Path Loss of Indoor Hotspot and Indoor Factory Environments for 5G Wireless Networks
DOI:
https://doi.org/10.31272/jeasd.2473الكلمات المفتاحية:
Computer Networks، Indoor Factory (InF)، Indoor Hotspot (InH)، Path Loss، Wireless Network and communicationsالملخص
إن زيادة استكشاف شبكات الاتصالات اللاسلكية في مختلف المجالات له آثار كبيرة على أتمتة المهام البشرية اليومية و إنشاء بيئات ذكية. و مع ذلك، و لإنجاح مثل هذه الاستخدامات، فأنه من الضروري دراسة خصائص القنوات اللاسلكية. حيث يعد فقدان المسار عاملاً أساسيًا في اتصالات الشبكات اللاسلكية و بدوره يؤثر بشكل كبير على قوة الإشارة. يهدف هذا البحث إلى دراسة تقنيات الجيل الخامس بما في ذلك انتشار الموجات المليمترية في البيئة الداخلية و التي تتميز بسعات متنوعة تعزى إلى استخدام نماذج مختلفة. في هذا البحث، تم تحديد فقدان المسار كعنصر حاسم في هذه العملية، لا سيما فيما يتعلق بطبيعة بيئة نقطة الاتصال في البيئة الداخلية (InH) و المصنع في البيئة الداخلية بالإضافة إلى ظروف وجود خط البصر (LOS)، وعدم وجود خط- البصر (NLOS)، بالاضافة الى الحاجز البشري. يبحث هذا البحث في نموذج 3GPP في البيئة الداخلية في بيئات (InH) و (InF). حيث تم اقتراح أربعة نماذج محاكاة مختلفة بتردد 28 جيجا هرتز، بمسافات متفاوتة بين المرسل والمستقبل تتراوح بين (10 – 50) مترا لغرض داسة وتحليل تأثير الترددات الحاملة على خسائر المسار المتوقعة. بالإضافة إلى ذلك، فهو يحلل تأثير LOS وNLOS والحاجز البشري على خسارة المسير في كلا السيناريوهين InH وInF. وعلاوة على ذلك، فإنه يقدم مقارنة بين هذه السيناريوهات. إحدى النتائج الملحوظة للدراسة هي أن فقدان المسار في ظروف NLOS يظهر المزيد من التقلبات مقارنة بظروف LOS، بغض النظر عن الحاجز البشري. علاوة على ذلك، أظهرت النتائج أن الفرق في خسارة المسير بين سيناريوهات InH وInF في جميع الحالات يقع ضمن مدى (9.1275 - 7.1975) ديسيبل.
المراجع
. X. Chen, Randomly Deployed Wireless Sensor Networks. Elsevier BV, 2020. doi: https://doi.org/10.1016/c2019-0-00221-x.
. A. Aremice, A. H. Miry, and T. M. Salman, “Vehicle Black Box Implementation for Internet of Vehicles Based Long Range Technology,” Journal of Engineering and Sustainable Development, vol. 27, no. 2, pp. 245–255, Mar. 2023, doi: https://doi.org/10.31272/jeasd.27.2.8.
. A. Aramice, N. Abbas, and T. M. Salman, “Optimal Long-Range-Wide-Area-Network Parameters Configuration for Internet of Vehicles Applications in Suburban Environments,” Journal of Engineering and Sustainable Development, vol. 27, no. 6, pp. 754–770, Nov. 2023, doi: https://doi.org/10.31272/jeasd.27.6.7.
. Anouar Nechi et al., “Practical Trustworthiness Model for DNN in Dedicated 6G Application,” 2023 19th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Montreal, QC, Canada, no. pp. 312-317, Jun. 2023, doi: https://doi.org/10.1109/wimob58348.2023.10187759.
. V. E. Balas and S. Pal, “Healthcare Paradigms in the Internet of Things Ecosystem,” Elsevier eBooks, Jan. 2021, doi: https://doi.org/10.1016/c2019-0-00358-5.
