ENVIRONMENTAL SIGNIFICANCE OF FOULING ON THE CRUDE OIL FLOW. A COMPREHENSIVE REVIEW

Fouling on The Crude Oil Flow

Authors

  • Zaid A. Abdulhussein Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author
  • Zainab Al-sharify School of Chemical Engineering, University of Birmingham, Birmingham, UK Author
  • Mohammed Alzuraiji Cheif Engineer, Marketing research SOMO, Baghdad, Iraq Author
  • Helen Onyeaka School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom Author

DOI:

https://doi.org/10.31272/jeasd.27.3.3

Keywords:

Fouling, crude oil, Fluid flow, environmental pollution, sustainability

Abstract

Investigating important challenges to eliminate crude oil fouling in pipelines needs to be studied thoroughly. According to environmental and economic issues, fouling in pipelines increases the price of crude oil. According to chemical and environmental experts, the loss in heat required additional energy to compensate which meant higher fuel consumption and more carbon emissions into the atmosphere.  The increase in fluid flow rate combined with a constant drop in pressure is dangerous for pipelines. In addition, the Iraqi crude oils block refinery preheat trains because they contain very little asphaltene. The fouling of a variety of these crude oils and their blends is examined in this paper. Fouling may be caused by four major processes: solid particles, corrosion, sedimentation, and chemical reaction.

Author Biographies

  • Zaid A. Abdulhussein , Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Baghdad, Iraq

     

     

     

     

  • Zainab Al-sharify, School of Chemical Engineering, University of Birmingham, Birmingham, UK

     

     

  • Mohammed Alzuraiji , Cheif Engineer, Marketing research SOMO, Baghdad, Iraq

     

     

  • Helen Onyeaka , School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom

     

     

References

Bott, T. R., Heat Transfer and the Environment, Heat Transfer Engineering, vol. 27, no. 5, pp. 1–5, 2006. https://doi.org/10.1080/01457630600742282.

Campbell, J. M. (1979). Gas conditioning and processing. Vol. 2: the Equipment Modules. Norman, Oklahoma: Campbell Petroleum Series.‏

Al-Sharify, Z.T., Lahieb Faisal, M., Hamad, L.B., Jabbar, H.A. (2020). A review of hydrate formation in oil and gas transition pipes. IOP Conference Series: Materials Science and Engineering, 870 (1), art. no. 012039. https://doi.org/10.1088/1757-899X/870/1/012039

Murtadah, I., Al-Sharify, Z.T., Hasan, M.B. (2020) Atmospheric concentration saturated and aromatic hydrocarbons around dura refinery IOP Conference Series: Materials Science and Engineering, 870 (1), art. no. 012033. https://doi.org/10.1088/1757-899X/870/1/012033

Jatale, A., and Srinivasa, M. (2015, April). CFD Modeling of Fouling in Crude Oil Refinery Heat Exchangers. In Spring Meeting and 11th Global Congress on Process Safety-AIChE, Austin.‏ https://doi.org/10.13140/RG.2.1.1015.9209.

Campbell, J. M., Maddox, R. N., Lilly, L. L., and Hubbard, R. A. (1984). Gas conditioning and processing (Vol. 1). Norman, Oklahoma: Campbell Petroleum Series.‏

Guo, B. (2007) Petroleum Production Engineering, A Computer-Assisted Approach. Gulf Professional Publishing, Burlington, eBook ISBN: 9780080479958 pp. 267–280.

Amani, H., Kariminezhad, H., & Kazemzadeh, H. (2016). Development of natural gas flow rate in pipeline networks based on unsteady state Weymouth equation. Journal of natural gas science and engineering, 33, 427-437. https://doi.org/10.1016/j.jngse.2016.05046, 2016/07/ 01/.

Adeosun, T. A., Olatunde, O. A., Aderohunmu, J. O., & Ogunjare, T. O. (2009). Development of unsteady-state Weymouth equations for gas volumetric flow rate in horizontal and inclined pipes. Journal of Natural Gas Science and Engineering, 1(4-5), 113-117.‏ https:// doi.org/10.1016/j.jngse.2009.09.001.

