysis Pathway and Induce Breast Cancer Cells Death,” VirusDisease, vol. 31, no. 3, pp. 341–348, Jun. 2020, doi: https://doi.org/10.1007/s13337-020-00612-z.

Mihaela Moscalu et al., “Histopathological Images Analysis and Predictive Modeling Implemented in Digital Pathology—Current Affairs and Perspectives,” Diagnostics, vol. 13, no. 14, pp. 2379–2379, Jul. 2023, doi: https://doi.org/10.3390/diagnostics13142379.

A. Jabbar, Shahrin Sahib, and M. Zamani, “An Introduction to Image Steganography Techniques,” International Conference on Advanced Computer Science Applications and Technologies, Nov. 2012, doi: https://doi.org/10.1109/acsat.2012.25.

S. Kumari and P. Singh, “Deep learning for unsupervised domain adaptation in medical imaging: Recent advancements and future perspectives,” Computers in Biology and Medicine, vol. 170, p. 107912, Mar. 2024, doi: https://doi.org/10.1016/j.compbiomed.2023.107912.

L. Alzubaidi et al., “Review of deep learning: concepts, CNN architectures, challenges, applications, future directions,” Journal of Big Data, vol. 8, no. 1, Mar. 2021, doi: https://doi.org/10.1186/s40537-021-00444-8.

K. Rautela, D. Kumar, and V. Kumar, “A Systematic Review on Breast Cancer Detection Using Deep Learning Techniques,” Archives of Computational Methods in Engineering, Apr. 2022, doi: https://doi.org/10.1007/s11831-022-09744-5.

S. Dabeer, M. M. Khan, and S. Islam, “Cancer diagnosis in histopathological image: CNN based approach,” Informatics in Medicine Unlocked, vol. 16, p. 100231, 2019, doi: https://doi.org/10.1016/j.imu.2019.100231.

R. Yan et al., “Breast cancer histopathological image classification using a hybrid deep neural network,” Methods, Jun. 2019, doi: https://doi.org/10.1016/j.ymeth.2019.06.014.

I. Hirra et al., “Breast Cancer Classification From Histopathological Images Using Patch-Based Deep Learning Modeling,” IEEE Access, vol. 9, pp. 24273–24287, 2021, doi: https://doi.org/10.1109/access.2021.3056516.

A. Ameh Joseph, M. Abdullahi, S. B. Junaidu, H. Hassan Ibrahim, and H. Chiroma, “Improved multi-classification of breast cancer histopathological images using handcrafted features and deep neural network (dense layer),” Intelligent Systems with Applications, vol. 14, p. 200066, May 2022, doi: https://doi.org/10.1016/j.iswa.2022.200066.

M. M. Srikantamurthy, V. P. S. Rallabandi, D. B. Dudekula, S. Natarajan, and J. Park, “Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning,” BMC Medical Imaging, vol. 23, no. 1, Jan. 2023, doi: https://doi.org/10.1186/s12880-023-00964-0.

ArunaDevi Karuppasamy, Abdelhamid Abdesselam, Rachid Hedjam, Hamza Zidoum, and Maiya Al-Bahri, “Feed-forward networks using logistic regression and support vector machine for whole-slide breast cancer histopathology image classification,” Intelligence-based medicine, vol. 9, pp. 100126–100126, Jan. 2024, doi: https://doi.org/10.1016/j.ibmed.2023.100126.

Ş. Niţică, G. Czibula, and V.-I. Tomescu, “A comparative study on using unsupervised learning based data analysis techniques for breast cancer detection,” IEEE Xplore, May 01, 2020. https://ieeexplore.ieee.org/abstract/document/9118783 (accessed Jul. 11, 2023).

J. Gal et al., “Comparison of unsupervised machine-learning methods to identify metabolomic signatures in patients with localized breast cancer,” Computational and Structural Biotechnology Journal, vol. 18, pp. 1509–1524, Jan. 2020, doi: https://doi.org/10.1016/j.csbj.2020.05.021.

S. Singh and R. Kumar, “Microscopic biopsy image reconstruction using inception block with denoising auto-encoder approach,” International Journal of Information Technology, Jan. 2024, doi: https://doi.org/10.1007/s41870-023-01658-0.