. R. Raman, R Ravi Kumar, N. Garg, K. Joshi, B. G. Pillai, and U. Joshi, “Analysis of Potential Health and Environmental Risks Associated with 6G Wireless Communication Networks,” 3rd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), IEEE, May 2023, doi: https://doi.org/10.1109/icacite57410.2023.10183322.
. M. S. Mahmood and Y. Y.Al-Aboosi, “EFFECTS OF MULTIPATH PROPAGATION CHANNEL IN TIGRIS RIVER,” Journal of Engineering and Sustainable Development, vol. 27, no. 2, pp. 256–271, Mar. 2023, doi: https://doi.org/10.31272/jeasd.27.2.9.
. S. A. Ashraf, I. Aktas, E. Eriksson, K. W. Helmersson, and J. Ansari, “Ultra-reliable and low-latency Communication for Wireless Factory automation: from LTE to 5G,” IEEE Xplore, Sep. 01, 2016. https://ieeexplore.ieee.org/abstract/document/7733543 (accessed Nov. 17, 2022).
. L. Hua, L. Xiaolu, X. Renchao, and F. Wei, “Integrated Architecture for Networking and Industrial Internet Identity,” ZTE Communications, vol. 18, no. 1, pp. 24–35, Jun. 2020, doi: https://doi.org/10.12142/ztecom.202001005.
. [M. Noor-A-Rahim et al., “Wireless Communications for Smart Manufacturing and Industrial IoT: Existing Technologies, 5G and beyond,” Sensors, vol. 23, no. 1, p. 73, Jan. 2023, doi: https://doi.org/10.3390/s23010073.
. [G. Korzeniewski and R. C. Álvarez, “Industrial Wireless Channel Measurements in a 2.4 GHz ISM Radio Band Using a low-cost SDR-based Channel Sounder,” RECIBE, REVISTA ELECTRÓNICA DE COMPUTACIÓN, INFORMÁTICA, BIOMÉDICA Y ELECTRÓNICA, vol. 9, no. 1, pp. E1-1E1-25, Jun. 2020, doi: https://doi.org/10.32870/recibe.v9i1.150.
. W. Wang and Elena Simona Lohan, “Applicability of 3GPP Indoor Hotspot Models to the Industrial Environments,” 8th International Conference on Localization and GNSS: Seamless Indoor-Outdoor Localization, Proceedings, Institute of Electrical and Electronics Engineers Inc., Jun. 2018, doi: https://doi.org/10.1109/icl-gnss.2018.8440902.
. Emad Ahmed Hussien and G. Abdulkareem, “RAYLEIGH FADING CHANNEL ESTIMATION BASED ON GENERALIZED REGRESSION NEURAL NETWORK,” Journal of Engineering and Sustainable Development, vol. 27, no. 3, pp. 363–374, May 2023, doi: https://doi.org/10.31272/jeasd.27.3.6.
. S. Sabeeh, “Radio Resource Management for c-v2x Communication Systems,” Ph.D. Thesis, Poznan University of Technology, 2022.
. T. T. Oladimeji, P. Kumar, and N. O. Oyie, “Propagation Path Loss Prediction Modelling in Enclosed Environments for 5G networks: a Review,” Heliyon, vol. 8, no. 11, p. e11581, Nov. 2022, doi: https://doi.org/10.1016/j.heliyon.2022.e11581.
. Y. Hu and G. Leus, “Self-Estimation of Path-Loss Exponent in Wireless Networks and Applications,” IEEE Transactions on Vehicular Technology, vol. 64, no. 11, pp. 5091–5102, Nov. 2015, doi: https://doi.org/10.1109/tvt.2014.2380823.
. J. Miranda et al., “Path Loss Exponent Analysis in Wireless Sensor Networks: Experimental Evaluation,” IEEE Xplore, Jul. 01, 2013. https://ieeexplore.ieee.org/abstract/document/6622857 (accessed Mar. 28, 2022).