Rehman, O. U., Ramasamy, M. G., Rozali, N. E. M., Mahadzir, S., Ghumman, A. S. M., & Qureshi, A. H. (2023). Modeling Strategies for Crude Oil-Induced Fouling in Heat Exchangers: A Review. Processes, 11(4), 1036.‏ https://doi.org/10.3390/pr11041036

Pental, J. K. (2012). Design and commissioning of a crude oil fouling facility (Doctoral dissertation, Imperial College London).‏ https://spiral.imperial.ac.uk/bitstream/10044/1/17934/1/Pental-JK-2012-PhD-Thesis.pdf

Hadi, A. M., Mohammed, A. K., Jumaah, H. J., Ameen, M. H., Kalantar, B., Rizeei, H. M., & Al-Sharify, Z. T. A. (2022). GIS-Based Rainfall Analysis using Remotely Sensed Data in Kirkuk Province, Iraq: Rainfall Analysis. Tikrit Journal of Engineering Sciences, 29(4), 48–55. https://doi.org/10.25130/tjes.29.4.6.

Kamalifar, S., Peyghambarzadeh, S. M., Azizi, S., & Jamali-Sheini, F. (2023). Experimental study on crude oil fouling in preheat exchangers at different operating conditions. Thermal Science and Engineering Progress, 39, 101742.‏ https://doi.org/10.1016/j.tsep.2023.101742

Taborek, J. (1972). Fouling: The major unsolved problem in heat transfer. Chemical Engineering Progress, 88(7): 59-67. https://doi.org/ DOI: 10.1007/978-94-009-2790-2_12.

Yeap B. L., (2003), Designing Heat Exchanger Networks to Mitigate Fouling. PhD Thesis, Department of Chemical Engineering. Cambridge (UK), Cambridge University.

Liebmann, K., Dhole, V. R., & Jobson, M. (1998). Integrated design of a conventional crude oil distillation tower using pinch analysis. Chemical Engineering Research and Design, 76(3), 335-347. https://doi.org/10.1205/026387698524767.

J. H. Lavaja and M. J. Bagajewicz, (2004), On a New MILP Model for the Planning of Heat-Exchanger Network Cleaning. Industrial & engineering chemistry research, 43(14): 3924-3938. https://doi.org/10.1021/ie0503186.

Coletti, F., & Macchietto, S. (2011). Refinery preheat train network simulation undergoing fouling: assessment of energy efficiency and carbon emissions. Heat transfer engineering, 32(3-4),228236. ‏https://doi.org/10.1080/01457632.2010.495606.

Wilson D. I., Polley G. T. and Pugh S. J., (2010), Mitigation of crude oil preheat train fouling by design. Heat Transfer Engineering, 23(1): 24-37. https://doi.org/10.1080/014576302753249589.

ESDU, (2000), Heat exchanger fouling in the preheat train of a crude oil distillation unit, Data Item 00016. London, ESDU International plc.

Zaid, H., Al-sharify, Z., Hamzah, M. H., & Rushdi, S. (2022). Optimization Of Different Chemical Processes Using Response Surface Methodology-A Review: Response Surface Methodology. Journal of Engineering and Sustainable Development, 26(6), 1-12.‏ https://doi.org/10.31272/jeasd.26.6.1

W. A. Ebert and C. B. Panchal, (1995), Analysis of Exxon crude-oil-slip stream coking data. Fouling Mitigation of Industrial Heat-Exchange Equipment, San Luis Obispo, California (USA), BegellHouse inc.

Polley, G. T., Wilson, D. I., Yeap, B. L., & Pugh, S. J. (2002). Use of crude oil fouling threshold data in heat exchanger design. Applied Thermal Engineering, 22(7), 763-776.‏ https://doi.org/10.1016/S1359-4311(02)00021-2.

Yeap, B. L., Wilson, D. I., Polley, G. T., & Pugh, S. J. (2004). Mitigation of crude oil refinery heat exchanger fouling through retrofits based on thermo-hydraulic fouling models. Chemical Engineering Research and Design, 82(1),53-71.‏ https://doi.org/10.1205/026387604772803070.

Nasr, M. R. J., & Givi, M. M. (2006). Modeling of crude oil fouling in preheat exchangers of refinery distillation units. Applied thermal engineering, 26(14-15), 1572-1577.‏ https://doi.org/10.1016/j.applthermaleng.2005.12.001.

Wilson, D. I., & Vassiliadis, V. S. (1997, May). Mitigation of refinery fouling by management of cleaning. In Presented at the Engineering Foundation Conference on Understanding Heat Exchanger Fouling and its Mitigation.‏

Smaïli, F., Vassiliadis, V. S., & Wilson, D. I. (2001). Mitigation of fouling in refinery heat exchanger networks by optimal management of cleaning. Energy & fuels, 15(5), 1038-1056.‏ https://doi.org/10.1021/ef010052p.

