THERMO-PHYSICAL PROPERTIES OF LIGHT WEIGHT EPOXY FOAMED BY SILOXANE BLOWING AGENT

Authors

  • Asmaa S. Saeed Material Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Raouf M. Raouf Material Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
  • Tawfeeq W. Mohammed Material Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq

DOI:

https://doi.org/10.31272/jeasd.26.5.6

Keywords:

Thermal properties, foamed epoxy, blowing agent, siloxane, insulation material

Abstract

The purpose of this study is to investigate the direct effect of using a blowing agent of siloxane (1, 1, 3, 3-tetramethydisiloxane) on the thermo-physical properties of the foamed epoxy. These properties are: density, glass-transition temperature, thermal conductivity and thermal expansion. The work has been conducted experimentally by manufacturing several specimens with different siloxane contents as: 0, 5, 10, 15 and 20 wt%. The properties of the specimens have tested under suitable conditions using different reliable instruments: differential scanning calorimetry, Lee-discs apparatus, and push rod dilatometer. Scanning electron microscope was used as well to analysis the morphological characteristics of the epoxy with respect to the pores generated by the blowing agent. In general, the foamed epoxy has shown different sizes of pores and extra crosslinking which leads to increase the glass-transition temperature of the material. Results show that the addition of 20% siloxane to the neat epoxy (as maximum) leads to: decreasing by 50% in bulk density, increasing by 20% in glass-transition temperature, decreasing by 30% in thermal conductivity, and decreasing by 75% in thermal expansion.                                              

References

Ellis B., "Chemistry and Technology of Epoxy Resins", Springer, 1993.

Augustsson C., "NM Epoxy Handbook", 3rd edition, Nils Malmgren AB, 2004.

Frank N., Mark E., Socrates P., "Epoxy and phenolic resins", Chapter 13 in the book: Organic Coatings: Science and Technology, Fourth Edition, Wiley, 2017.

Jack. R., Tsu W., "Composite Materials and Their Use in Structure", Applied Science Publisher LTD, London, 1975.

Hubert M., "Introduction to Epoxies", Royce International, 2012.

David L., Marcos Z., "The Sol-gel Handbook: Synthesis, Characterization, and Applications", Wiley-VCH, 2015.

Aegerter M., Leventis N., Koebel M., “Aerogels Handbook”, Springer, 2011.

Baumeister E., Klaeger S., "Advanced new lightweight materials: hollow-sphere composites (HSCs) for mechanical engineering applications", Adv. Eng. Mater. 5, 673, 2003.

Stefani P., Barchi A., Sabugal J., Vazquez A., "Characterization of epoxy foams", J. Appl. Polym. Sci., 90, 2992, 2003.

Hind A., Marya R., Rachid B., Qaiss A., "Investigation of the deformation behavior of epoxy-based composite materials", Chapter in the book: Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites, Woodhead Publishing Series in Composites Science and Engineering, Pages 29-49, 2019.

Wang J., Liang G., Yan H., He S., "Mechanical and dielectric properties of epoxy/dicyclopentadiene bisphenol cyanate ester/glass fabric composites", eXPRESS Polymer Letters, Vol.2, No.2, 118–125, 2008. DOI: 10.3144/expresspolymlett.2008.1

Wu X., Wang Y., Xie L., Jinhong Y., Fei L., Pingkai J., "Thermal and electrical properties of epoxy composites at high alumina loadings and various temperatures", Iranian Polymer Journal, 22, 61–73, 2013. DOI: 10.1007/s13726-012-0104-4

Wang Z., Cheng Y., Yang M., Huang J., Cao D., Chen S., Xie Q., Lou W., Wu H., "Dielectric properties and thermal conductivity of epoxy composites using core/shell structured Si/SiO2/Polydopamine", Composites Part B: Engineering, Volume 140, Pages 83-90, 2018. DOI: 10.1016/j.compositesb.2017.12.004

Dong Y., Ding J., Wang J., Fu X., Hu H., Li S., Yang H., Xu C., Du M., Fu Y., "Synthesis and properties of the vapour-grown carbon nanofiber/epoxy shape memory and conductive", foams prepared via latex technology, Composites Science and Technology, 76, 8–13, 2013.

Nikhil G., William R., "Processing and compressive properties of aerogel/epoxy composites", Journal of materials processing technology, 198, 178–182, 2008.

Dengteng G., Lili Y., Yao L., JiuPeng Z., "Hydrophobic and thermal insulation properties of silica aerogel/epoxy composite", Journal of Non-Crystalline Solids 355, 2610–2615, 2009.

