Assessment of Heat Transfer and Friction Characteristics in Circular Pipe Utilizing Balls as Tabulators

المؤلفون

DOI:

https://doi.org/10.31272/jeasd.2496

الكلمات المفتاحية:

المضطربات الكروية، تعزيز انتقال الحرارة، عامل الأداء الحراري، الخصائص الحرارية الهيدروليكية

الملخص

يعد اضطراب التدفق أحد الأساليب الأكثر استخدامًا لتحسين نقل الحرارة. استخدمت هذه الدراسة المحاكاة العددية والاختبارات التجريبية لفحص تأثير المضطربات الكروية على خصائص احتكاك السوائل وانتقال الحرارة في أنبوب دائري. باستخدام طريقة الحجم المحدود، تم إجراء المحاكاة العددية بواسطة برنامج Ansys Fluent 19 R3. قسم الاختبار، وهو عبارة عن أنبوب نحاسي بطول 1 متر وقطر داخلي 24 مم، يعمل كأحد المكونات الأكثر أهمية لجهاز الاختبار التجريبي. يتم إدخال محركات كروية بأقطار مختلفة 10 و 15 و 20 ملم وأطوال فاصلة 20 سم في الأنابيب الدائرية. أصبحت نسبة قطر الكرة إلى قطر مسار التدفق الداخلي للأنبوب، نسبة اضطراب الكرة (BTR) = 0.41 و0.62 و0.83. تم استخدام الماء كسائل عمل برقم رينولدز من 3500 إلى 11500. تظهر النتائج اتفاقًا ممتازًا مع انحرافات أقل من 11٪. بلغ معامل الأداء الحراري الأقصى حوالي 1.18 و 1.24 و 1.4 للـ 0.41BTR و 0.62 و 0.83 على التوالي. تنتج المراوح الكروية زيادة في عامل الاحتكاك، وهذه الزيادة في النتائج التجريبية هي 52، 65 و 78% عند 0.41، 0.62 و 0.83 على التوالي. ويرتفع عامل الاحتكاك فجأة عند تجاوز BTR 0.62. كما يلاحظ أن هناك انخفاض تدريجي في الأداء الحراري عندما يكون نطاق أرقام رينولدز أعلى من 7500.

السيرة الشخصية للمؤلف

  • Ahmad Muneer El-Deen Faik، Mechanical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq

    PhD in Mechanical Engineering
    Assistant Professor
    Department of Mechanical Engineering
    College of Engineering
    Al-Mustansiriya University

المراجع

] S. Hasan and Z. H. Naji, “Augmentation Heat Transfer In A Circular Tube Using Twisted - Tape Inserts: A Review,” Journal of Engineering and Sustainable Development, vol. 27, no. 4, pp. 511–526, Jul. 2023, doi: https://doi.org/10.31272/jeasd.27.4.8.

] H. Charun, “Heat Transfer and Pressure Drop in a Vertical Tube with a Nodular Turbulizer,” Applied Thermal Engineering, vol. 28, no. 14–15, pp. 1984–1994, Oct. 2008, doi: https://doi.org/10.1016/j.applthermaleng.2007.12.012.

] H. M. Şahin, E. Baysal, and A. R. Dal, “Experimental and Numerical Investigation of Thermal Characteristics of a Novel Concentric Type Tube Heat Exchanger with Turbulators,” International Journal of Energy Research, vol. 37, no. 9, pp. 1088–1102, May 2012, doi: https://doi.org/10.1002/er.2919.

] I. A. Ghani, N. A. C. Sidik , N. Kamaruzzaman, W. J. Yahya, and O. Mahian , “The Effect of Manifold Zone Parameters on Hydrothermal Performance of micro-channel HeatSink: a Review,” International Journal of Heat and Mass Transfer, vol. 109, pp. 1143–1161, Jun. 2017, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.007.

] P. B. Jasiński, “Numerical Study of the thermo-hydraulic Characteristics in a Circular Tube with Ball turbulators. Part 1: PIV Experiments and a Pressure Drop,” International Journal of Heat and Mass Transfer/International Journal of Heat and Mass Transfer, vol. 74, pp. 48–59, Jul. 2014, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.074.