Ishiyama, T., & Morita, A. (2007). Molecular Dynamics Study of Gas− Liquid Aqueous Sodium Halide Interfaces. I. Flexible and Polarizable Molecular Modeling and Interfacial Properties. The Journal of Physical Chemistry C, 111(2), 721-737.‏ https://doi.org/10.1021/jp065191s.

Macchietto, S., Hewitt, G. F., Coletti, F., Crittenden, B. D., Dugwell, D. R., Galindo, A., ... & Wilson, D. I. (2011). Fouling in crude oil preheat trains: a systematic solution to an old problem. Heat Transfer Engineering, 32(3-4), 197-215.‏ https://doi.org/10.1080/01457632.2010.495579.

Coletti, F., and Macchietto, S., (2008). Minimising Efficiency Losses in Oil Refineries: A Heat Exchanger Fouling Model, Department of Chemical Engineering, Imperial College, London, UK,.

Apio, A., Martinelli, G. B., Trierweiler, L. F., Farenzena, M., & Trierweiler, J. O. (2023). Fouling monitoring of a heat exchanger network of an actual crude oil distillation unit by constrained extended Kalman filter with smoothing. Chemical Engineering Communications, 1-20.‏

Panchal, C. (1999). Threshold conditions for crude oil fouling. Understanding Heat Exchanger Fouling and its Mitigation,” UEF.‏

Muller-Steinhagen, H. (1999). Cooling-water fouling in heat exchangers. In Advances in heat transfer (Vol. 33, pp. 415-496). Elsevier.‏ https://doi.org/10.1016/S0065-2717(08)70307-1.

Awad, M. M. (2011). Fouling of heat transfer surfaces (pp. 505-542). INTECH Open Access Publisher.‏ https://doi.org/10.5772/13696.

Epstein, N. (1978). Fouling in heat exchangers. In International Heat Transfer Conference Digital Library. Begel House Inc.

R. Steinhagen H. M. Miiller-Steinhagen, and K. Maani, (1990), Heat Exchanger Applications, Fouling Problems and Fouling Costs in New Zealand Industries. Ministry of Commerce Report RD8829, 1-116.

R. Steinhagen, H. M. Miiller-Steinhagen, and K. Maani, Fouling Problems and Fouling Costs in New Zealand Industries, Heat Transfer Engineering 14, (1) (1993).

Hans, M.-S., (2010) C4Fouling of Heat Exchanger Surfaces, in VDI Heat Atlas. Springer Berlin Heidelberg. pp. 79–104. 10.1007/978-3-540-77877-6_7.

Patnaik, P. (2003). Handbook of inorganic chemicals (Vol. 28): McGraw-Hill New York.. ISBN 0-07-049439-8

Walker, M. E., Safari, I., Theregowda, R. B., Hsieh, M.-K., Abbasian, J., Arastoopour, H., Miller, D. C. (2012). Economic impact of condenser fouling in existing thermoelectric power plants. Energy, 44(1), 429-437. https://doi.org/10.1016/j.energy.2012.06.010.

Ghaffour, N., Missimer, T. M., & Amy, G. L. (2013). Technical review and evaluation of the economics of water desalination: Current and future challenges for better water supply sustainability. Desalination, 309(0), 197-207. https://doi.org/10.1016/j.desal.2012.10.015.

Kapustenko, P., Klemeš, J. J., & Arsenyeva, O. (2023). Plate heat exchangers fouling mitigation effects in heating of water solutions: A review. Renewable and Sustainable Energy Reviews, 179, 113283.‏

Müller-Steinhagen, H., Malayeri, M. R., & Watkinson, A. (2006). Fouling of heat exchangers-new approaches to solve an old problem. Heat Transfer Engineering, 26(1),1-4. https://doi.org/10.1080/01457630590889906.

Hasson, D., Avriel, M., Resnick, W., Rozenman, T., & Windreich, S. (1968). Mechanism of calcium carbonate scale deposition on heat-transfer surfaces. Industrial & Engineering Chemistry Fundamentals, 7(1), 59-65. https://doi.org/10.1016/j.rser.2023.113283

Walker, P., & Sheikholeslami, R. (2003). Assessment of the effect of velocity and residence time in CaSO4 precipitating flow reaction. Chemical Engineering Science, 58(16), 3807-3816. https://doi.org/10.1016/S0009-2509(03)00268-9.

