Performance Analysis of a Single-Diode Photovoltaic Model Based on a Thevenin’s Equivalent Circuit
DOI:
https://doi.org/10.31272/jeasd.2778الكلمات المفتاحية:
Current-Voltage characteristics، Piecewise linearization، Power-Voltage characteristics، Single-diode photovoltaic model، Thevenin equivalent circuitالملخص
This article proposes a linear Thevenin's equivalent circuit for a single-diode model. The Thevenin's equivalent circuit is derived based on the piecewise linearization for the nonlinear characteristic of the diode. To validate the accuracy and efficiency of the proposed Thevenin approximation, a photovoltaic module’s current-voltage and power-voltage characteristics are evaluated and compared with the characteristics of the original model. Meanwhile, an error of the proposed approximation is also calculated under different values of irradiance and temperature. The operating conditions are classified into three scenarios: standard technical condition (irradiance=1000 W/m2, temperature=25 oC), (irradiance=400 W/m2, temperature=25 oC), and (irradiance=1000 W/m2, temperature=50 oC). Primary results show encouraging outputs and reliability of the proposed model. It is obvious from the simulation results that the linearization technique can successfully emulate the characteristics of the original nonlinear single-diode model. The peak values of the error are 7.37%, 9.51%, and 6.79% at the different suggested scenarios, respectively. Subsequently, the proposed Thevenin equivalent circuit can be successfully used to study the performance of a photovoltaic system under different operating conditions, avoiding the complicated numerical solutions for nonlinear equations of the original photovoltaic model.
المراجع
M. Mohamed Nazief Haggag Kotb Kholaif, M. Xiao, and X. Tang, “COVID‑19’s fear‑uncertainty effect on renewable energy supply chain management and ecological sustainability performance; the moderate effect of big‑data analytics,” Sustain. Energy Technol. Assess., vol. 53, p. 102622, Oct. 2022, doi: https://doi.org/10.1016/j.seta.2022.102622.
B. Steffen and A. Patt, “A historical turning point? Early evidence on how the Russia‑Ukraine war changes public support for clean energy policies,” Energy Res. & Soc. Sci., vol. 91, p. 102758, Sept. 2022, doi: https://doi.org/10.1016/j.erss.2022.102758.
G. Li, G. Li, and M. Zhou, “Model and application of renewable energy accommodation capacity calculation considering utilization level of interprovincial tie‑line,” Prot. Control Mod.. Power Syst., vol. 4, no. 1, pp. 1-12, Jan. 2019, doi: https://doi.org/10.1186/s41601-019-0115-7.
M. C. Pamponet, H. L. Maranduba, J. A. de Almeida Neto, and L. B. Rodrigues, "Energy balance and carbon footprint of very largescale photovoltaic power plant," Int. J. Energy Res., vol. 46, no. 5, pp. 6901-6918, 2022, doi: https://doi.org/10.1002/er.7529.
B. Li et al., "Modeling Integrated Power and Transportation Systems: Impacts of Power-to-Gas on the Deep Decarbonization," IEEE Trans. Ind. Appl., vol. 58, no. 2, pp. 2677-2693, Mar. 2022, doi: https://doi.org/10.1109/TIA.2021.3116916.
M. Drif, M. Bahri, and D. Saigaa, “A novel equivalent circuit-based model for photovoltaic sources," Optik, vol. 242, p. 167046, Sept. 2021, doi: https://doi.org/10.1016/j.ijleo.2021.167046.
J. Warmke, Understanding Photovoltaics: Designing and Installing Residential Solar Systems. 8th ed., Virginia Ridge Road, Philo, OH, USA: Blue Rock Station LLC, Oct. 2020.
S. K. Goyal, B. P. Sungh, A. Kumar, P. Kumar, and A. Saraswat, "Modelling and simulation of a solar PV system: a comprehensive study," in 2020 International Conference on Computation, Automation and Knowledge Management (ICCAKM), Dubai, United Arab Emirates, 2020, pp. 367-372, doi: https://doi.org/10.1109/ICCAKM46823.2020.9051497.
F. E. Ndi, S. N. Perabi, S. E. Ndjakomo, G. O. Abessolo, and G. M. Mengata, “Estimation of single-diode and two diode solar cell parameters by equilibrium optimizer method,” Energy Reports, vol. 7, pp. 4761-4768, Nov. 2021, doi: https://doi.org/10.1016/j.egyr.2021.07.025.
D. H. Muhsen, H. T. Haider, and H. I. Shahadi, “Parameter extraction of single-diode PV-module model using electromagnetism-like algorithm,” Journal of Engineering and Sustainable Development, vol. 22, no. 2 (part 2), pp. 161-172, Mar. 2018, doi: https://doi.org/10.31272/jeasd.2018.2.26.