Shibing Y., Jiachun F., Peiyi W., "Highly elastic graphene oxide–epoxy composite aerogels via simple freeze-drying and subsequent routine curing", Journal of Materials Chemistry A, 10, RSC, 2013.

Seong Y., Ye J., Jun L., Nam-Ho Y., "Silica aerogel/polyimide composites with preserved aerogel pores using multi-step curing", Macromolecular Research, Vol. 22, No. 1, pp 108-111, 2014.

Hyung M., Hyun S., Seong Y., Jae R., "Silica aerogel/epoxy composites with preserved aerogel pores and low thermal conductivity", e-Polymers; 15(2): 111–117, 2015.

Basri M., Mazlan N., Mustapha F., "Effects of stirring speed and time on water absorption performance of silica aerogel/epoxy nanocomposite", ARPN Journal of Engineering and Applied Sciences, V. 10, No. 21, 2015.

Mikk V., Sven O., Mikk A., Valter R., Uno M., Ants L., Kristjan S., Runno L., "Mechanical and thermal properties of epoxy composite thermal insulators filled with silica aerogel and hollow glass microspheres", Proceedings of the Estonian Academy of Sciences, 66, 4, 2017.

Zulhelmi A., Muhamad A., Hasbullah M., Halimaton H., “Effects of silica aerogel particle sizes on the thermal–mechanical properties of silica aerogel – unsaturated polyester composites, Plastics", Rubber and Composites, Vol. 46, No. 4, 184–192, 2017.

Saeed S., Ali Z., Zahra T., Beatrice F., Peter W., Frank W., Shanyu Z., Michel B., Matthias M., Wim J., "Silica aerogel-epoxy nanocomposites: understanding epoxy reinforcement in terms of aerogel surface chemistry and epoxy-silica interface compatibility", ACS Appl. Nano Mater., 1, 8, 4179–4189, 2018

Jin K., Myo N., Jungmo K., Jinho L., Jang K., Seokwoo J., "Highly conductive and fracture resistant epoxy composite based on non-oxidized Graphene flake aerogel", ACS Applied Materials & Interfaces, 10, 43, 37507–37516, 2018.

Chunmei Z., Yuchao L., Yanhu Z., Qian X., "Facile fabrication of a novel [email protected] aerogel/epoxy resin composite with improved damping property", Polymers, 11, 977, 2019.

Mariusz K., William M., Liu Y., "Investigation of the effects of silica aerogel particles on thermal and mechanical properties of epoxy composites", Composites Part A: Applied Science and Manufacturing, Vol. 139, 106108, 2020.

Xinfeng W., Yuan G., Tao J., Ying W., Ke Y., Tengshi L., Kai S., Yuantao Z., Wenge L., Jinhong Y., "Carbon fiber reinforced multi-phase epoxy syntactic foam (CFR-epoxy-hardener/HGMS/aerogel-R-hollow epoxy macrosphere (AR-HEMS))", Polymers, 13, 683, 2021.

Samsudin S., Ariff Z., Zakaria Z., Bakar A., "Development and characterization of epoxy syntactic foam filled with epoxy hollow spheres", eXPRESS Polymer Letters, Vol.5, No.7, 653–660, 2011.

Lijun W., Xu Y., Jing Z., Chun Z., Li H., "The compressive properties of expandable microspheres/epoxy foams", Composites Part B: Engineering, Vol. 56, Pages 724-732, 2014.

Sutikno W., Wajan B., Wahyu W., "Hollow glass microsphere-epoxy composite material for helmet application to reduce impact energy due to collision", AIP Conference Proceedings 1855, 030013, 2017.

Qiang R., Haijin X., Qiang Y., and Shiping Z., "Development of epoxy foaming with CO2 as latent blowing agent and principle in selection of amine curing agent", Industrial & Engineering Chemistry Research, 54 (44), 11056-11064, 2015.

Adam S., Martin C., Zdenek C., Krzysztof R., Katarzyna D., Martina H., Miroslav Š., Jana S., "Preparation of finely macroporous SiOC foams with high mechanical properties and with hierarchical porosity via pyrolysis of asiloxane/epoxide composite", Ceramics International, 41, 7, 8402-8410, 2015.

El Gazzani S., Nassiet V., Habas J., Freydier C., Hilleshein A., "High temperature epoxy foam: optimization of process parameters", Polymers, 8, 215, 2016.

Cavasin M., Giannis S., Salvo M., Casalegno V., Sangermano M. "Mechanical and thermal characterization of an epoxy foam as thermal layer insulation for a glass fiber reinforced polymer", J. APPL. POLYM. SCI., APP.46864, 2018.