] P. B Jasiński, “Numerical Study of the thermo-hydraulic Characteristics in a Circular Tube with Ball turbulators. Part 2: Heat Transfer,” International Journal of Heat and Mass Transfer, vol. 74, pp. 473–483, Jul. 2014, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2014.02.073.

] P. B. Jasiński, “Numerical Study of thermo-hydraulic Characteristics in a Circular Tube with Ball turbulators. Part 3: Thermal Performance Analysis,” International Journal of Heat and Mass Transfer, vol. 107, pp. 1138–1147, Apr. 2017, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.017.

] P. Promthaisong, W. Jedsadaratanachai, and S. Eiamsa-Ard, “Effect of Geometrical Parameters on Turbulent Flow and Heat Transfer Behaviors in triple-start Corrugated Tubes,” Journal of Thermal Science and Technology, vol. 13, no. 1, pp. JTST0008–JTST0008, Jan. 2018, doi: https://doi.org/10.1299/jtst.2018jtst0008.

] C. Man, Xiaogang Lv, T. Hu, P. Sun, and Y. Tang, “Experimental Study on Effect of Heat Transfer Enhancement for single-phase Forced Convective Flow with Twisted Tape Inserts,” International Journal of Heat and Mass Transfer, vol. 106, pp. 877–883, Mar. 2017, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2016.10.026.

] W. Yuan, G. Fang, X. Zhang, Y. Tang, Z. Wan, and S. Zhang, “Heat Transfer and Friction Characteristics of Turbulent Flow through a Circular Tube with Ball Turbulators,” Applied Sciences, vol. 8, no. 5, p. 776, May 2018, doi: https://doi.org/10.3390/app8050776.

] X. Zhang, Z. Liu, and W. Liu, “Numerical Studies on Heat Transfer and Friction Factor Characteristics of a Tube Fitted with Helical screw-tape without core-rod Inserts,” International Journal of Heat and Mass Transfer, vol. 60, pp. 490–498, May 2013, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2013.01.041.

] S. Murthy, R. N. Hegde, and N. Rai, “Conjoint Effect of Turbulator and Al2O3 Nanofluids on DPHEs Thermal performance: Experimental Study,” Heat and Mass Transfer, vol. 60, no. 6, pp. 933–953, Mar. 2024, doi: https://doi.org/10.1007/s00231-024-03460-5.

] A. Veera Kumar, T. V. Arjunan, D. Seenivasan, R. Venkatramanan, S. Vijayan, and M. M. Matheswaran, “Influence of Twisted Tape Inserts on Energy and Exergy Performance of an Evacuated Tube-based Solar Air Collector,” Solar Energy, vol. 225, pp. 892–904, Sep. 2021, doi: https://doi.org/10.1016/j.solener.2021.07.074.

] R. Hosseinnejad, M. Hosseini, and M. Farhadi, “Turbulent Heat Transfer in Tubular Heat Exchangers with Twisted Tape,” Journal of Thermal Analysis and Calorimetry, vol. 135, no. 3, pp. 1863–1869, Jun. 2018, doi: https://doi.org/10.1007/s10973-018-7400-y.

] S. H. Labib et al., “Turbulent Heat Transfer Enhancement in Tubular Heat Exchangers with Different Twisted Tape Inserts,” Journal of Mechanical Engineering And Sciences, vol. 15, no. 3, pp. 8364–8378, Sep. 2021, doi: https://doi.org/10.15282/jmes.15.3.2021.14.0658.

] M. M. K. Bhuiya et al., “Heat Transfer Performance for Turbulent Flow through a Tube Using Double Helical Tape Inserts,” International Communications in Heat and Mass Transfer, vol. 39, no. 6, pp. 818–825, Jul. 2012, doi: https://doi.org/10.1016/j.icheatmasstransfer.2012.04.006.

] J. Luo et al., "Thermal-frictional Behavior of New Special Shape Twisted Tape and Helical Coiled Wire turbulators in Engine Heat Exchangers System," Case Studies in Thermal Engineering, vol. 53, pp. 103877–103877, Dec. 2023, doi: https://doi.org/10.1016/j.csite.2023.103877.