L. Hou et al., “Sparse autoencoder for unsupervised nucleus detection and representation in histopathology images,” Pattern Recognition, vol. 86, pp. 188–200, Feb. 2019, doi: https://doi.org/10.1016/j.patcog.2018.09.007.

R. Awan and Nasir Rajpoot, “Deep Autoencoder Features for Registration of Histology Images,” Communications in computer and information science, pp. 371–378, Jan. 2018, doi: https://doi.org/10.1007/978-3-319-95921-4_34.

M. Aamir, N. Mohd Nawi, F. Wahid, and H. Mahdin, “A deep contractive autoencoder for solving multiclass classification problems,” Evolutionary Intelligence, vol. 14, no. 4, pp. 1619–1633, Jun. 2020, doi: https://doi.org/10.1007/s12065-020-00424-6.

A. Moyes, R. Gault, K. Zhang, J. Ming, D. Crookes, and J. Wang, “Multi-channel auto-encoders for learning domain invariant representations enabling superior classification of histopathology images,” Medical Image Analysis, vol. 83, p. 102640, Jan. 2023, doi: https://doi.org/10.1016/j.media.2022.102640.

X. Li, M. Radulovic, K. Kanjer, and K. N. Plataniotis, “Discriminative Pattern Mining for Breast Cancer Histopathology Image Classification via Fully Convolutional Autoencoder,” IEEE Access, vol. 7, pp. 36433–36445, 2019, doi: https://doi.org/10.1109/access.2019.2904245.

J. Ehrhardt and M. Wilms, “Autoencoders and variational autoencoders in medical image analysis,” Elsevier eBooks, pp. 129–162, Jan. 2022, doi: https://doi.org/10.1016/b978-0-12-824349-7.00015-3.

Y. Xiao, J. Wu, Z. Lin, and X. Zhao, “Breast Cancer Diagnosis Using an Unsupervised Feature Extraction Algorithm Based on Deep Learning,” IEEE Xplore, Jul. 01, 2018. https://ieeexplore.ieee.org/document/8483140 (accessed Apr. 19, 2023).

S. Lee, C. Farley, S. Shim, W.-S. Yoo, Y. Zhao, and W. Choi, “Unsupervised Learning of Deep-Learned Features from Breast Cancer Images,” arXiv (Cornell University), Oct. 2020, doi: https://doi.org/10.1109/bibe50027.2020.00126.

P. Wang, G. Yang, Y. Li, P. Li, Y. Guo, and R. Chen, “Deep sample clustering domain adaptation for breast histopathology image classification,” Biomedical signal processing and control, vol. 87, pp. 105500–105500, Jan. 2024, doi: https://doi.org/10.1016/j.bspc.2023.105500.

H. V. Guleria et al., “Enhancing the Breast Histopathology Image Analysis for Cancer Detection Using Variational Autoencoder,” International Journal of Environmental Research and Public Health, vol. 20, no. 5, p. 4244, Jan. 2023, doi: https://doi.org/10.3390/ijerph20054244.

Z. Tabatabaei, A. Colomer, Javier Oliver Moll, and V. Naranjo, “Towards More Transparent and Accurate Cancer Diagnosis with an Unsupervised CAE Approach,” IEEE Access, vol. 11, pp. 143387–143401, Jan. 2023, doi: https://doi.org/10.1109/access.2023.3343845.

M. Nemoto, K. Ushifusa, Y. Kimura, T. Nagaoka, T. Yamada, and T. Yoshikawa, “Unsupervised Feature Extraction for Various Computer-Aided Diagnosis Using Multiple Convolutional Autoencoders and 2.5-Dimensional Local Image Analysis,” Applied Sciences, vol. 13, no. 14, p. 8330, Jan. 2023, doi: https://doi.org/10.3390/app13148330.

T. S. Sheikh, J.-Y. Kim, J. Shim, and M. Cho, “Unsupervised Learning Based on Multiple Descriptors for WSIs Diagnosis,” Diagnostics, vol. 12, no. 6, p. 1480, Jun. 2022, doi: https://doi.org/10.3390/diagnostics12061480.

M. Liu, Y. He, M. Wu, and C. Zeng, “Breast Histopathological Image Classification Method Based on Autoencoder and Siamese Framework,” Information, vol. 13, no. 3, p. 107, Mar. 2022, doi: https://doi.org/10.3390/info13030107.

