APPLICATIONS AND CHALLENGES OF THE REVERSE OSMOSIS MEMBRANE PROCESS: A REVIEW

Authors

  • Hiba A. Mohammed Environmental Engineering Department, Mustansiriyah University, Baghdad, Iraq Author
  • Dawood E. Sachit Environmental Engineering Department, Mustansiriyah University, Baghdad, Iraq Author https://orcid.org/0000-0002-8245-5601
  • Mustafa Al-Furaiji Environment and Water Directorate, Ministry of Science and Technology, Baghdad, Iraq Author

DOI:

https://doi.org/10.31272/jeasd.27.5.6

Keywords:

Backwashing, Fouling, membranes, pretreatment

Abstract

Reverse osmosis is one of the most prevalent methods of generating potable water owing to its low power usage, excellent rates of contaminant removal, simple design, large output capacity, and much cheaper initial and maintenance costs than comparable alternatives. In this review, the most important published research related to the reverse osmosis process was reviewed. It was found that the majority of reported studies were related to using the reverse osmosis process for water desalination and wastewater treatment. Research has proven that the reverse osmosis process is a very effective method for desalinating water and treating industrial effluent containing heavy metals, organics, and other pollutants. Fouling was found to be one of the greatest obstacles encountered by the reverse osmosis method in water treatment, which raises operating costs due to the need for frequent cleaning, reduces the membrane's lifespan, and reduces the permeate flux. In general, microfiltration/ultrafiltration pretreatment and backwashing were among the most effective strategies suggested by researchers to reduce fouling and ensure the longevity and proper operation of the system.

References

Eman, N.; Nidaa, A.; Tamara, k.; AbuShbak, T. (2023). Cd+2 Sorption from Aqueous Solution using Rosemary Plant: Performance and Isotherm Study. J. Eng. Sustain. Dev. (JEASD), Vol. 27, No. 3, pp. 407-416. https://doi.org/10.31272/jeasd.27.3.10.

Nawras, H.; Dawood, E. (2021). Assessment of Hospital Wastewater Quality and Management in Bab-Al Muadham Region at Baghdad. J. Eng. Sustain. Dev. (JEASD), Vol. 25, No. 3, pp. 44–50. https://doi.org/10.31272/jeasd.25.3.5.

Widjaya, A.; Hoang, T.; Stevens, G.; Kentish S. (2012). A comparison of commercial reverse osmosis membrane characteristics and performance under alginate fouling conditions. Sep. Purify. Technol., Vol. 89, pp. 270-281. https://dx.doi.org/10.1016/j.seppur.2012.01.038.

Sarfraz, M. (2021). "Recent Trends in Membrane Processes for Water Purification of Brackish Water". In: Zhang, Z., Zhang, W., Chehimi, M. (Eds) Membrane Technology Enhancement for Environmental Protection and Sustainable Industrial Growth. Springer, pp. 39–57. https://dx.doi.org/10.1007/978-3-030-41295-1_4.

Kalash, K.; Kadhom, M.; Al-Furaiji, M. (2020). Thin film nanocomposite membranes filled with MCM-41 and SBA-15 nanoparticles for brackish water desalination via reverse osmosis. Environ. Technol. Innov., Vol. 20, No. 101101. https://dx.doi.org/10.1016/j.eti.2020.101101.

Maeda, Y. (2022). Roles of Sulfites in Reverse Osmosis (RO) Plants and Adverse Effects in RO Operation. Membranes, Vol. 12, No. 2, pp. 170. https://dx.doi.org/10.3390/membranes12020170.

Seah, M.; Lau, W.J.; Goh, P.; Tseng, H.; Wahab, R.; Ismail, A. (2020). Progress of Interfacial Polymerization Techniques for Polyamide Thin Film (Nano)Composite Membrane Fabrication: A Comprehensive Review. Polym. J., Vol. 12, No. 12, pp. 2817. https://dx.doi.org/10.3390/polym12122817.

Selatile, M.; Ray, S.; Ojijoa, V.; Sadiku, R. (2018). Recent developments in polymeric electrospun nanofibrous membranes for seawater desalination. R. Soc. Chem., Vol. 8, No. 66, pp. 37915-37938. https://dx.doi.org/10.1039/C8RA07489E.

Salinas-Rodríguez, S.; Schippers, J.; Kennedy, M. (2021). "Basic principles of reverse osmosis". In: Seawater Reverse Osmosis Desalination: Assessment and Pre-treatment of Fouling and Scaling. Vol. 2021, pp. 59-83. https://dx.doi.org/10.2166/9781780409863_0059.

