• Ali Kadhim Khudadad Mechanical Engineering Department, Mustansiriyah University, Baghdad, Iraq
  • Fouad Alwan Saleh Mechanical Engineering Department, Mustansiriyah University, Baghdad, Iraq
  • Naseer Kaream Kasim Training and Energy Research Office, Ministry of Electricity, Baghdad, Iraq



Photovoltaic, thermal efficiency, direct contact


Hybrid photovoltaic/thermal systems have emerged as a key energy technology as a result of the photovoltaic thermal PV/capacity T's to simultaneously produce electrical and thermal energy. Over the last couple of decades, much attention has been paid to photovoltaic–thermal systems due to their benefits over solar thermal and photovoltaic applications. This paper will concentrate on direct contact systems in order to demonstrate the various electrical and thermal features of photovoltaic–thermal systems. The main objective of researchers and manufacturers is to improve photovoltaic/thermal collector efficiency by employing state-of-the-art materials and design concepts and appropriately integrating them into solar modules and thermal absorbers. Additionally, it is important to lower the cost of these systems and increase their market competitiveness. As well as, PV/T systems are critical for supplying electricity in a clean and ecologically beneficial manner.


H. A. Zondag, “Flat-plate PV-Thermal collectors and systems: A review,” Renewable and Sustainable Energy Reviews, vol. 12, no. 4. pp. 891–959, 2008, doi: 10.1016/j.rser.2005.12.012.

M. H. Shubbak, “Advances in solar photovoltaics: Technology review and patent trends,” Renew. Sustain. Energy Rev., vol. 115, p. 109383, 2019, doi:

IRENA, Future of Wind: Deployment, investment, technology, grid integration and socio-economic aspects. 2019.

S. Kubba, “Handbook of Green Building Design, and Construction,” Handb. Green Build. Des. Constr., 2012, doi: 10.1016/C2009-0-64483-4.

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy, vol. 87, no. 2, pp. 365–379, 2010, doi: 10.1016/j.apenergy.2009.06.037.

A. Kumar, P. Baredar, and U. Qureshi, “Historical and recent development of photovoltaic thermal (PVT) technologies,” Renew. Sustain. Energy Rev., vol. 42, pp. 1428–1436, 2015, doi: 10.1016/j.rser.2014.11.044.

A. Chauhan, V. V. Tyagi, and S. Anand, “Futuristic approach for thermal management in solar PV/thermal systems with possible applications,” Energy Convers. Manag., vol. 163, pp. 314–354, May 2018, doi: 10.1016/J.ENCONMAN.2018.02.008.

J. Wang, Y. Chen, and N. Lior, “Exergo-economic analysis method and optimization of a novel photovoltaic/thermal solar-assisted hybrid combined cooling, heating and power system,” Energy Convers. Manag., vol. 199, Nov. 2019, doi: 10.1016/J.ENCONMAN.2019.111945.

X. Ju et al., “A review of concentrated photovoltaic-thermal (CPVT) hybrid solar systems with waste heat recovery (WHR),” Sci. Bull., vol. 62, no. 20, pp. 1388–1426, 2017, doi: 10.1016/j.scib.2017.10.002.

Z. Heng, L. Haowen, C. Haiping, G. Xinxin, L. Kai, and Y. Pengbo, “Research on the Performance of Flat-Box Photovoltaic/Thermal Collector With Cooling Channels,” J. Sol. Energy Eng., vol. 140, no. 2, Apr. 2018, doi: 10.1115/1.4038621.

F. Shan, F. Tang, L. Cao, and G. Fang, “Performance evaluations and applications of photovoltaic – thermal collectors and systems,” Renew. Sustain. Energy Rev., vol. 33, pp. 467–483, 2014, doi: 10.1016/j.rser.2014.02.018.

S. Supekar, D. Chandra, and S. Malvi, “Solar PVT Technology and Its Commercial Applications: A Review,” Inf. Dig. Energy Environ., vol. 17, no. 2, pp. 165–174.

[13] R. Daghigh, M. H. Ruslan, and K. Sopian, “Advances in liquid based photovoltaic/thermal (PV/T) collectors,” Renew. Sustain. Energy Rev., vol. 15, no. 8, pp. 4156–4170, 2011, doi: 10.1016/j.rser.2011.07.028.

Y. Jia, G. Alva, and G. Fang, “Development and applications of photovoltaic–thermal systems: A review,” Renew. Sustain. Energy Rev., vol. 102, no. November 2018, pp. 249–265, 2019, doi: 10.1016/j.rser.2018.12.030.

