A Review of Biogas Production from Small-Scale Anaerobic Digestion Plants
DOI:
https://doi.org/10.31272/jeasd.28.4.10Keywords:
Acetogenesis, Acidogenic, Anaerobic, Biogas, Digestion, HydrolysisAbstract
One of the most serious problems facing the whole world today is global warming. Their lease of greenhouse gases is exacerbating the effects of global warming. Reduced greenhouse gas emissions and searching for alternative energy sources are becoming increasingly crucial. This study aims to review that one of the effective methods for lowering greenhouse gas emissions is the creation of biogas from agricultural waste using anaerobic digester plants. A lab-scale 5-liter batch fermenter was incubated at room temperature, specifically mesophilic (35°C). Biogas is a clean, reasonably priced, and sustainable energy source produced by the anaerobic fermentation of waste and organic waste. Mixing sludge and waste to react with each other during biogas production is essential. Factors affecting biogas, such as loading rate, retention time, operating ambient temperature, pH, mixing, etc., are also discussed. Asia is a region where the generation of this form of renewable energy is widespread, particularly in nations like China and India. The generation of biogas never has any adverse environmental effects, but it also yields environmentally safe byproducts. Agricultural waste is a large and anthropogenic source of methane in the atmosphere. It can be converted into nutrient-rich fertilizer. Agricultural waste, food waste, animal or human manure, and other organic waste are all converted into energy (in the form of biogas or electricity) using anaerobic digesters. Another advantage of biological fermentation is that it leaves behind a high-quality organic fertilizer
References
Beylot, A., et al., (2018). Life cycle assessment of the French municipal solid waste incineration sector. Waste Management. Vol. 80144-153. https://doi.org/10.1016/j.wasman.2018.08.037.
Hamzah, A. F. A., Hamzah, M. H., Man, H. C., Jamali, N. S., & Siajam, S. I. (2024). Influence Of Subcritical Water Pretreatment Temperature On Pineapple Waste Biogas Efficiency: Experimental And Kinetic Study. Journal of Engineering and Sustainable Development, 28(02), 143-159. https://doi.org/10.31272/jeasd.28.2.1
Hameed, Y. T., Abdalqadir, N. A., Nussrat, H. H., & muftah Shahot, K. (2022). Evaluation Of Nitrification Process In Constructed Wetlands: A Review On Novel Biological Nitrogen Removal Processes. Journal of Engineering and Sustainable Development, 26(5), 35-52. https://doi.org/10.31272/jeasd.26.5.4
. Seadi, T.A., et al., (2008). Biogas handbook. Vol. 1. 2008, Esbjerg: Syddansk Universitet. ISBN: 8799296209.
3. Bochmann, G. and Montgomery, L.F.R., (2013). 4 - Storage and pretreatment of substrates for biogas production, in The Biogas Handbook, A. Wellinger, J. Murphy, and D. Baxter, Editors, Woodhead Publishing. p. 85-103. https://doi.org/10.1533/9780857097415.1.85.
(2015). Renewable Energy Target Setting. 2015, Abu Dhabi, UAE: IRENA - International Renewable Energy Agency.
Umeghalu, C.E., et al., (2012). Potentials for biogas production in Anambra State of Nigeria using cow dung and poultry droppings. International Journal of Veterinary Science. Vol. 1, Issue 1, pp. 26-30.
Hamdi, G. M. H., Abbas, M. N., & Ali, S. A. K. (2024). Bioethanol production from agricultural waste: a review. Journal of Engineering and Sustainable Development, 28(02), 233-252. https://doi.org/10.31272/jeasd.28.2.7
Sutaryo, S., (2012). Optimisation and inhibition of anaerobic digestion of livestock manure. Technical Report Biological and Chemical Engineering. Vol. 1, Issue 3, pp. 1-45.
T, A., SA, A., and SM., T., (2012). Biogas Energy. 2012, New York/Dordrecht/Heidelberg/London: Springer Science.
Forster-Carneiro, T., et al., (2012). Anaerobic Digestion: Pretreatments of Substrates, in Biogas Production, A. Mudhoo, Editor, Wiley: New Jersey. p. 1-25. https://doi.org/10.1002/9781118404089.ch1.
Tabatabaei, M. and Ghanavati, H., (2018). Biogas: Fundamentals, Process, and Operation. 2018, New York: Springer Cham. https://doi.org/10.1007/978-3-319-77335-3. ISBN: 978-3-030-08431-8.
Ngan, N.V.C., et al., (2020). Anaerobic Digestion of Rice Straw for Biogas Production, in Sustainable Rice Straw Management, M. Gummert, et al., Editors, Springer International Publishing: Cham. p. 65-92. DOI: https://doi.org/10.1007/978-3-030-32373-8_5.
Lau, C.S., Tsolakis, A., and Wyszynski, M.L., (2011). Biogas upgrade to syn-gas (H2–CO) via dry and oxidative reforming. International Journal of Hydrogen Energy. Vol. 36, Issue 1, pp. 397-404. https://doi.org/10.1016/j.ijhydene.2010.09.086.
Gujer, W. and Zehnder, A.J.B., (1983). Conversion Processes in Anaerobic Digestion. Water Science and Technology. Vol. 15, Issue 8-9, pp. 127-167. https://doi.org/10.2166/wst.1983.0164.
Li, Y., Park, S.Y., and Zhu, J., (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable and Sustainable Energy Reviews. Vol. 15, Issue 1, pp. 821-826. https://doi.org/10.1016/j.rser.2010.07.042.