Jiaxun L., Tao L., Zhenhao X., Ling Z., Cell "Characteristics of epoxy resin foamed by step temperature-rising process using supercritical carbon dioxide as blowing agent", Journal of Cellular Plastics, Volume 54, Issue 2, Pages 359-377, 2018.

Chang Y., Luo Y., Xu C., Zhao J., "Polysilazane as a new foaming agent to prepare high-strength, low-density epoxy foam", R. Soc. open sci. 6: 182119, 2019.

Mohammad J., Qixiang J., Alexander B., "Air templated macroporous epoxy foams with silica particles as property-defining additive", ACS Appl. Polym. Mater., 1, 335-343, 2019.

Christian B., Sandra A., Daniel R., Gökhan B., Simon B., Uy L., Altstädt V., "Effect of resin and blocked/unblocked hardener mixture on the production of epoxy foams with CO2 blocked hardener in batch foaming process", Polymers, 11, 793, 2019.

Christian B., Sebastian M., Uy L., Simon T., Altstädt V., Holger R., “Tailoring epoxy resin foams by pre-curing with neat amine hardeners and its derived carbamates", Polymers, 13, 1348, 2021.

Yu S., Li X., Zou M., Guo X., Ma H., Wang S., "Effect of the aromatic amine curing agent structure on properties of epoxy resin-based syntactic foams", ACS Omega, 5, 23268−23275, 2020.

Sahagun C., Morgan S., "Thermal control of nanostructure and molecular network development in epoxy-amine thermosets", ACS Appl. Mater. Interfaces, 4, 564−572, 2012.

Liu X., Rao Z., "A molecular dynamics study on heat conduction of crosslinked epoxy resin based thermal interface materials for thermal management", Comput. Mater. Sci., 172, 109298., 2020.

Pereira A., D’Almeida, J., "Effect of the hardener to epoxy monomer ratio on the water absorption behavior of the DGEBA/TETA epoxy system", Polimeros, 26, 30−37, 2016.

Takiguchi O., Ishikawa D., Sugimoto M., "Taniguchi T., Koyama K., Effect of rheological behavior of epoxy during precuring on foaming”, J. Appl. Polym. Sci., 110, 657, 2008.

Chen B., Wang Y., Mi H., Yu P., Kuang T., Peng X., Wen J., "Effect of poly(ethylene glycol) on the properties and foaming behavior of macroporous poly(lactic acid)/sodium chloride scaffold", J. Appl. Polym. Sci., 131, 41181, 2014.

Krevelen D. and Nijenhuis K., "Properties of Polymers", 4th Ed., Elsevier, 2009.

Shulamit L., Michael S., "Crystallinity and cross-linking in porous polymers synthesized from long side chain monomers through emulsion templating”, ACS publications, Macromolecules, 41, 11, 3930–3938, 2008.

P. Murias, L. Byczynski, H. Maciejewski, H. Galina, "A quantitative approach to dynamic and isothermal curing of an epoxy resin modified with oligomeric siloxanes", J Therm Anal Calorim, 122:215–226, 2015.

Tawfeeq W. Salih, “Insulation Materials: Notes for Undergraduate Students", University of Mustansiriyah, 2017.

W. Wang, Z. Tong, R. Li, D. Su, H. Ji, "Polysiloxane bonded silica aerogel with enhanced thermal insulation and strength", Materials, 14, 2046, 2021.

Richard W., "Bio-based composites from soybean oil and chicken feathers”, Bio-Based Polymers and Composites", Pages 411-447, Elsevier, 2005.

Kummer J. P., "Glass transition temperature of epoxies", Tech Tip 23, 20.

Domeier L., Hunter M., “Epoxy foam encapsulants: processing and dielectric characterization”, Report SAND99-8213, Sandia National Laboratories, USA, 1999.

Abraham A., Chauhan R., Srivastava A., Katiyar M., Tripathi D., “Mechanical, thermal and electrical properties of epoxy foam”, J. Polym. Mater., Vol. 28, No. 2,267-274, 2011.

Downloads

Published

2022-09-01

How to Cite

S. Saeed, A. ., M. Raouf, R. ., & W. Mohammed, T. . (2022). THERMO-PHYSICAL PROPERTIES OF LIGHT WEIGHT EPOXY FOAMED BY SILOXANE BLOWING AGENT. Journal of Engineering and Sustainable Development, 26(5), 68–77. https://doi.org/10.31272/jeasd.26.5.6