Awad, M. M. (2011). Fouling of heat transfer surfaces: INTECH Open Access Publisher. https://doi.org/10.5772/13696.

Budz, J., Karpiński, P., & Nuruć, Z. (1985). Effect of temperature on crystallization and dissolution processes in a fluidized bed. AIChE journal, 31(2), 259268. https://doi.org/10.3390/cryst12111541

Chenoweth, J. M. (1990). Final Report of the HTRI/TEMA Joint Committee to Review the Fouling Section of the TEMA Standards. Heat Transfer Engineering,11(1),73-107. https://doi.org/10.1080/01457632.2010.505127.

Amjad, Z. (2000). Controlling Metal lon Fouling in Industrial Water Systems. UltraPure Water, 17(4), 31-40. https://doi.org/10.4236/oalib.1106579.

Yu, H. (2007). Composite fouling on heat exchanger surfaces: Nova Science Publishers,Inc.,NewYork. https://doi.org/10.5772/32990.

Kukulka, P., Kukulka, D. J., & Devgun, M. (2007). Evaluation of Surface Roughness on the Fouling of Surfaces. Chem. Eng. Trans, 12, 537. https://doi.org/10.1016/j.applthermaleng.2006.02.041.

Kazi, S. N., Duffy, G. G., & Chen, X. D. (2010). Mineral scale formation and mitigation on metals and a polymeric heat exchanger surface. Applied Thermal Engineering, 30(14–15), 2236-2242. https://doi.org/10.1016/j.applthermaleng.2010.06.005.

Hou, H., Wang, B., Hu, S.-Y., Wang, M.-Y., Feng, J., Xie, P.-P., & Yin, D.-C. An investigation on the effect of surface roughness of crystallization plate on protein crystallization. Journal of crystal growth. 468, 290-294 https://doi.org/10.1016/j.jcrysgro.2016.10.007.

Demadis, K. D. (2003). Combating heat exchanger fouling and corrosion phenomena in process waters. Compact Heat Exchangers and Enhancement Technology for the Process Industries, 483-490.

MacAdam, J. and S.A. Parsons, (2004). Calcium carbonate scale formation and control. Re/Views in Environmental Science and Bio/Technology, 3(2): pp. 159–169. https://link.springer.com/article/10.1007/s11157-004-3849-1.

Kazi, S., Duffy, G., & Chen, X. (2009). Fouling and fouling mitigation on different heat exchanging surfaces. Paper presented at the Proceedings of International Conference on Heat Exchanger Fouling and Cleaning. https://doi.org/10.5772/32990

Chigondo, M., & Chigondo, F. (2016). Recent Natural Corrosion Inhibitors for Mild Steel: An Overview. Journal of Chemistry,2016,7.https://doi.org/10.1155/2016/6208937.

Somerscales, E. (1990). Fouling of heat transfer surfaces: an historical review. Heat Transfer Engineering, 11(1), 19-36. https://doi.org/10.1080/01457639008939720

Davey, R., & Garside, J. (2000). From molecules to crystallizers: Oxford University Press.

Bott, T. R. (1990). Fouling Notebook. Institution of Chemical Engineering, Rugby,UK.

Höfling, V., Augustin, W., & Bohnet, M. (2004). Crystallization fouling of the aqueous two-component system CaSO4/CaCO3. Heat Exchanger Fouling and Cleaning: Fundamentals andApplications,7.

Steinhagen, R., Müller-Steinhagen, H., & Maani, K. (1993). Problems and costs due to heat exchanger fouling in New Zealand industries. Heat Transfer Engineering,14(1),19-30. https://doi.org/10.1080/01457639308939791.

Schoenitz, M., Grundemann, L., Augustin, W., & Scholl, S. (2015). Fouling in microstructured devices: a review. Chemical Communications, 51(39), 8213-8228. https://doi.org/10.1039/C4CC07849G.

Zhang, F., Hou, Z., Sheng, K., Deng, B., & Xie, L. (2006). Crystallization of calcium carbonate on polyethylene [gamma]-radiation-grafted with acrylic acid. Journal of Materials Chemistry, 16(13),1215-1221. https://doi.org/10.1039/B517550J.

