NUMERICAL AND EXPERIMENTAL STUDY OF SHAPE EFFECT BEHAVIOR OF NITINOL WIRE

Authors

  • Samir Ali Amin Department of Mechanical Engineering, University of Technology, Baghdad, Iraq Author
  • Ali Yasser Hassan Department of Mechanical Engineering, University of Technology, Baghdad, Iraq Author

Keywords:

Shape memory effect, NiTinol wire, Tensile test, Finite element modeling, Austenite finish temperature, Martensite start temperature

Abstract

The aim of this research, returned NiTinol wire to original length by activation. The experimental test and ANSYS v15 software were conducted to study the shape memory effect behavior for NiTinol wire has high temperature about 80°C±10°C. Full annealing of NiTinol wire was employed with a straight shape, this alloy it consists of (Ni-55%, H-0.001%, 0-0.05%, N-0.001%, C-0.05% and Ti-Balance). In this research, a NiTinol wire was implemented (2 mm diameter) and (100 mm length). The experimental results and ANSYS software were almost near. Shape memory effect data constants used in ANSYS software were extracted from the experimental test by applying linear interpolation. These data were hardening parameter (C1) about 900 MPa and elastic limit (C3) about 30 MPa. These data were temperature scaling parameter C4=0.89, maximum transformation strain C5=0.074%, martensite modulus C6=20000 MPa and dependency parameter C7=0. The amount of strain (7 %) applied in this test returned to zero after activation NiTinol wire, and that gives an indication that the permanent deformation is decline. The start austenite temperature (As) was about 58°C and finish austenite temperature (Af) was about 70°C . ANSYS software provided good results when compared with the experimental work.

Downloads

Published

2019-03-01

How to Cite

NUMERICAL AND EXPERIMENTAL STUDY OF SHAPE EFFECT BEHAVIOR OF NITINOL WIRE. (2019). Journal of Engineering and Sustainable Development, 23(2), 1-11. https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/272

Similar Articles

1-10 of 894

You may also start an advanced similarity search for this article.