ROBUST HYBRID FEATURES BASED TEXT INDEPENDENT SPEAKER IDENTIFICATION SYSTEM OVER NOISY ADDITIVE CHANNEL

المؤلفون

  • Ali Muayad Jalil Electrical Engineering Department, Mustansiriyah University, Baghdad, Iraq مؤلف
  • Fadhel Sahib Hasan Electrical Engineering Department, Mustansiriyah University, Baghdad, Iraq مؤلف
  • Hesham Adnan Alabbasi Computer Engineering Department, Mustansiriyah University, Baghdad, Iraq مؤلف

DOI:

https://doi.org/10.31272/jeasd.24.4.7

الكلمات المفتاحية:

robust speaker identification، robust feature extraction، PNCC، GFCC، FW، UBM-GMM

الملخص

Robustness of speaker identification systems over additive noise is crucial for real-world applications. In this paper, two robust features named Power Normalized Cepstral Coefficients (PNCC) and Gammatone Frequency Cepstral Coefficients (GFCC) are combined together to improve the robustness of speaker identification system over different types of noise. Universal Background Model Gaussian Mixture Model (UBM-GMM) is used as a feature matching and a classifier to identify the claim speakers. Evaluation results show that the proposed hybrid feature improves the performance of identification system when compared to conventional features over most types of noise and different signal-to-noise ratios.

التنزيلات

Key Dates

منشور

2020-07-01

كيفية الاقتباس

Muayad Jalil, A. ., Sahib Hasan, F. ., & Adnan Alabbasi, H. . (2020). ROBUST HYBRID FEATURES BASED TEXT INDEPENDENT SPEAKER IDENTIFICATION SYSTEM OVER NOISY ADDITIVE CHANNEL. مجلة الهندسة والتنمية المستدامة, 24(4), 56-70. https://doi.org/10.31272/jeasd.24.4.7

المؤلفات المشابهة

1-10 من 82

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.