Rubasinghege, G., & Grassian, V. H. (2013). Role(s) of adsorbed water in the surface chemistry of environmental interfaces. Chemical Communications, 49(30),3071-3094. https://doi.org/10.1039/C3CC38872G.

Liu, X., Chen, T., Chen, P., Montgomerie, H., Hagen, T. H., Wang, B., & Yang, X. (2012). Understanding Mechanisms of Scale inhibition Using Newly Developed Test Method and Developing Synergistic Combined Scale Inhibitors. Paper presented at the SPE International Conference on Oilfield Scale. https://doi.org/10.2118/156008-MS.

Kazi, S. N., Duffy, G. G., & Chen, X. D. (2010). Mineral scale formation and mitigation on metals and a polymeric heat exchanger surface. Applied Thermal Engineering, 30(14–15), 2236-2242. https://doi.org/10.1016/j.applthermaleng.2010.06.005.

Müller-Steinhagen, H., Malayeri, M. R., & Watkinson, A. P. (2009). Heat Exchanger Fouling: Environmental Impacts. Heat Transfer Engineering, 30(10-11),773-776. https://doi.org/10.1080/01457630902744119.

Amjad, Z., & Zuhl, R. (2008). An evaluation of silica scale control additives for industrial water systems. NACE International, New Orleans.

Hoang, T. A., Ang, H. M., & Rohl, A. L. (2009). Effects of organic additives on calcium sulfate scaling in pipes. Australian journal of chemistry, 62(8), 927-933. https://doi.org/10.1071/CH08464.

Pritchard, A. M., & Freyer, P. J. (1988). Cleaning of Fouled Surfaces: A Discussion. In L. F. Melo, T. R. Bott & C. A. Bernardo (Eds.), Fouling Science and Technology (pp. 721-726). Dordrecht: Springer Netherlands. https://doi.org/10.5772/32990.

Müller-Steinhagen, H., Malayeri, M., & Watkinson, A. (2011). Heat exchanger fouling: mitigation and cleaning strategies. Heat Transfer Engineering, 32(3-4),189-196. https://doi.org/10.1080/01457632.2010.503108.

Müller-Steinhagen, H. (2016). C4 Fouling of Heat Exchanger Surfaces VDI Heat Atlas (pp. 79-104). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_7.

Middis, J., Paul, S., Müller-Steinhagen, H., & Duffy, G. (1998). Reduction of heat transfer fouling by the addition of wood pulp fibers. Heat Transfer Engineering,19(2),36-44. https://doi.org/10.1080/01457639808939919.

Parsons, S. A., Wang, B.-L., Judd, S. J., & Stephenson, T. (1997). Magnetic treatment of calcium carbonate scale—effect of pH control. Water Research, 31(2), 339-342. https://doi.org/10.1016/S0043-1354(96)00238-2.

Kazi, S. N., Duffy, G. G., & Chen, X. D. (2013). Fouling mitigation of heat exchangers with natural fibres. Applied Thermal Engineering, 50(1), 1142-1148. https://doi.org/10.1016/j.applthermaleng.2012.08.042.

Ashraf, M. A., Hussain, M., Mahmood, K., Wajid, A., Yusof, M., Alias, Y., & Yusoff, I. (2013). Removal of acid yellow-17 dye from aqueous solution using eco-friendly biosorbent. Desalination and Water Treatment, 51(22-24),4530-4545. https://doi.org/10.1080/19443994.2012.747187.

MacAdam, J., & Parsons, S. (2004). Calcium carbonate scale formation and control. Re/Views in Environmental Science & Bio/Technology, 3(2), 159-169. https://link.springer.com/article/10.1007/s11157-004-3849-1.

Tang, Q. G., Meng, J. P., Liang, J. S., Nie, L., & Li, Y. X. (2010). Effects of copper-based alloys on the nucleation and growth of calcium carbonate scale. Journal of Alloys and Compounds, 491(1–2), 242-247. https://doi.org/10.1016/j.jallcom.2009.09.162.

Tai, C. Y., & Chien, W. C. (2002). Effects of operating variables on the induction period of CaCl2–Na2CO3 system. Journal of crystal growth, 237, 2142-2147.‏.

Tao, N. J. (2006). Electron transport in molecularjunctions. Nature nanotechnology, 1(3),173-181.‏ https://doi.org/10.1038/nnano.2006.130.