X. Li, C. Pan, H. Ling, and X. Li, “Unsupervised Domain Adaptation for Cross-domain Histopathology Image Classification,” Multimedia Tools and Applications, Aug. 2023, doi: https://doi.org/10.1007/s11042-023-16400-y.

P. Alirezazadeh, B. Hejrati, A. Monsef-Esfahani, and A. Fathi, “Representation learning-based unsupervised domain adaptation for classification of breast cancer histopathology images,” Biocybernetics and Biomedical Engineering, vol. 38, no. 3, pp. 671–683, 2018, doi: https://doi.org/10.1016/j.bbe.2018.04.008.

Y. Bai et al., “Masked autoencoders with handcrafted feature predictions: Transformer for weakly supervised esophageal cancer classification,” Computer methods and programs in biomedicine, vol. 244, pp. 107936–107936, Feb. 2024, doi https://doi.org/10.1016/j.cmpb.2023.107936.

J. Ke, Y. Shen, Y. Lu, Y. Guo, and D. Shen, “Mine local homogeneous representation by interaction information clustering with unsupervised learning in histopathology images,” vol. 235, pp. 107520–107520, Jun. 2023, doi: https://doi.org/10.1016/j.cmpb.2023.107520.

J. Li et al., “DARC: Deep adaptive regularized clustering for histopathological image classification,” Medical Image Analysis, vol. 80, p. 102521, Aug. 2022, doi: https://doi.org/10.1016/j.media.2022.102521.

J. Cai, S. Wang, and W. Guo, “Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder,” Expert Systems with Applications, vol. 186, p. 115729, Dec. 2021, doi: https://doi.org/10.1016/j.eswa.2021.115729.

J. A. Hartigan and M. A. Wong, “Algorithm AS 136: A K-Means Clustering Algorithm,” Applied Statistics, vol. 28, no. 1, p. 100, 1979, doi: https://doi.org/10.2307/2346830.

D. T. Pham, S. S. Dimov, and C. D. Nguyen, “Selection of K in K-means clustering,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 219, no. 1, pp. 103–119, Jan. 2005, doi: https://doi.org/10.1243/095440605x8298.

A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering algorithm,” Pattern Recognition, vol. 36, no. 2, pp. 451–461, Feb. 2003, doi: https://doi.org/10.1016/s0031-3203(02)00060-2.

A. M. Ikotun, A. E. Ezugwu, L. Abualigah, B. Abuhaija, and J. Heming, “K-means Clustering Algorithms: a Comprehensive Review, Variants Analysis, and Advances in the Era of Big Data,” Information Sciences, vol. 622, no. 622, Dec. 2022, doi: https://doi.org/10.1016/j.ins.2022.11.139.

P. Bradley, K. Bennett, and A. Demiriz, “Constrained K-Means Clustering,” 2000. Available: http://machinelearning102.pbworks.com/f/ConstrainedKMeanstr-2000-65.pdf

S. Na, L. Xumin, and G. Yong, “Research on k-means Clustering Algorithm: An Improved k-means Clustering Algorithm,” 2010 Third International Symposium on Intelligent Information Technology and Security Informatics, Apr. 2010, doi: https://doi.org/10.1109/iitsi.2010.74.

K. P. Sinaga and M.-S. Yang, “Unsupervised K-Means Clustering Algorithm,” IEEE Access, vol. 8, pp. 80716–80727, 2020, doi: https://doi.org/10.1109/access.2020.2988796.

M. Ahmed, R. Seraj, and S. M. S. Islam, “The k-means Algorithm: A Comprehensive Survey and Performance Evaluation,” Electronics, vol. 9, no. 8, p. 1295, Aug. 2020, doi: https://doi.org/10.3390/electronics9081295.

S. Cascianelli et al., “Dimensionality Reduction Strategies for CNN-Based Classification of Histopathological Images,” Smart innovation, systems and technologies, pp. 21–30, May 2017, doi: https://doi.org/10.1007/978-3-319-59480-4_3.

B. Liu, C. Liu, Y. Zhou, D. Wang, and Y. Dun, “An unsupervised chatter detection method based on AE and merging GMM and K-means,” Mechanical Systems and Signal Processing, vol. 186, p. 109861, Mar. 2023, doi: https://doi.org/10.1016/j.ymssp.2022.109861.

