تأثير التقنيات التجريبية على تقييم خصائص نقل الحرارة في مصفوفات الهواء النفاثة

المؤلفون

  • Assim Hameed Yousif Al Daraje Department of Mechanical Engineering, Philadelphia University, Amman, Jordon مؤلف
  • Afrah Awad 2College of Oil and Gas Techniques Engineering - Kirkuk, Northern Technical University, Iraq مؤلف https://orcid.org/0000-0003-3967-0821
  • Mohamed Gogazeh Department of Mechanical Engineering, Philadelphia University, Amman, Jordon مؤلف
  • Hanan Afeef Mohammad Khamees Department of Mechanical Engineering, Philadelphia University, Amman, Jordon مؤلف

DOI:

https://doi.org/10.31272/jeasd.28.1.2

الكلمات المفتاحية:

Air Jet flow، Impingement cooling، Liquid crystal (TLC) technique، Local Nusselt number، Overall Nusselt number، IR cameras

الملخص

تجد عملية النفث الهوائي تطبيقات في مجالات الهندسة مثل لحام التدفق العكسي، وتجفيف النسيج، وتبريد شفرات وطواقم احتراق الغاز التوربيني. تم تطوير منصة تجريبية لدراسة تأثير تقنيات الاختبار ووسائل القياس على خصائص نقل الحرارة التوافقية لتجميعات النفث الهوائي المتغيرة. تتضمن التجربة استخدام أهداف مسخنة مصنوعة من رقائق فولاذية من الستانلس ستيل رقيقة بظروف حدودية لتدفق الحرارة ثابتة. يتم قياس حقول درجات حرارة سطح الهدف باستخدام تقنيات الحرارة والحركية، بينما يتم تقييم تأثير ظاهرة التدفق المتقاطع في الممر الداخلي للقسم التجريبي على خصائص نقل الحرارة التوافقية عن طريق تغيير إعدادات التدفق الخارجي. يُمثِّل المخرج الواحد مستوى تدفق متقاطع قوي والمخرج المزدوج يُمثِّل مستوى تدفق متقاطع معتدل. يتم اعتبار صفيفين من فوهات النفث، مرتبطة في خط ومنفصلة، في هذا العمل التجريبي؛ يتكون كل صف من 44 فوهة للنفث من 4 صفوف، ولكل صف 11 ثقوب نفث. يتم تقديم الأعداد اللوكالية والمكانية لنوسلت كوسيلت في الوقت الغير ثابت كدالة لعدد رينولدز النفث، مع تأثرها بقطر فوهة النفث. يؤثر مستوى التدفق المتقاطع بشكل كبير على الأعداد اللوكالية والمكانية لنوسلت في كلا القيم المحلية والمتوسطة في اتجاه الطول، بغض النظر عن عدد رينولدز الذي تمت دراسته. يُلاحظ أنه عند مقارنة النتائج الحالية مع الأعمال السابقة، تحقق الاتفاق عند استخدام تقنيات تجريبية مماثلة، بينما تنشأ عدم التطابق عند استخدام تقنيات تجريبية مختلفة، مما يُسلط الضوء على الدور الحاسم للتقنية التجريبية في تقييم خصائص نقل الحرارة.

المراجع

Liu, K., 2021. Heat transfer characteristics of triple-stage impingement designs and their application for industrial gas turbine combustor liner cooling. International. Journal of Heat and Mass Transfer, Vol. 172, pp.121174.

https://doi.org/10.1016/j.ijheatmasstransfer.2021.121174

Son, C., Dailey, G., Ireland, P. and Gillespie, D., 2005, January. An investigation of the application of roughness elements to enhance heat transfer in an impingement cooling system. In Turbo Expo: Power for Land, Sea, and Air, Vol. 47268, pp. 465-479.

https://doi.org/10.1115/GT2005-68504

Tawfek A. A., 2002, Heat transfer studies of the oblique impingement of round jets upon a curved surface, International Journal of Heat Mass Transfer, Vol. 38, pp. 467–475. DOI: https://doi.org/10.1007/s002310100221

Zuckerman N. and Lior N., 2005, Impingement heat transfer: correlations and numerical modeling, Journal of Heat Transfer, Vol. 127, Issue 5, pp. 544-552. https://doi.org/10.1115/1.1861921