M. G. Noxpanco, J. Wilkins, and S. Riff, “A review of the recent development of photovoltaic/thermal (Pv/t) systems and their applications,” Futur. Cities Environ., vol. 6, pp. 1–16, Oct. 2020, doi: 10.5334/FCE.97/.

W. Pang, Y. Cui, Q. Zhang, G. J. Wilson, and H. Yan, “A comparative analysis on performances of flat plate photovoltaic/thermal collectors in view of operating media, structural designs, and climate conditions,” Renew. Sustain. Energy Rev., vol. 119, p. 109599, 2020, doi:

N. Goel, R. A. Taylor, and T. Otanicar, “A review of nanofluid-based direct absorption solar collectors: Design considerations and experiments with hybrid PV/Thermal and direct steam generation collectors,” Renew. Energy, vol. 145, pp. 903–913, 2020, doi: 10.1016/j.renene.2019.06.097.

S. Diwania, S. Agrawal, A. S. Siddiqui, and S. Singh, “Photovoltaic–thermal (PV/T) technology: a comprehensive review on applications and its advancement,” Int. J. Energy Environ. Eng., vol. 11, no. 1, pp. 33–54, 2020, doi: 10.1007/s40095-019-00327-y.

[19] V. V Tyagi, S. C. Kaushik, and S. K. Tyagi, “Advancement in solar photovoltaic / thermal ( PV / T ) hybrid collector technology,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1383–1398, 2012, doi: 10.1016/j.rser.2011.12.013.

“- HYBRID SOLAR: A REVIEW ON PHOTOVOLTAIC AND THERMAL POWER INTEGRATION,” Sol. Energy, pp. 24–67, Nov. 2014, doi: 10.1201/B17731-7.

C. Babu and P. Ponnambalam, “The role of thermoelectric generators in the hybrid PV/T systems: A review,” Energy Convers. Manag., vol. 151, pp. 368–385, Nov. 2017, doi: 10.1016/J.ENCONMAN.2017.08.060.

S. Paramaguru, P. Sivakumar, and M. S. | D. T. Senthilkumar, “Performance Improvement Analysis on PVT Solar Water Collectors Connected in Series and Parallel,” Int. J. Trend Sci. Res. Dev., vol. Volume-2, no. Issue-4, pp. 966–970, Jun. 2018, doi: 10.31142/IJTSRD14200.

S. M. Sultan and M. N. Ervina Efzan, “Review on recent Photovoltaic/Thermal (PV/T) technology advances and applications,” Solar Energy, vol. 173, no. August. Elsevier, pp. 939–954, 2018, doi: 10.1016/j.solener.2018.08.032.

O. Z. Sharaf and M. F. Orhann, “Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II - Implemented systems, performance assessment, and future directions,” Renew. Sustain. Energy Rev., vol. 50, pp. 1566–1633, 2015, doi: 10.1016/J.RSER.2014.07.215.

O. K. Ahmed and S. M. Bawa, “Reflective mirrors effect on the performance of the hybrid PV/thermal water collector,” Energy Sustain. Dev., vol. 43, pp. 235–246, Apr. 2018, doi: 10.1016/J.ESD.2018.02.001.

[26] H. Zhang, H. Chen, H. Liu, J. Huang, X. Guo, and M. Li, “Design and performance study of a low concentration photovoltaic-thermal module,” Int. J. Energy Res., vol. 42, no. 6, pp. 2199–2212, May 2018, doi: 10.1002/ER.4009.

O. Z. Sharaf and M. F. Orhan, “Comparative thermodynamic analysis of densely-packed concentrated photovoltaic thermal (CPVT) solar collectors in thermally in-series and in-parallel receiver configurations,” Renew. Energy, vol. 126, pp. 296–321, Oct. 2018, doi: 10.1016/J.RENENE.2018.03.026.

H. Zhang, K. Liang, H. Chen, D. Gao, and X. Guo, “Thermal and electrical performance of low-concentrating PV/T and flat-plate PV/T systems: A comparative study,” Energy, vol. 177, pp. 66–76, Jun. 2019, doi: 10.1016/J.ENERGY.2019.04.056.

M. Chaabane, W. Charfi, H. Mhiri, and P. Bournot, “Performance evaluation of concentrating solar photovoltaic and photovoltaic/thermal systems,” Sol. Energy, vol. 98, no. PC, pp. 315–321, Dec. 2013, doi: 10.1016/J.SOLENER.2013.09.029.