Park, J.; Jeong, W.; Nam, J.; Kim, J. (2014). An analysis of the effects of osmotic backwashing on the seawater reverse osmosis process. Environ. Technol., Vol. 35, No. 12, pp. 1455–1461. https://dx.doi.org/10.1080/09593330.2013.870587.

AlSawaftah, N.; Abuwatfa, W.; Darwish, N.; Husseini, G. (2021). A Comprehensive Review on Membrane Fouling: Mathematical Modelling, Prediction, Diagnosis, and Mitigation. Water J., Vol. 13, No. 9, pp. 1327. https://doi.org/10.3390/w13091327.

Singh, V.; Das, A.; Das, C.; Pugazhenthi, G. (2015). Fouling and Cleaning Characteristics of Reverse Osmosis (RO) Membranes. J. Chem. Eng. Proc. Technol., Vol. 6, No. 4. https://dx.doi.org/10.4172/2157-7048.1000244.

Pena, N.; Callego, S.; del Vigo, F.; Chesters, S. (2012). Evaluating impact of fouling on reverse osmosis membranes performance. Desal. Water Treat., Vol. 51, No. 4-6, pp. 958-968. https://doi.org/10.1080/19443994.2012.699509.

Kheriji, J.; Tabassi, D.; Hamrouni, B. (2015). Removal of Cd(II) ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes. Water Sci. Technol., Vol. 72, No. 7, pp. 1206. https://dx.doi.org/10.2166/wst.2015.326.

Mirbagheri, S.; Biglarijoo, N.; Ahmadi, S. (2016). Removing Fe, Zn and Mn from steel making plant wastewater using RO and NF membranes. Iranian J. Health Sci., Vol. 4, No. 4, pp. 41-55. https://dx.doi.org/10.18869/acadpub.jhs.4.4.41.

Algureiri, A., Abdulmajeed Y. (2017). Removal of Heavy Metals from Industrial Wastewater by Using RO Membrane. Iraqi J. Chem. Petrol. Eng., Vol. 17, No. 4, pp. 125-136. https://dx.doi.org/10.31699/IJCPE.2019.3.5.

Ezzati, A.; Gorouhi, E.; Mohammadi, T. (2005). Separation of water in oil emulsions using microfiltration. Desal., Vol. 185, pp. 371–382. https://doi.org/10.2478/s11696-011-0045-y.

Kuranna, H.; Poetzschke, J.; Haseneder, R. (2002). The application of membrane filtration for removal of ammonium ions from potable water. Water Res., Vol. 36, pp. 2905-2909. https://dx.doi.org/10.1016/S0043-1354(01)00531-0.

Dolar, D.; Košutić, K.; Vučić, B. (2011). RO/NF Treatment of Wastewater from Fertilizer Factory – Removal of Fluoride and Phosphate. Desal., Vol. 265, pp. 237–24. https://dx.doi.org/10.1016/j.desal.2010.07.057.

Tran, T., Bolto, B., Gray, S. (2007). An autopsy study of a fouled reverse osmosis membrane element used in a brackish water treatment plant. Water Res., Vol. 41, pp. 3915–3923. https://dx.doi.org/10.1016/j.watres.2007.06.008.

Phay, W.; Mann, T. S.; Mun, E. (2011). "Control of Calcium Phosphate Scale in Wastewater Reuse RO Systems". Proc. Int. conf. on Proceedings of the American Membrane Technology Association/South East Desalting, Miami, Florida. https://dx.doi.org/10.2175/106143012x13407275694888.

Reis, R.; Dumée, L.F.; He, L.; She, F.; Orbell, J.D. (2015). Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion. Appl. Mater. Interfaces, Vol. 7, pp. 14644-14653. https://dx.doi.org/10.1021/acsami.5b01603

Saeki, D.; Tanimoto, T.; Matsuyama, H. (2014). Prevention of bacterial adhesion on polyamide reverse osmosis membranes via electrostatic interactions using a cationic phosphorylcholine polymer coating. Colloids Surfaces Physicochem. Eng. Asp., Vol. 443, pp. 171-176. https://dx.doi.org/10.1016/j.colsurfa.2013.11.007.

Dumée, L.F.; Maina, J.W.; Merenda, A.; Reis, R. (2017). Hybrid thin film nano-composite membrane reactors for simultaneous separation and degradation of pesticides. J. Membr. Sci. Vol. 528, pp. 217-224. https://dx.doi.org/10.1016/j.memsci.2017.01.041.