Tai, C. Y., & Chien, W. C. (2003). Interpreting the effects of operating variables on the induction period of CaCl2–Na2CO3 system by a cluster coagulation model. Chemical engineering science, 58(14), 3233-3241. https://doi.org/10.1016/S0009-2509(03)00184-2

Yang, Q., Liu, Y., Gu, A., Ding, J., & Shen, Z. (2002). Investigation of induction period and morphology of CaCO3 fouling on heated surface. Chemical engineering science, 57(6), 921-931. https://doi.org/10.1016/S0009-2509(02)00007-6

Alahmad, M. (2008). Factors Affecting Scale Formation in Sea Water Environments – An Experimental Approach. Chemical engineering & technology, 31(1), 149-156. https://doi.org/10.1002/ceat.200700062.

Kukulka, P., Kukulka, D. J., & Devgun, M. (2007). Evaluation of Surface Roughness on the Fouling of Surfaces. Chem. Eng. Trans, 12, 537.

Morse, R. W., & Knudsen, J. G. (1977). Effect of alkalinity on the scaling of simulated cooling tower water. The Canadian Journal of Chemical Engineering, 55(3), 272-278. https://doi.org/10.1002/cjce.5450550306

Thonon, B., Grandgeorge, S., & Jallut, C. (1999). Effect of geometry and flow conditions on particulate fouling in plate heat exchangers. Heat Transfer Engineering, 20(3), 12-24.‏

Müller-Steinhagen, H., Malayeri, M. R., & Watkinson, A. P. (2009). Heat Exchanger Fouling: Environmental Impacts. Heat Transfer Engineering, 30(10-11),773-776. https://doi.org/10.1080/01457630902744119.

Müller-Steinhagen, H., Malayeri, M. R., & Watkinson, A. (2005). Fouling of heat exchangers-new approaches to solve an old problem. Heat Transfer Engineering, 26(1),1-4. https://doi.org/10.1080/01457630590889906.

Müller-Steinhagen, H.,Malayeri, M. R., andWatkinson, A. P., Recent Advances in Heat Exchanger Fouling Research, Heat Transfer Engineering, vol. 28, no. 3, pp. 173–176, 2007. https://doi.org/10.1080/01457630601064397.

Pugh, S. J., Hewitt, G. F., & Müller -Steinhagen, H. (2002). Heat Exchanger Fouling in the Preheat Train od a Crude Oil Distillation Unit-The Development of a" User Guide". Heat Exchanger Fouling-Fundamental Approaches and Technical Solutions, 201-212.‏

Ghannam, M. T., & Selim, M. Y. (2009). Stability behavior of water-in-diesel fuel emulsion. Petroleum Science and Technology, 27(4), 396-411.‏ https://doi.org/10.1080/10916460701783969.

Zwijnenburg, W., & Postma, F. (2017). Living under a black sky: Conflict pollution and environmental health concerns in Iraq. Pax, The Netherlands, November, 1-36.‏

Dave, D. A. E. G., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: A critical review and comparative analysis. American Journal of Environmental Sciences, 7(5), 423.‏ https://doi.org/10.3844/ajessp.2011.423.440.

Jawda, D. N. H., & Jaafar, H. N. (2021). The Developmental Effects of Oil Industry in Iraq (Developmental of Oil Industry and Ist Reflection on Environment in Iraq). Economic Sciences, 13(51).‏Jyjy.

Kondyli, A., & Schrader, W. (2020). Understanding “fouling” in extremely complex petroleum mixtures. ACS Applied Energy Materials, 3(8), 7251-7256.‏ https://doi.org/10.1021/acsaem.0c01326

Watkinson, A.P., Wilson, D.I., (1997). Chemical reaction fouling: a review. Exp. Therm.Fluid Sci. 14 (4), 361–374. https://doi.org/10.1016/S0894-1777(96)00138-0.

Coletti, F., Crittenden, B. D., & Macchietto, S. (2015). Basic science of the fouling process. In Crude Oil Fouling (pp. 23-50). Gulf Professional Publishing.‏ https://doi.org/10.1016/B978-0-12-801256-7.00002-6.

Asomaning, S., & Watkinson, A. P. (2000). Petroleum stability and heteroatom species effects in fouling of heat exchangers by asphaltenes. Heat Transfer Engineering, 21(3), 10-16.‏ https://doi.org/10.1080/014576300270852.