A. Bigdeli, A. Maghsoudi, and R. Ghezelbash, “Application of self-organizing map (SOM) and K-means clustering algorithms for portraying geochemical anomaly patterns in Moalleman district, NE Iran,” Journal of Geochemical Exploration, vol. 233, p. 106923, Feb. 2022, doi: https://doi.org/10.1016/j.gexplo.2021.106923.

N. Saeidi, H. Karshenas, B. Shoushtarian, S. Hatamikia, R. Woitek, and A. Mahbod, “Breast Histopathology Image Retrieval by Attention-based Adversarially Regularized Variational Graph Autoencoder with Contrastive Learning-Based Feature Extraction,” arXiv.org, Jun. 10, 2024. https://arxiv.org/abs/2405.04211 (accessed Jul. 11, 2024).

F. Cano, Charlems Alvarez-Jimenez, E. Romero, and A. Cruz-Roa, “Ensemble of Unsupervised Learned Image Representations Based On Variational Autoencoders for Lung Adenocarcinoma Subtype Differentiation,” 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Apr. 2023, doi: https://doi.org/10.1109/isbi53787.2023.10230823.

N. Arya, A. Mathur, S. Saha, and S. Saha, “Proposal of SVM Utility Kernel for Breast Cancer Survival Estimation,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 20, no. 2, pp. 1372–1383, Mar. 2023, doi: https://doi.org/10.1109/tcbb.2022.3198879.

A. H. Abdulwahhab, Alaa Hussein Abdulaal, A. H. Thary Al-Ghrairi, Ali Abdulwahhab Mohammed, and Morteza Valizadeh, “Detection of epileptic seizure using EEG signals analysis based on deep learning techniques,” Chaos, solitons & fractals/Chaos, solitons and fractals, vol. 181, pp. 114700–114700, Apr. 2024, doi: https://doi.org/10.1016/j.chaos.2024.114700.

K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition,” arXiv.org, Apr. 10, 2015. https://arxiv.org/abs/1409.1556

F. A. Spanhol, L. S. Oliveira, C. Petitjean, and L. Heutte, “Breast cancer histopathological image classification using Convolutional Neural Networks,” 2016 International Joint Conference on Neural Networks (IJCNN), Jul. 2016, doi: https://doi.org/10.1109/ijcnn.2016.7727519.

S. Sharma, R. Mehra, and S. Kumar, “Optimised CNN in conjunction with efficient pooling strategy for the multi‐classification of breast cancer,” IET Image Processing, Dec. 2020, doi: https://doi.org/10.1049/ipr2.12074.

A. H. Abdulaal, M. Valizadeh, M. C. Amirani, and A. F. M. Shahen Shah, “A self-learning deep neural network for classification of breast histopathological images,” Biomedical Signal Processing and Control, vol. 87, p. 105418, Jan. 2024, doi: https://doi.org/10.1016/j.bspc.2023.105418.

S. Kanimozhi and S. Priyadarsini, “Breast Cancer Histopathological Image Classification Using CNN and VGG-19,” 2024 Third International Conference on Intelligent Techniques in Control, Optimization and Signal Processing (INCOS), Mar. 2024, doi: https://doi.org/10.1109/incos59338.2024.10527543.

A. M. Zaalouk, G. A. Ebrahim, H. K. Mohamed, H. M. Hassan, and M. M. A. Zaalouk, “A Deep Learning Computer-Aided Diagnosis Approach for Breast Cancer,” Bioengineering, vol. 9, no. 8, p. 391, Aug. 2022, doi: https://doi.org/10.3390/bioengineering9080391.

Muhammad Shahzeb Khan et al., “VGG19 Network Assisted Joint Segmentation and Classification of Lung Nodules in CT Images,” Diagnostics, vol. 11, no. 12, pp. 2208–2208, Nov. 2021, doi: https://doi.org/10.3390/diagnostics11122208.

Xiao Yu Tian, H. Daigle, and J. Han, “Feature Detection for Digital Images Using Machine Learning Algorithms and Image Processing,” Proceedings of the 6th Unconventional Resources Technology Conference, Jan. 2018, doi: https://doi.org/10.15530/urtec-2018-2886325.