. M. K. Elmezughi, T. J. Afullo, and N. O. Oyie, “Performance Study of Path Loss Models at 14, 18, and 22 GHz in an Indoor Corridor Environment for Wireless Communications,” Africa Research Journal, vol. 112, no. 1, pp. 32–45, Mar. 2021, doi: https://doi.org/10.23919/saiee.2021.9340535.
. M. El Hajj, G. Zaharia, G. El Zein, H. Farhat, and S. Sadek, “Millimeter-Wave Propagation Measurements at 60 GHz in Indoor Environments,” 2019 International Symposium on Signals, Circuits and Systems (ISSCS), Iasi, Romania, pp. 1–4, Jul. 2019, doi: https://doi.org/10.1109/isscs.2019.8801751.
. M. M. Abdulwahid, A. Sh., M. F. Mosleh, and R. A. Abd-Alhameed, “Investigation of Millimeter-Wave Indoor Propagation at Different Frequencies,” 4th Scientific International Conference Najaf, SICN 2019, Institute of Electrical and Electronics Engineers Inc., Apr. 2019, doi: https://doi.org/10.1109/sicn47020.2019.9019358.
. A. M. Al-Samman et al., “Millimeter Wave Propagation Measurements and Characteristics for 5G System,” Applied Sciences, vol. 10, no. 1, p. 335, Jan. 2020, doi: https://doi.org/10.3390/app10010335.
. D. Sun, Y. Liu, and S. Li, “Simulation and Analysis of 60GHz Millimeter-Wave Propagation Characteristics in Corridor Environment,": 2018 International Conference on Microwave and Millimeter Wave Technology, ICMMT- Proceedings, Institute of Electrical and Electronics Engineers Inc, May 2018, doi: https://doi.org/10.1109/icmmt.2018.8563468.
. X. Bian, Y. Liu, and S. Li, “Analysis of Millimeter-Wave Channel Characteristics in Urban Microcell Environment Based on the SBR Method,” International Conference on Microwave and Millimeter Wave Technology, ICMMT 2020 - Proceedings, Institute of Electrical and Electronics Engineers Inc, Sep. 2020, doi: https://doi.org/10.1109/icmmt49418.2020.9386788.
. S. A. Aldossari, “Predicting Path Loss of an Indoor Environment Using Artificial Intelligence in the 28-GHz Band,” Electronics, vol. 12, no. 3, p. 497, Jan. 2023, doi: https://doi.org/10.3390/electronics12030497.
. Md Abdus Samad, D.-Y. Choi, and K. Choi, “Path Loss Measurement and Modeling of 5G Network in Emergency Indoor Stairwell at 3.7 and 28 GHz,” PloS One, vol. 18, no. 3, pp. e0282781–e0282781, Mar. 2023, doi: https://doi.org/10.1371/journal.pone.0282781.
. H. J. Liebe, G. A. Hufford, and M. G. Cotton, “Propagation Modeling of Moist Air and Suspended water/ice Particles at Frequencies below 1000 GHz,” Atmospheric Propagation Effects through Natural and Man-Made Obscurants for Visible through MM-Wave Radiation, pp. 3–11, 1993.
. T. S. Rappaport, G. R. MacCartney, M. K. Samimi, and S. Sun, “Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design,” IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029–3056, Sep. 2015, doi: https://doi.org/10.1109/tcomm.2015.2434384.
. S. Sun et al., “Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843–2860, 2016, doi: https://doi.org/10.1109/TVT.2016.2543139.
. S. Misra, "Millimeter Wave Wireless Communications (Rappaport, T. et al.; 2014) [Book review]," IEEE Wireless Communications, vol. 22, no. 5, pp. 6–7, Oct. 2015, doi: https://doi.org/10.1109/mwc.2015.7306370.
التنزيلات
Key Dates
الإستلام
النسخة النهائية
الموافقة
النشر الالكتروني
منشور
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2025 Intisar Al-Mejibli, Hussein A. Mohammed, Haider Kadhim Hoomod, Nawaf Rasheed Alharbe (Author)

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.