San Y.and Lai M., 2001, Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets, International Journal of Heat Mass Transfer, Vol. 44, Issue 21, pp. 3997–4007. https://doi.org/10.1016/S0017-9310(01)00043-6

Changmin S., David G., Peter and Geoffrey M., 2001, Heat transfer and flow characteristics of an engine representative impingement cooling system, International Gas Turbine Institute, ASME Journal of Turbomachinery, Vol. 123. Issue 1, pp. 154-160

https://doi.org/10.1115/1.1328087

Brevet P., Dejeu C., Dorignac E. E., Jolly M., and Vullierme J. J., 2002, Heat transfer to a row of impinging jets in consideration of optimization, International Journal of Heat and Mass Transfer. Vol. 45, Issue 20, pp. 4191-4200

https://doi.org/10.1016/S0017-9310(02)00128-X

Lamyaa A. E., and Deborah A. K., 2005, Experimental investigation of local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging, ASME Journal of turbomachinery, Vol. 127. Issue 3, pp. 532-544

https://doi.org/10.1115/1.1861918

Uysal U., Chyu M. K., and Cunha F. J., 2006, Heat transfer on the internal surface of a duct subjected to impingement of a jet array with varying hole size and spacing, ASME Journal of Turbomachinary, Vol. 128, Issue 1, pp. 158-165

https://doi.org/10.1115/1.2101859

Yamane1 Y., Ichikawa1 Y., Yamamoto M. and Honami S., 2012, Effect of injection parameters on jet array impingement heat transfer, International Journal of Gas Turbine, Propulsion, and Power Systems, Vol. 4, Issue 1. pp. 27-34

https://doi.org/10.38036/jgpp.4.1_27

Shariatmadar, H., Mousavian, S., Sadoughi, M. and Ashjaee, M., 2016. Experimental and numerical study on heat transfer characteristics of various geometrical arrangement of impinging jet arrays. International Journal of Thermal Sciences, Vol. 102, pp.26-38.

https://doi.org/10.1016/j.ijthermalsci.2015.11.007

Flávia V. Barbosa, João P. V. Silva, Pedro E. A. Ribeiro, Senhorinha F. C. F. Teixeira, Delfim F. Soares,Duarte Santos, Maria F. Cerqueira and José C. F. Teixeira, 2018. An Experimental Setup for Multiple Air Jet Impingement Over a Surface, ASME 2018 International Mechanical Engineering Congress and Exposition, Volume 8B: Heat Transfer and Thermal Engineering Pittsburgh, Pennsylvania, USA, November 9–15, 2018 https://doi.org/10.1115/IMECE2018-87995

Wae-hayee M., Tekasakul P., and Nuntadusit C., 2013, Influence of nozzle arrangement on flow and heat transfer characteristics of arrays of circular impinging jets, Journal of Science Technology. Vol. 35, Issue 2, pp. 203-21. https://thaiscience.info/Journals/Article/SONG/10891020.pdf

Wae-hayee M., Tekasakul P., Eiamsa S. and Nuntadusit C., 2014. Effect of cross-flow velocity on flow and heat transfer characteristics of impinging jet with low jet-to-plate distance, Journal of Mechanical Science and Technology July, Vol. 28, Issue 7, pp 2909–2917. DOI: https://doi.org/10.1007/s12206-014-0534-3

Yousif A., Al-Dabagh A. and Aun S., 2016. Experimental study of heat transfer parameters of impingement heating system represented by conductive target plate of resistive film, Engineering and Technology Journal, Vol. 34 part (A), Issue 8, pp. 1588-1604 https://www.iasj.net/iasj/download/cbf1ebd5e25a73bc

Schroder A., Ou S. and Ghia U., 2016. Experimental study of an impingement cooling jet array using an infrared thermography technique, Journal of thermophysics and heat transfer, Vol. 26, Issue 4, pp. 590-597

https://doi.org/10.2514/1.T3812

Keenan M., Amano R. S. and Ou S., 2013. Study of an impingement cooling jet array for turbine blade cooling with single and double exit cases, ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Volume 3A: Heat Transfer, San Antonio, Paper No. GT2013-94116, Texas, USA, June 3–7 https://doi.org/10.1115/GT2013-94116