S. Yu., A. A. Heidari, G. Liang, C. Chen, H. Chen, and Q. Shao, “Solar photovoltaic model parameter estimation based on orthogonally-adapted gradient-based optimization,” Optik, vol. 252, p. 168513, Feb. 2022, doi: https://doi.org/10.1016/j.ijleo.2021.168513.
E. Rodrigues, R. Melicio, V. Mendes, and J.P. Catalao, “Simulation of a solar cell considering single-diode equivalent circuit model,” Renewable Energy & Power Quality Journal, vol. 1, no. 9, pp. 369-373, May 2011, doi: https://doi.org/10.24084/repqj09.339.
M. M. Abbas, and D. H. Muhsen, “Extraction of double-diode photovoltaic module model’s parameters using hybrid optimization algorithm,” Journal of Engineering and Sustainable Development, vol. 26, no. 4, pp. 77-91, Jul. 2022, doi: https://doi.org/10.31272/jeasd.26.4.9.
L. Bouhaki, R. Saadani, and M. Rahmoune, “Comparison between single-diode and two diodes of a grid connected PV technologies: numerical study and experimental validation,” Int. J. Power Electron. Drive Syst., vol. 11, no. 2, pp. 914-920, Jun. 2020, doi: https://doi.org/10.11591/ijpeds.v11.i2.pp914-920.
A. Al-Gizi, A. H. Miry, and M. A. Shehab, “Optimization of fuzzy photovoltaic maximum power point tracking controller using chimp algorithm,” Int. J. Electr. Comput. Eng., vol. 12, no. 5, pp. 4549-4558, Oct. 2022, doi: https://doi.org/10.11591/ijece.v12i5.pp4549-4558.
C. Osigwe, “Thevenin Equivalent of Solar Cell Model,” Master’s thesis, Minnesota State University, Mankato, 2019. Available: https://cornerstone.lib.mnsu.edu/etds/971/
M.-H. Lin, J. G. Carlsson, D. Ge, J. Shi, and J.-F. Tsai, “A review of piecewise linearization methods,” Mathematical Problems in Engineering, vol. 2013, no. 1, p. 101376, Nov. 2013, doi: https://doi.org/10.1155/2013/101376.
M. Asghari, A. M. Fathollahi-Fard, S. Mirzapour Al-E-Hashem, and M.A. Dulebenets, “Transformation and linearization techniques in optimization: A state-of-the-art survey,” Mathematics, vol. 10, no. 2, p 283, Jan. 2022, doi: https://doi.org/10.3390/math10020283.
A. Al-Gizi, S. Al-Chlaihawi, M. Louzazni, and A. Craciunescu, “Genetically optimization of an asymmetrical fuzzy logic based photovoltaic maximum power point tracking controller,” Adv. Electr. Comput. Eng., vol. 17, no. 4, pp. 69-76, Nov. 2017, doi: https://doi.org/10.4316/aece.2017.04009.
R. H. Ahmed, S. H. Rhaif, and S. A. Hashem, “Fuzzy logic control to process change irradiation and temperature in the solar cell by controlling for maximum power point,” Journal of Engineering and Sustainable Development, vol. 27, no. 1, pp. 28-36, Jan. 2023, doi: https://doi.org/10.31272/jeasd.27.1.3.
N. Van Tan, N. B. Nam, N. H. Hieu, L. K. Hung, M. Q. Duong, and L. H. Lam, “A proposal for an MPPT algorithm based on the fluctuations of the PV output power, output voltage, and control duty cycle for improving the performance of PV systems in microgrid,” Energies, vol. 13, no. 17, p. 4326, Aug. 2020, doi: https://doi.org/10.3390/en13174326.
A. Al-Gizi, A. H. Miry, H. M. Hathal, and A. Craciunescu, “Fuzzy maximum power point tracking controllers for photovoltaic systems: a comparative analysis,” Journal of Engineering and Sustainable Development, vol. 28, no. 3, pp. 364-374, May 2024, doi: https://doi.org/10.31272/jeasd.28.3.6.
Bpsolar. “Proven Materials and Construction Quality and Safety BP SX 150S TÜV Clear-Anodized Universal Frame DC Connectors.” Accessed: Jan. 25, 2025. [Online]. Available: https://www.abcsolar.com/pdf/bpsx150.pdf
التنزيلات
Key Dates
الإستلام
النسخة النهائية
الموافقة
النشر الالكتروني
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Ammar AL-GIZI, Abbas Hussien Miry, Hussein M. Hathal, Aurelian Craciunescu (Author)

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.