] S. Eiamsa-ard and P. Promvonge, “Thermal Characterization of Turbulent Tube Flows over diamond-shaped Elements in Tandem,” International Journal of Thermal Sciences, vol. 49, no. 6, pp. 1051–1062, Jun. 2010, doi: https://doi.org/10.1016/j.ijthermalsci.2009.12.003.

] G. P. Srivastava, A. K. Patil, and M. Kumar, “Parametric Effect of Diverging Perforated Cones on the thermo-hydraulic Performance of a Heat Exchanger Tube,” Heat and Mass Transfer, vol. 57, Feb. 2021, doi: https://doi.org/10.1007/s00231-021-03035-8.

] M.E. Nakhchi, Javad Abolfazli Esfahani, and K. C. Kim, “Numerical Study of Turbulent Flow inside Heat Exchangers Using Perforated Louvered Strip Inserts,” International Journal of Heat and Mass Transfer, vol. 148, pp. 119143–119143, Feb. 2020, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2019.119143.

] H. Kazemi Moghadam, S. S. Mousavi Ajarostaghi, and S. Poncet, “Extensive Numerical Analysis of the Thermal Performance of a Corrugated Tube with Coiled Wire,” Journal of Thermal Analysis and Calorimetry, vol. 140, no. 3, pp. 1469–1481, Oct. 2019, doi: https://doi.org/10.1007/s10973-019-08876-4.

] B. K. Roomi and M. A. Theeb, “Experimental And Numerical Study Of Inserting An Internal Hollow Core To Finned Helical Coil Tube-Shell Heat Exchanger,” Journal of Engineering and Sustainable Development, vol. 25, no. 1, pp. 1–14, Feb. 2022, doi: https://doi.org/10.31272/jeasd.25.1.1.

] M. Omidi, A. A. Rabienataj Darzi, and M. Farhadi, “Turbulent Heat Transfer and Fluid Flow of Alumina Nanofluid inside three-lobed Twisted Tube,” Journal of Thermal Analysis and Calorimetry, vol. 137, no. 4, pp. 1451–1462, Jan. 2019, doi https://doi.org/10.1007/s10973-019-08026-w.

] F. R. Menter, “Review of the shear-stress Transport Turbulence Model Experience from an Industrial Perspective,” International Journal of Computational Fluid Dynamics, vol. 23, no. 4, pp. 305–316, Apr. 2009, doi: https://doi.org/10.1080/10618560902773387.

] S. Skullong, P. Promvonge, C. Thianpong, and M. Pimsarn, “Heat Transfer and Turbulent Flow Friction in a round Tube with staggered-winglet perforated-tapes,” International Journal of Heat and Mass Transfer, vol. 95, pp. 230–242, Apr. 2016, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2015.12.007.

] H. L. Aneed and D. S. Khudhur, “Numerical Study Of Heat Transfer Enhancement By Inserting Different Size Balls Inside Tube,” Journal of Engineering and Sustainable Development, vol. 25, no. 6, pp. 1–11, Feb. 2022, doi: https://doi.org/10.31272/jeasd.25.6.1.

] R. Karwa, C. Sharma, and N. Karwa, “Performance Evaluation Criterion at Equal Pumping Power for Enhanced Performance Heat Transfer Surfaces,” Journal of Solar Energy, vol. 2013, pp. 1–9, Jun. 2013, doi: https://doi.org/10.1155/2013/370823.

] B. Mohammed and S. Najeeb Shehab, “A Comprehensive Review Study on Heat Transfer Improvement Techniques Within Twisted Tubes,” Journal of Engineering and Sustainable Development, vol. 27, no. 6, pp. 823–839, Nov. 2023, doi: https://doi.org/10.31272/jeasd.27.6.12.

التنزيلات

Key Dates

الإستلام

2024-02-11

النسخة النهائية

2024-11-30

الموافقة

2024-12-01

النشر الالكتروني

2025-01-01

منشور

2025-01-01

كيفية الاقتباس

Golam, . A. S., Ahmad Muneer El-Deen Faik, & Hayder Mohammad Jaffal. (2025). Assessment of Heat Transfer and Friction Characteristics in Circular Pipe Utilizing Balls as Tabulators. مجلة الهندسة والتنمية المستدامة, 29(1), 96-104. https://doi.org/10.31272/jeasd.2496

المؤلفات المشابهة

1-10 من 727

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.