Yang, X., Wu, H. and Feng, Z., 2022. Jet impingement heat transfer characteristics with variable extended jet holes under strong crossflow conditions. Aerospace, Vol. 9, Issue 1, p.44. https://doi.org/10.3390/aerospace9010044

Shah, S., 2022. A Numerical Study of Heat Transfer From an Array of Jets Impinging on a Flat Moving Surface. Journal of Heat Transfer, Vol. 144, Issue 4, p.042302.

https://doi.org/10.1115/1.4053451

Zhou, J., Tian, J., Lv, H. and Dong, H., 2022. Numerical investigation on flow and heat transfer characteristics of single row jet impingement cooling with varying jet diameter. International Journal of Thermal Sciences, Vol. 179, p.107710.

https://doi.org/10.1016/j.ijthermalsci.2022.107710

Abo El–Wafa, A., Attalla, M., Maghrabie, H.M. and Shmroukh, A.N., 2023. Influence of Impinging Jet Nozzle Movement on Heat Transfer Characteristics of a Flat Plate. ASME Journal of Heat and Mass Transfer, Vol. 145, Issue 9

https://doi.org/10.1115/1.4062639

Tepe, A.Ü., Yetişken, Y., Uysal, Ü. and Arslan, K., 2020. Experimental and numerical investigation of jet impingement cooling using extended jet holes. International Journal of Heat and Mass Transfer, Vol. 158, p.119945.

https://doi.org/10.1016/j.ijheatmasstransfer.2020.119945

Wang, J., Kong, H., Xu, Y. and Wu, J., 2019. Experimental investigation of heat transfer and flow characteristics in finned copper foam heat sinks subjected to jet impingement cooling. Applied Energy, Vol. 241, pp.433-443.

https://doi.org/10.1016/j.apenergy.2019.03.040

Bonds, M., Iyer, G. and Ekkad, S.V., 2023. Effects Of Variable Pressure Outlets For Array Jet Impingement Cooling With A Bidirectional Exit Air Scheme. ASME Journal of Heat and Mass Transfer, pp.1-26.

https://doi.org/10.1115/1.4063106

Taha, D.Y., Khudhur, D.S. and Nassir, L.M., 2022. The behavior of heat sink-impingement cooling with flat plate and arced fins models. Journal of Engineering and Sustainable Development, Vol. 26, Issue 1, pp.1-14.

https://doi.org/10.31272/jeasd.26.1.1

Yi, L., Yang, S. and Pan, M., 2022. Experimental investigation and parameter analysis of micro-jet impingement heat sink for improved heat transfer performance. Chemical Engineering and Processing-Process Intensification, Vol. 174, p.108867.

https://doi.org/10.1016/j.cep.2022.108867

Plant, R.D., Friedman, J. and Saghir, M.Z., 2023. A Review of Jet Impingement Cooling. International Journal of Thermofluids, Vol. 17, p.100312.

https://doi.org/10.1016/j.ijft.2023.100312

Al Daraje A. H. Y., 2019. Establishing a Low and Variable Voltage Power Supply System with Digital Control, SSD conference, IEEE, (SCI.2-2) 1570498603, March 21-24, 2019, Istanbul, Turkey.

https://doi.org/10.1109/SSD.2019.8893201

Ou S., and Rivir R., 2006, Shaped-Hole Film Cooling With Pulsed Secondary Flow, ASME Paper, No. GT2006-90272, International Gas Turbine Institute, 2006. https://doi.org/10.1115/GT2006-90272

Bejan A. A., 2004, Convection Heat Transfer, Wiley, pp. 198.

Klin S. J. and McClintock F. A., 1953, Describing uncertainties in single sample experimental, Mechanical Engineering, Vol. 75, pp. 3-ns.

https://cir.nii.ac.jp/crid/1572261549103675008

Sundén, B., 2017. Advanced heat transfer topics in complex duct flows. In Advances in Heat Transfer, Vol. 49, pp. 37-89. Elsevier.

https://doi.org/10.1016/bs.aiht.2017.09.001

التنزيلات

Key Dates

منشور

2024-01-01

كيفية الاقتباس

تأثير التقنيات التجريبية على تقييم خصائص نقل الحرارة في مصفوفات الهواء النفاثة. (2024). مجلة الهندسة والتنمية المستدامة, 28(1), 17-34. https://doi.org/10.31272/jeasd.28.1.2

المؤلفات المشابهة

1-10 من 803

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.