B. M. Ziapour, V. Palideh, and F. Mokhtari, “Performance improvement of the finned passive PVT system using reflectors like removable insulation covers,” Appl. Therm. Eng., vol. 94, pp. 341–349, Feb. 2016, doi: 10.1016/J.APPLTHERMALENG.2015.10.143.

H. W. Liu, H. Zhang, and H. P. Chen, “Performance analysis of a novel LCPV/T system,” IOP Conf. Ser. Earth Environ. Sci., vol. 188, no. 1, Oct. 2018, doi: 10.1088/1755-1315/188/1/012067.

C. F. J. Kuo, S. S. Syu, C. Y. Shih, W. L. Lan, and C. Y. Huang, “Optimization and practical verification of system configuration parameter design for a photovoltaic thermal system combined with a reflector,” J. Intell. Manuf., vol. 28, no. 4, pp. 1017–1029, Apr. 2017, doi: 10.1007/S10845-015-1043-7.

A. Abdo, T. Saito, S. Ookawara, A. Radwan, and M. Ahmed, “Experimental study of the performance of concentrator photovoltaic/thermoelectric generator system integrated with a new 3D printed microchannel heat sink,” Int. J. Energy Res., vol. 45, no. 5, pp. 7741–7763, Apr. 2021, doi: 10.1002/ER.6359.

L. R. Bernardo, B. Perers, H. Håkansson, and B. Karlsson, “Performance evaluation of low concentrating photovoltaic/thermal systems: A case study from Sweden,” Sol. Energy, vol. 85, no. 7, pp. 1499–1510, 2011, doi: 10.1016/j.solener.2011.04.006.

W. Li et al., “A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems,” Renew. Energy, vol. 112, pp. 166–186, 2017, doi: 10.1016/J.RENENE.2017.05.012.

G. Li, G. Pei, J. Ji, M. Yang, Y. Su, and N. Xu, “Numerical and experimental study on a PV/T system with static miniature solar concentrator,” Sol. Energy, vol. 120, no. C, pp. 565–574, 2015, doi: 10.1016/j.solener.2015.07.046.

M. Mohsenzadeh and R. Hosseini, “A photovoltaic/thermal system with a combination of a booster diffuse reflector and vacuum tube for generation of electricity and hot water production,” Renew. Energy, vol. 78, pp. 245–252, 2015, doi: 10.1016/j.renene.2015.01.010.

L. Zhang, D. Jing, L. Zhao, J. Wei, and L. Guo, “Concentrating PV/T hybrid system for simultaneous electricity and usable heat generation: A review,” Int. J. Photoenergy, vol. 2012, 2012, doi: 10.1155/2012/869753.

P. G. Charalambous, G. G. Maidment, S. A. Kalogirou, and K. Yiakoumetti, “Photovoltaic thermal (PV/T) collectors: A review,” Appl. Therm. Eng., vol. 27, no. 2–3, pp. 275–286, 2007, doi: 10.1016/j.applthermaleng.2006.06.007.

J. Sarkar and S. Bhattacharyya, “Application of graphene and graphene-based materials in clean energy-related devices Minghui,” Arch. Thermodyn., vol. 33, no. 4, pp. 23–40, 2012, doi: 10.1002/er.

E. Erdil, M. Ilkan, and F. Egelioglu, “An experimental study on energy generation with a photovoltaic (PV)-solar thermal hybrid system,” Energy, vol. 33, no. 8, pp. 1241–1245, 2008, doi: 10.1016/

A. Ibrahim, M. Y. Othman, M. H. Ruslan, S. Mat, and K. Sopian, “Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 352–365, 2011, doi: 10.1016/j.rser.2010.09.024.

P. Dupeyrat, C. Ménézo, M. Rommel, and H. M. Henning, “Efficient single glazed flat plate photovoltaic-thermal hybrid collector for domestic hot water system,” Sol. Energy, vol. 85, no. 7, pp. 1457–1468, 2011, doi: 10.1016/j.solener.2011.04.002.

N. Aste, C. Del Pero, F. Leonforte, and M. Manfren, “Performance monitoring and modeling of an uncovered photovoltaic-thermal (PVT) water collector,” Sol. Energy, vol. 135, pp. 551–568, 2016, doi: 10.1016/j.solener.2016.06.029.

F. Calise, M. D. d’Accadia, M. Vicidomini, and M. Scarpellino, “Design and simulation of a prototype of a small-scale solar CHP system based on evacuated flat-plate solar collectors and Organic Rankine Cycle,” Energy Convers Manag., vol. 90, pp. 347–363, Jan. 2015.