P. Agarwal, A. Yadav, and P. Mathur, “Breast Cancer Prediction on BreakHis Dataset Using Deep CNN and Transfer Learning Model,” Lecture notes in networks and systems, pp. 77–88, Nov. 2021, doi: https://doi.org/10.1007/978-981-16-2641-8_8.

F. Bayram and A. Eleyan, “COVID-19 detection on chest radiographs using feature fusion based deep learning,” Signal, Image and Video Processing, Jan. 2022, doi: https://doi.org/10.1007/s11760-021-02098-8.

D. P. Kingma and M. Welling, “Auto-Encoding Variational Bayes,” arXiv.org, Dec. 20, 2013. https://arxiv.org/abs/1312.6114

R. Lopez, J. Regier, M. I. Jordan, and N. Yosef, “Information Constraints on Auto-Encoding Variational Bayes,” Neural Information Processing Systems, 2018. https://proceedings.neurips.cc/paper/2018/hash/9a96a2c73c0d477ff2a6da3bf538f4f4-Abstract.html (accessed Jul. 11, 2024).

G. W. Pulford, “From the Expectation Maximisation Algorithm to Autoencoded Variational Bayes,” arXiv.org, May 04, 2021. https://arxiv.org/abs/2010.13551 (accessed Jul. 11, 2024).

O. Kviman, R. Molén, A. Hotti, S. Kurt, ElviraV., and J. Lagergren, “Cooperation in the Latent Space: The Benefits of Adding Mixture Components in Variational Autoencoders,” proceedings. mlr.press, Jul. 03, 2023. https://proceedings.mlr.press/v202/kviman23a.html (accessed Jul. 11, 2024).

I. Cetin, M. Stephens, O. Camara, and M. A. González Ballester, “Attri-VAE: Attribute-based interpretable representations of medical images with variational autoencoders,” Computerized Medical Imaging and Graphics, vol. 104, p. 102158, Mar. 2023, doi: https://doi.org/10.1016/j.compmedimag.2022.102158.

X. Lin, Y. Li, J. Hsiao, C. Ho, and Y. Kong, “Catch Missing Details: Image Reconstruction With Frequency Augmented Variational Autoencoder,” openaccess.thecvf.com, 2023. http://openaccess.thecvf.com/content/CVPR2023/html/Lin_Catch_Missing_Details_Image_Reconstruction_With_Frequency_Augmented_Variational_Autoencoder_CVPR_2023_paper.html (accessed Jul. 11, 2024).

T. Sudak and S. Tschiatschek, “Posterior Consistency for Missing Data in Variational Autoencoders,” Lecture notes in computer science, pp. 508–524, Jan. 2023, doi: https://doi.org/10.1007/978-3-031-43415-0_30.

F. Mendonça, S. S. Mostafa, F. Morgado-Dias, and A. G. Ravelo-García, “On the Use of Kullback–Leibler Divergence for Kernel Selection and Interpretation in Variational Autoencoders for Feature Creation,” Information, vol. 14, no. 10, p. 571, Oct. 2023, doi https://doi.org/10.3390/info14100571.

D. Addo et al., “EVAE-Net: An Ensemble Variational Autoencoder Deep Learning Network for COVID-19 Classification Based on Chest X-ray Images,” Diagnostics, vol. 12, no. 11, pp. 2569–2569, Oct. 2022, doi: https://doi.org/10.3390/diagnostics12112569.

P. Govender and V. Sivakumar, “Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019),” Atmospheric Pollution Research, vol. 11, no. 1, pp. 40–56, Jan. 2020, doi: https://doi.org/10.1016/j.apr.2019.09.009.

M. Kumagai, K. Komatsu, M. Sato, and H. Kobayashi, “Ising-Based Kernel Clustering,” Algorithms, vol. 16, no. 4, p. 214, Apr. 2023, doi: https://doi.org/10.3390/a16040214.

S. Bandyopadhyay, F. V. Fomin, P. A. Golovach, W. Lochet, N. Purohit, and K. Simonov, “How to find a good explanation for clustering?,” Artificial Intelligence, vol. 322, p. 103948, Sep. 2023, doi: https://doi.org/10.1016/j.artint.2023.103948.