Crittenden X., B. D., and Khater, E. M. H. (1987). Fouling from vaporizing kerosine.‏ August 1987; 109(3): 583–589. https://doi.org/10.1115/1.3248128

Samimi, A., Bagheri, A., Dokhani, S., Azizkhani, S., & Godini, E. (2013). Solousion for Corrosion Reducing Gas Pipe Line with Inspection for Preventing Fouling in Oil Exchangers. International Journal of Basic & Applied Sciences, 2(2), 291.‏ https://www.researchgate.net/publication/274719128_Solousion_for_Corrosion_Reducing_Gas_Pipe_Line_with_Inspection_for_Preventing_Fouling_in_Oil_Exchangers.

Nategh, M., Malayeri, M. R., & Mahdiyar, H. (2017). A Review on Crude Oil Fouling and Mitigation Methods in Preheat Trains of Iranian Oil Refineries. Journal of Oil, Gas and Petrochemical Technology, 4(1), 1-17.‏ https://doi.org/10.22034/JOGPT.2017.58055.

Li, S., Fang, R., Qu, Z., Wu, L., An, Y., Liu, Y., ... & Yin, W. (2019). Environmentally friendly methodology for fouling removal in pipeline based on leaky guided wave generated by quasi-axisymmetric excitation mode. Clean Technologies and Environmental Policy, 21(3), 481-491.‏ https://doi.org/10.1007/s10098-019-01664-6.

Essien, O. E., & John, I. A. (2010). Impact of crude-oil spillage pollution and chemical remediation on agricultural soil properties and crop growth. Journal of Applied Sciences and Environmental Management, 14(4). https://doi.org/10.4314/jasem.v14i4.63304.‏

Mir, S., Naderifar, A., morad Rahidi, A., & Alaei, M. (2022). Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review Journal of Petroleum Science and Engineering, 110617. https://doi.org/10.1016/j.petrol.2022.110617.

Li, H., Peng, Y., Zhang, K., Li, P., Xin, L., Yin, X., & Yu, S. (2022). Spontaneous Self-healing Bio-inspired Lubricant-infused Coating on Pipeline Steel Substrate with Reinforcing Anti-corrosion, Anti-fouling, and Anti-scaling Properties. Journal of Bionic Engineering, 19(6), 1601-1614.‏ https://doi.org/10.1007/s42235-022-00220-1.

Sousa, A. M., Ribeiro, T. P., Pereira, M. J., & Matos, H. A. (2023). Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies, 16(1), 120.‏ https://doi.org/10.3390/en16010120

Dave, D. A. E. G., & Ghaly, A. E. (2011). Remediation technologies for marine oil spills: A critical review and comparative analysis. American Journal of Environmental Sciences, 7(5), 423.‏ https://doi.org/10.3844/ajessp.2011.423.440.

Essien, O. E., & John, I. A. (2010). Impact of crude-oil spillage pollution and chemical remediation on agricultural soil properties and crop growth. Journal of Applied Sciences and Environmental Management, 14(4). https://doi.org/10.4314/jasem.v14i4.63304.

Mir, S., Naderifar, A., morad Rahidi, A., & Alaei, M. (2022). Recent advances in oil/water separation using nanomaterial-based filtration methods for crude oil processing-a review. Journal of Petroleum Science and Engineering, 110617. https://doi.org/10.1016/j.petrol.2022.110617 .

Li, H., Peng, Y., Zhang, K., Li, P., Xin, L., Yin, X., & Yu, S. (2022). Spontaneous Self-healing Bio-inspired Lubricant-infused Coating on Pipeline Steel Substrate with Reinforcing Anti-corrosion, Anti-fouling, and Anti-scaling Properties. Journal of Bionic Engineering, 19(6), 1601. https://doi.org/10.1007/s42235-022-00220-1.

Sousa, A. M., Ribeiro, T. P., Pereira, M. J., & Matos, H. A. (2023). Review of the Economic and Environmental Impacts of Producing Waxy Crude Oils. Energies, 16(1), 120.‏

https://doi.org/10.3390/en16010120.

Yang, J., Yu, T., Jiang, X., Zhang, X., Guo, J., Chen, Y., Li., S & Wang, Z. (2023). Hydrated manganese hydrogen phosphate coated membrane with excellent anticrude oil-fouling property for separating crude oil from diverse wastewater. Surface and Coatings Technology, 454, 129215.‏ https://doi.org/10.1016/j.surfcoat.2022.129215.