Kent, F.; Farahbakhsh, K.; Mahendran, B. (2011). Water reclamation using reverse osmosis: Analysis of fouling propagation given tertiary membrane filtration and MBR pretreatments. J. Membr. Sci., Vol. 382, No. 1–2, pp. 328-338. https://dx.doi.org/10.1016/j.memsci.2011.08.028.

Brehant, A.; Bonnelye, V.; Perez, M., (2002). Comparison of MF/UF pretreatment with conventional filtration prior to RO membranes for surface seawater desalination. Desal., Vol. 144, pp. 353–360. https://dx.doi.org/10.1016/S0011-9164(02)00343-0.

Sun, X.; Wang, C..; Li, Y. (2015). Treatment of Phenolic Wastewater by combined UF and NF/RO Processes. Desal., Vol. 355, pp. 68−74. https://dx.doi.org/10.1016/j.desal.2014.10.018.

Ignacio, D. (2011). Evaluation of MF and UF as pretreatments prior to RO applied to reclaim municipal wastewater for freshwater substitution in a paper mill: A practical experience. Chem. Eng. J., Vol. 166, No. 1, pp. 88-98. https://dx.doi.org/10.1016/j.cej.2010.10.016.

Nam, J.W.; Park, J.Y.; Kim, J.H. (2012). Effect on backwash cleaning efficiency with TDS concentrations of circulated water and backwashing water in SWRO membrane. Desal. Water Treat., Vol. 43, pp. 124–130. https://dx.doi.org/10.1080/19443994.2012.672162.

Avraham, N.; Dosoretz, C.; Semiat, R. (2006). Osmotic backwash process in RO membranes. Desal., Vol. 199, pp. 387–389. https://dx.doi.org/10.1016/j.desal.2006.03.088.

Mohammed, H.Z.; Jalal, I.; Gomes, S.G. (2016). Investigation of membrane fouling in surface treatment plant using reverse osmosis process. Moroccan J. Chem., Vol. 4, No. 2, pp. 308-314. https://doi.org/10.48317/IMIST.PRSM/morjchem-v4i2.4222.

Malaeb, L., and Ayoub, G. (2011). Reverse osmosis technology for water treatment: State of the art review. Desal., Vol. 267, pp. 1–8. https://dx.doi.org/10.1016/j.desal.2010.09.001.

Koyuncu, I., and Wiesner, M. (2007). Morphological variations of precipitated salts on NF and RO membranes. Environ. Eng. Sci., Vol. 24, pp. 602–614. https://dx.doi.org/10.1089/ees.2006.0114.

Sachit, D. and Veenstra, J. (2017). Foulant Analysis of Three RO Membranes Used in Treating Simulated Brackish Water of the Iraqi Marshes. Membr. J., Vol. 7, No. 23, pp. 1-25. https://dx.doi.org/10.3390/membranes7020023 .

Jendoubi, M.; Makhlouf, K.; Boulabiar, M. (2018). "RO Membrane Autopsy". Conf.: Tunisian Japon Symposium; TJS Water. https://dx.doi.org/10.13140/RG.2.2.29250.02240.

Balcik, C. (2021). Understanding the operational problems and fouling characterization of RO membrane used for brackish water treatment via membrane autopsy. Water Sci. Technol., Vol. 84, No. 12, pp. 3653-3662. https://dx.doi.org/10.2166/wst.2021.456.

Nave, F.; Kommalapati, R.; Thompson, A. (2017). Introductory Chapter: Osmotically Driven Membrane Processes. https://dx.doi.org/10.5772/intechopen.72569.

Kouli, M.E.; Ferraro, A.; Tselou, P. (2018). Desalination of Brackish Water/Seawater via Selective Separation. Mat. Sci. Forum, Vol. 915, pp. 196-201. https://dx.doi.org/10.4028/www.scientific.net/MSF.915.196.

Aman Ullah, A. (2015). Report On Reverse Osmosis Desalination. https://dx.doi.org/10.13140/RG.2.1.4855.7521.

Ruehr, T.; Ruehr, E.; Gong, T.R. (2010). Pre-treatment Reverse osmosis water recover method, in Google Patents. Earth Renaissance Technol., USA. https://patents.google.com/patent/US20100193436.