A. Cappelletti, L. Ceccherini Nelli, and A. Reatti, “Integration and architectural issues of a photovoltaic/thermal linear solar concentrator,” Sol. Energy, vol. 169, pp. 362–373, 2018, doi:

T. Yang and A. K. Athienitis, “A study of design options for a building integrated photovoltaic/thermal (BIPV/T) system with glazed air collector and multiple inlets,” in Energy Procedia, 2012, vol. 30, pp. 177–186, doi: 10.1016/j.egypro.2012.11.022.

T. Yang and A. K. Athienitis, “Experimental investigation of a two-inlet air-based building integrated photovoltaic / thermal ( BIPV / T ) system,” Appl. Energy, vol. 159, pp. 70–79, 2015, doi: 10.1016/j.apenergy.2015.08.048.

F. Chen and H. Yin, “Fabrication and laboratory-based performance testing of a building-integrated photovoltaic-thermal roofing panel,” Appl. Energy, vol. 177, pp. 271–284, 2016, doi: 10.1016/j.apenergy.2016.05.112.

T. T. Chow, “A review on photovoltaic/thermal hybrid solar technology,” Appl. Energy, vol. 87, no. 2, pp. 365–379, 2010, doi:

M. S. Ahmed, “Performance Evaluation of Combined Photovoltaic Thermal Ac ce pt ed nu sc r ip t N Co py ite d Ac ce pt r t N ot Co py ed d,” no. c, 2019, doi: 10.1115/1.4042723.

A. Tiwari and M. S. Sodha, “Performance evaluation of solar PV/T system: An experimental validation,” Sol. Energy, vol. 80, no. 7, pp. 751–759, 2006, doi: 10.1016/j.solener.2005.07.006.

A. P. Zondag HA, van Helden WGJ, Bakker M and et al. Eisenmann W, Fechner H, “a European guide for the development and market introduction of PVT technology.,” in 20th European Photovoltaic Solar Energy Conference. 2005. p. 4., p. 4.

A. Fudholi, K. Sopian, M. H. Yazdi, M. H. Ruslan, A. Ibrahim, and H. A. Kazem, “Performance analysis of photovoltaic thermal (PVT) water collectors,” Energy Convers. Manag., vol. 78, pp. 641–651, 2014, doi: 10.1016/j.enconman.2013.11.017.

K. Touafek, M. Haddadi, and A. Malek, “Modeling and Experimental Validation of a New Hybrid Photovoltaic Thermal Collector,” vol. 26, no. 1, pp. 176–183, 2011.

N. Aste, F. Leonforte, and C. Del Pero, “Design, modeling and performance monitoring of a photovoltaic-thermal (PVT) water collector,” Sol. Energy, vol. 112, pp. 85–99, 2015, doi: 10.1016/j.solener.2014.11.025.

M. Rosa-clot, P. Rosa-clot, and G. M. Tina, “TESPI : Thermal Electric Solar Panel Integration,” Sol. Energy, vol. 85, no. 10, pp. 2433–2442, 2011, doi: 10.1016/j.solener.2011.07.003.

M. Rosa-clot, P. Rosa-clot, G. M. Tina, and C. Ventura, “ScienceDirect Experimental photovoltaic-thermal Power Plants based on TESPI panel,” Sol. Energy, vol. 133, pp. 305–314, 2016, doi: 10.1016/j.solener.2016.03.024.

M. Naroei, F. Sarhaddi, and F. Sobhnamayan, “Efficiency of a photovoltaic thermal stepped solar still: Experimental and numerical analysis,” Desalination, vol. 441, no. June 2017, pp. 87–95, 2018, doi: 10.1016/j.desal.2018.04.014.

A. H. A. Al-Waeli, K. Sopian, J. H. Yousif, H. A. Kazem, J. Boland, and M. T. Chaichan, “Artificial neural network modeling and analysis of photovoltaic/thermal system based on the experimental study,” Energy Convers. Manag., vol. 186, no. February, pp. 368–379, 2019, doi: 10.1016/j.enconman.2019.02.066.

A. D’Angola et al., “Theoretical and numerical study of a photovoltaic system with active fluid cooling by a fully-coupled 3D thermal and electric model,” Energies, vol. 13, no. 4, 2020, doi: 10.3390/en13040852.




How to Cite

Kadhim Khudadad, A. ., Alwan Saleh, F. ., & Kaream Kasim, N. . (2022). PHOTOVOLTAIC/THERMAL (PV/T) SYSTEM DIRECT CONTACT TYPE: A REVIEW. Journal of Engineering and Sustainable Development, 26(5), 53–67.

Most read articles by the same author(s)