Ugwa, C., Nnaji, N. D., Miri, T., Onyeaka, H., & Al-Sharify, Z. T. (2022). Advances in groundwater pollution by heavy metal. In AIP Conference Proceedings (Vol. 2660, No. 1, p. 020117). AIP Publishing LLC.‏ https://doi.org/10.1063/5.0110658.

Aalhashem, N. A., Naser, Z. A., Al-Sharify, T. A., Al-Sharify, Z. T., Al-sharify, M. T., Al-Hamd, R. K. S., & Onyeaka, H. (2022, November). Environmental impact of using geothermal clean energy (heating and cooling systems) in economic sustainable modern buildings architecture design in Iraq: A review. In AIP Conference Proceedings (Vol. 2660, No. 1, p. 020119). AIP Publishing LLC.‏ https://doi.org/10.1063/5.0109553.

Al-Sharify, Z. T., Jaaf, H. J. M. A., Naser, Z. A. R., Alshrefy, Z. A. I., Al-Sharify, N. T., Al-Sharify, T. A., ... & Miri, T. (2022, November). Validating sustainable water resources and fluid flow by studying phosphorus concentration of Tigris River water in Baghdad. In AIP Conference Proceedings (Vol. 2660, No. 1, p. 020127). AIP Publishing LLC.‏ https://doi.org/10.1063/5.0109481.

Ghosh, S., Falyouna, O., Onyeaka, H., Malloum, A., Bornman, C., AlKafaas, S. S., Al-Sharify Z. T., Ahmadi S., Dehghani M. H., Mahvi A. H., Nasseri S., Tyagi I., Mousazadeh M., Koduru J. R., Khan, A. H., Suhas (2023). Recent progress on the remediation of metronidazole antibiotic as emerging contaminant from water environments using sustainable adsorbents: A review. Journal of Water Process Engineering, 51, 103405.‏ https://doi.org/10.1016/j.jwpe.2022.103405 .

Wang, R., Zhu, L., Zhu, X., Yan, Z., Xia, F., Zhang, J., Liu X., Yu J., & Xue, Q. (2023). A super-hydrophilic and underwater super-oleophobic membrane with robust anti-fouling performance of high viscous crude oil for efficient oil/water separation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 658, 130662.‏ https://doi.org/10.1016/j.colsurfa.2022.130662.

Al-Hallaf, W. A. A. (2013). Theoretical study on heat transfer in the presence of fouling. Iraqi Journal of Chemical and Petroleum Engineering, 14(1), 47-53.‏ https://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/306.

Hameed, V. M., Mohammed, F. F., & Hasan, B. O. (2016). The Effect of Circulating Glass Beads on Crystallization Fouling and Fouling Resistance in Double-Pipe Heat Exchanger.‏ http://inpressco.com/category/ijcet.

Mahmood, H. Y., Sukkar, K. A., & Mikhelf, W. K. (2019). Corrosion Protect of Brass Tubes Heat Exchanger by using CuO Nanocoating with Thermal Pyrolysis Techniques. J. Mech. Contin. Math. Sci, 14, 281-291.‏ https://doi.org/10.26782/jmcms.2019.08.00023.

Abbas, E. F., Yagoob, J. A., & Mardan, M. N. (2018, December). Effect of tube material on the fouling resistance in the heat exchanger. In 2018 2nd International Conference for Engineering, Technology and Sciences of Al-Kitab (ICETS) (pp. 43-47). IEEE.‏ https://doi.org/10.1109/ICETS.2018.8724619.

Ibrahim, R. I., Odah, M. K., & Musa, K. J. (2018). Review on Recent Techniques for Improving the Energy Efficiency in Industrial Steam Boilers Through Boiler Tubes Corrosion Protection and Fouling Mitigation. J. of Eng. Appl. Sci, 13-10671.‏ https://doi.org/10.36478/jeasci.2018.10671.10678.

Downloads

Key Dates

Published

2023-05-01

How to Cite

Abdulhussein , Z. ., Al-sharify, Z., Alzuraiji , M. ., & Onyeaka , H. (2023). ENVIRONMENTAL SIGNIFICANCE OF FOULING ON THE CRUDE OIL FLOW. A COMPREHENSIVE REVIEW : Fouling on The Crude Oil Flow. Journal of Engineering and Sustainable Development, 27(3), 317-338. https://doi.org/10.31272/jeasd.27.3.3

Similar Articles

1-10 of 403

You may also start an advanced similarity search for this article.