Kieniewicz, A. (2006). "A reverse osmosis (RO) plant for sewage treatment and nutrient recovery - the influence of pre-treatment methods". M.Sc. Thesis. https://www.researchgate.net/publication/237308827_A_reverse_osmosis_RO_plant_for_sewage_treatment_and_nutrient_recovery_-_the_influence_of_A_reverse_osmosis_RO_plant_for_sewage_treatment_and_nutrient_recovery_-_the_influence_of_pre-treatment_methods.

Amin, M; Amin, A; Alkady, H. (2021). "Industrial wastewater treatment by membrane process". In: Membrane-Based Hybrid Processes for Wastewater Treatment. pp. 341-365. https://dx.doi.org/10.1016/B978-0-12-823804-2.00025-2.

Kocurek, P.; Kolomazník, K.; Barinova, M. (2014). Chromium removal from wastewater by reverse osmosis. WSEAS Trans. Environ. Develop., Vol. 10, No. 1, pp. 358-365. https://www.researchgate.net/journal/WSEAS-TRANSACTIONS-ON-ENVIRONMENT-AND-DEVELOPMENT-2224-3496.

Kucera, J. (2015). "Reverse Osmosis Industrial Processes and Applications". 2nd Ed, ISBN:978-1-118-63974-0. https://sciarium.com/file/160197/.

Greenlee L.; Lawler, D.; Freeman, B. (2009). Reverse osmosis desalination: Water sources, technology, and today’s challenges. water res., Vol. 43, pp. 2317–2348. https://dx.doi.org/10.1016/j.watres.2009.03.010.

Hoek, E. (2017). Reverse Osmosis Membrane Biofouling: Causes, Consequences and Countermeasures. Water Planet, Inc.: 9pp. https://doi.org/10.1038/s41545-022-00183-0.

Woldu, A. (2020). Forward Osmosis: Principles and Applications. Advanc. Top. Environ. Eng. Vol. 281, pp. 70–87. https://doi.org/10.1016/j.memsci.2006.05.048.

Najid, N.; Hakizimana, J.N.; Kouzbour, S. (2022). Fouling control and Modeling in reverse osmosis for seawater desalination: A review. Comp. Chem. Eng., Vol. 162, No. 206. https://dx.doi.org/10.1016/j.compchemeng.2022.107794.

Shahonya, I., Erinosho, M. (2020). "Brief Review: Scaling and Fouling of Reverse Osmosis (RO) Membrane". 3rd International Multi-Topic Conference on Engineering and Science (IMCES). https://doi.org/10.1016/j.heliyon.2023.e14908.

Zhao, S.; Liao, Z.; Fane, A.; Li, J. (2021). Engineering antifouling reverse osmosis membranes: A review. Desal., Vol. 499, No. 114857. https://dx.doi.org/10.1016/j.desal.2020.114857.

Ladewig, B. and Al-Shaeli, M. (2017). "Fundamentals of Membrane Processes". In: Fundamentals of Membrane Bioreactors. Springer Transactions in Civil and Environmental Engineering. Springer, Singapore. https://dx.doi.org/10.1007/978-981-10-2014-8.

Zulkefli, N.; Alias, N.; Jamaluddin, N. (2022). Recent Mitigation Strategies on Membrane Fouling for Oily Wastewater Treatment. Membr. J., Vol. 12, No. 26. https://dx.doi.org/10.3390/membranes12010026. .

Jiang, Sh.; Li, Y.; Ladewig, B. (2017). A review of reverse osmosis membrane fouling and control strategies. Sci. Total Environ., Vol. 595, pp. 567-583. https://doi.org/10.1016/j.scitotenv.2017.03.235.

Triñanes, P.; Chairopoulou, M.; Campos, L. (2021). Investigating reverse osmosis membrane fouling and scaling by membrane autopsy of a bench scale device. Environ. Technol. https://dx.doi.org/10.1080/09593330.2021.1918262.

Kujundzic, E.; Cobry, K.; Greenberg, A. (2008). Use of Ultrasonic Sensors for Characterization of Membrane Fouling and Cleaning. J. Eng. Fibers Fabr., Vol. 3, No. 2. https://dx.doi.org/10.1177/155892500800300211.