Y. Sahu, A. Tripathi, R. K. Gupta, P. Gautam, R. K. Pateriya, and A. Gupta, "A CNN-SVM based computer-aided diagnosis of breast cancer using histogram K-means segmentation technique," Multimedia Tools and Applications, Sep. 2022, doi: https://doi.org/10.1007/s11042-022-13807-x.

S. M. Javidan, A. Banakar, K. A. Vakilian, and Y. Ampatzidis, “Diagnosis of grape leaf diseases using automatic K-means clustering and machine learning,” Smart Agricultural Technology, vol. 3, p. 100081, Feb. 2023, doi: https://doi.org/10.1016/j.atech.2022.100081.

Hossain Shakhawat, Sakir Hossain, Alamgir Kabir, S. M. Hasan Mahmud, M. M. Manjurul Islam, and Faisal Tariq, “Review of Artifact Detection Methods for Automated Analysis and Diagnosis in Digital Pathology,” Artificial Intelligence for Disease Diagnosis and Prognosis in Smart Healthcare, Jan. 01, 2023, doi: https://doi.org/10.1201/9781003251903

S. Li, P. Kou, M. Ma, H. Yang, S. Huang, and Z. Yang, “Application of Semi-supervised Learning in Image Classification: Research on Fusion of Labeled and Unlabeled Data,” IEEE Access, pp. 1–1, Jan. 2024, doi: https://doi.org/10.1109/access.2024.3367772.

Alaa Hussein Abdulaal, Morteza Valizadeh, Baraa M. Albaker, Riyam Ali Yassin, Mehdi Chehel Amirani, and A. F. M. Shahen Shah, “Enhancing Breast Cancer Classification using a Modified GoogLeNet Architecture with Attention Mechanism,” Al-Iraqia Journal of Scientific Engineering Research, vol. 3, no. 1, Mar. 2024, doi: https://doi.org/10.58564/ijser.3.1.2024.145.

L. Cao, K. Pan, Y. Ren, R. Lu, and J. Zhang, “Multi-Branch Spectral Channel Attention Network for Breast Cancer Histopathology Image Classification,” Electronics, vol. 13, no. 2, p. 459, Jan. 2024, doi: https://doi.org/10.3390/electronics13020459.

Jia Rong Leow, Wee How Khoh, Ying Han Pang, and Hui Yen Yap, “Breast cancer classification with histopathological image based on machine learning,” International Journal of Electrical and Computer Engineering (IJECE), Oct. 05, 2023, doi: http://doi.org/10.11591/ijece.v13i5.pp5885-5897

S. Garg and P. Singh, “Transfer Learning Based Lightweight Ensemble Model for Imbalanced Breast Cancer Classification,” IEEE/ACM Transactions on Computational Biology and Bioinformatics, pp. 1–1, 2022, doi: https://doi.org/10.1109/tcbb.2022.3174091.

H. Zhu et al., “Deconv-transformer (DecT): A histopathological image classification model for breast cancer based on color deconvolution and transformer architecture,” Information Sciences, vol. 608, pp. 1093–1112, Aug. 2022, doi: https://doi.org/10.1016/j.ins.2022.06.091.

Y. Zou, J. Zhang, S. Huang, and B. Liu, “Breast cancer histopathological image classification using attention high‐order deep network,” International Journal of Imaging Systems and Technology, vol. 32, no. 1, pp. 266–279, Jul. 2021, doi: https://doi.org/10.1002/ima.22628.

Downloads

Key Dates

Received

2024-04-19

Revised

2024-07-19

Accepted

2024-07-28

Published Online First

2024-11-01

Published

2024-11-01

How to Cite

Abdulaal, D. H., Valizadeh, D. ., Yassin, R. A., Albaker, D. M. . ., Abdulwahhab, A. H. ., Amirani, D. C. . ., & Shah , D. F. M. S. . (2024). Unsupervised Histopathological Sub-Image Analysis for Breast Cancer Diagnosis Using Variational Autoencoders, Clustering, and Supervised Learning. Journal of Engineering and Sustainable Development, 28(6), 729-744. https://doi.org/10.31272/jeasd.28.6.6

Similar Articles

1-10 of 169

You may also start an advanced similarity search for this article.