Xie, P.; Cath, T.; Ladner, D. (2021). Mass Transport in Osmotically Driven Membrane Processes. Membr. J., Vol. 11, No. 29, https://dx.doi.org/10.3390/membranes

Suleman, M.; Asif, M.; Jamal, S.A. (2021). Temperature and concentration polarization in membrane distillation: a technical review. Desal. Water Treat., Vol. 229, pp. 52–68. https://doi.org/10.5004/dwt.2021.27398

Alvares-Sanchez, J.; Santacruz-Mungarro, A.; Dévora-Isiordia, G. (2020). Membrane module autopsy used in the reverse osmosis process. J. Environ. Sci. Nat. Resour., Vol. 6, No. 18, pp. 9-19. https://dx.doi.org/10.35429/JESN.2020.18.6.9.198.

Mulyawan, R., and Muarif, A. (2021). A Review of Reverse Osmosis Membrane Fouling: Formation and Control. International. J. Eng. Sci. Inf. Technol., Vol. 1, No. 3, pp. 110-115. https://doi.org/10.52088/ijesty.v1i3.127.

Stover, R.L. (2013). Industrial and brackish water treatment with closed circuit reverse osmosis, Desal., Vol. 51, No. 4-6, pp. 1124-1130. https://dx.doi.org/10.1080/19443994.2012.699341.

Salih, M., Al-Alawy, A. (2018). Mathematical Modelling of Zinc Removal from Wastewater by Using Nanofiltration and Reverse Osmosis Membranes. Int. J. Sci. Res., Vol. 7, No. 1, pp. 45-52. https://dx.doi.org/10.21275/ART20179156.

Ebrahim, Sh.; Mohammed, Th.; Oleiwi, H. (2018). Removal of Acid Blue Dye from Industrial Wastewater by using Reverse Osmosis Technology. J. Eng. Sci., Vol. 25, No. 3. https://www.researchgate.net/publication/341650047_Removal_of_Acid_Blue_Dye_from_Industrial_Wastewater_by_using_Reverse_Osmosis_Technology.

Alalwan, H.; Kadhom, M.; Alminshid, A. (2020). Removal of heavy metals from wastewater using agricultural byproducts. J. Water Supply: Res. Technol., Vol. 69, No. 2. https://dx.doi.org/10.2166/aqua.2020.133 .

Jasim, B.; Al-Furaiji, M.; Sakran, A. (2020). A Competitive Study Using UV and Ozone with H2O2 in Treatment of Oily Wastewater. Baghdad Sci. J., Vol. 17, No. 4, pp. 1177-1182. https://dx.doi.org/10.21123/bsj.2020.17.4.1177.

Ahmedzeki, N.; Abdullah, S.; Salman R. (2009). Treatment of Industrial Wastewater Using Reverse Osmosis Technique. J. Eng., Vol. 15, No. 4. https://www.researchgate.net/publication/260405732_TREATMENT_OF_INDUSTRIAL_WASTE_WATER_USING_REVERSE_OSMOSIS_TECHNIQUE.

Banerjee, A.; Show, B.; K. Chaudhury, S. (2022). “Biological pretreatment for enhancement of biogas production". In: Kathi, S.; Devipriya, S. (eds) Advances in Environmental Pollution Research, Cost Effective Technologies for Solid Waste and Wastewater Treatment. Elsevier, pp. 101-114. https://doi.org/10.1016/B978-0-12-822933-0.00020-6.

Bernardes, A. (2016). "Conventional Pretreatment of Water". In: Drioli E., Giorno L. (eds) Encyclopedia of Membranes. Springer, Heidelberg. https://doi.org/10.1007/978-3-662-44324-8_2087.

Lin, J.; Lee, D.; Huang, C. (2010). Membrane Fouling Mitigation: Membrane Cleaning. Sep. Sci. Technol., Vol. 45, No. 7, pp. 858-872. https://dx.doi.org/10.1080/01496391003666940.

Madaeni, S., Mansourpanah, Y. (2004). Chemical cleaning of reverse osmosis membranes fouled by whey. Desal., Vol. 161, No. 1, pp. 13-24. https://dx.doi.org/10.1016/S0011-9164(04)90036-7.

Arnal, J.; García-Fayos, B.; Sancho, M. (2011). "Membrane Cleaning". In: Expanding Issues in Desalination. https://www.researchgate.net/publication/312980359_Membrane_cleaning_Chapter_3.

Downloads

Key Dates

Published

2023-09-01

How to Cite

APPLICATIONS AND CHALLENGES OF THE REVERSE OSMOSIS MEMBRANE PROCESS: A REVIEW. (2023). Journal of Engineering and Sustainable Development, 27(5), 630-646. https://doi.org/10.31272/jeasd.27.5.6

Similar Articles

You may also start an advanced similarity search for this article.