Luo, K., et al., (2012). Hydrolysis kinetics in anaerobic digestion of waste activated sludge enhanced by α-amylase. Biochemical Engineering Journal. Vol. 6217-21. DOI: https://doi.org/10.1016/j.bej.2011.12.009.
Ma, J., et al., (2013). A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio.Bioresource Technology. Vol. 134391-395. https://doi.org/10.1016/j.biortech.2013.02.014.
Kumar, A.K. and Sharma, S., (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour Bioprocess. Vol. 4, Issue 1, pp. 7 https://doi.org/10.1186/s40643-017-0137-9.
Azman, S. (2016). Anaerobic digestion of cellulose and hemicellulose in the presence of humic acids. Thesis, Department of Environmental Technology, Wageningen University, Wageningen, Netherlands. https://doi.org/10.18174/392752.
Bergman, E.N., (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. Vol. 70, Issue 2, pp. 567-90. https://doi.org/10.1152/physrev.1990.70.2.567.
Akuzawa, M., et al., (2011). Distinctive responses of metabolically active microbiota to acidification in a thermophilic anaerobic digester. Microb Ecol. Vol. 61, Issue 3, pp. 595-605. https://doi.org/10.1007/s00248-010-9788-1.
Yamada, K. and Xu, H.-L., (2001). Properties and Applications of an Organic Fertilizer Inoculated with Effective Microorganisms. Journal of Crop Production. Vol. 3, Issue 1, pp. 255-268. https://doi.org/10.1300/J144v03n01_21.
Kovács, E., et al., (2013). Biogas production from protein-rich biomass: fed-batch anaerobic fermentation of casein and of pig blood and associated changes in microbial community composition. PLoS One. Vol. 8, Issue 10, pp. e77265. https://doi.org/10.1371/journal.pone.0077265.
Hansen, C. and Cheong, D., (2019). Agricultural waste management in food processing, di dalamHandbook of Farm, Dairy and Food Machinery Engineering. 2nd ed. 2019, New York: Academic Press. ISBN: 012385881X.
Stams, A.J. and Plugge, C.M., (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat Rev Microbiol. Vol. 7, Issue 8, pp. 568-77. https://doi.org/10.1038/nrmicro2166.
Ferry, J.G., (2010). The chemical biology of methanogenesis. Planetary and Space Science. Vol. 58, Issue 14, pp. 1775-1783. https://doi.org/10.1016/j.pss.2010.08.014.
Belay, N., Sparling, R., and Daniels, L., (1986). Relationship of formate to growth and methanogenesis by Methanococcus thermolithotrophicus. Appl Environ Microbiol. Vol. 52, Issue 5, pp. 1080-5. DOI: https://doi.org/10.1128/aem.52.5.1080-1085.1986.
Wolfe, R.S., (2011). Chapter one - Techniques for Cultivating Methanogens, in Methods in Enzymology, A.C. Rosenzweig and S.W. Ragsdale, Editors, Academic Press. p. 1-22. https://doi.org/10.1016/B978-0-12-385112-3.00001-9.
Hjort-Gregersen, K., (2015). Market overview micro scale digesters. AgroTEch A/S: Aarhus, Denmark.
Gueterbock, R. and 2, B.S., (2017). Developing On-site Anaerobic Digestion for Smaller Businesses in the Food and Drink Sector. Engineering & Technology Reference. Vol. 1, Issue 1, pp. 1–16. https://doi.org/10.1049/etr.2016.0128.
Dobbelaere, A.D., et al., (2015). Small scale anaerobic digestion: Case studies in Western Europe. Enerpedia - Mia Demeulemeester, Inagro vzw, Ieperseweg 87, 8800 Rumbeke-Beitem (Belgium). Vol. 1, Issue 1, pp. 1-20. https://doi.org/10.13140/RG.2.1.1502.0883.
Farm structure statistics - Eurostat Statistics Explained. (2015). [cited July 19, 2018; Available from: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Farm_structure_statistics.
Amon, T., et al., (2007). Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresource Technology. Vol. 98, Issue 17, pp. 3204-3212. https://doi.org/10.1016/j.biortech.2006.07.007.
Biogas World Media. What is the Future of Small-Scale Anaerobic Digestion? (2017). [cited January 29, 2018; Biogas World, Available from: https://www.biogasworld.com/news/future-small-scale-anaerobic-digestion/.
Raboni, M. and Urbini, G., (2014). Production and use of biogas in Europe: a survey of current status and perspectives. Revista ambiente & agua. Vol. 9191-202. https://doi.org/10.4136/ambi-agua.1324.
Fagbohungbe, M.O. (2015). Optimisation of Small-Scale Anaerobic Digestion Technology. Thesis, Lancaster Environmental Centre, Lancaster University, Lancaster, United Kingdom.
Krich, K., et al., (2005). Biomethane from Dairy Waste, a Sourcebook for the Production and Use of Renewable Natural Gas. California Institute for Energy and Environment (CIEE), Planning & Evaluation.
Lukehurst, C. and Bywater, A., (2015). Exploring the viability of small-scale anaerobic digesters in livestock farming. 2015, Paris, France: IEA Bioenergy ISBN: 1910154245.
Vögeli, Y., et al., (2014). Anaerobic digestion of biowaste in developing countries: practical information and case studies. 2014, Switzerland: Eawag – Swiss Federal Institute of Aquatic Science and Technology. ISBN: 9783906484587.
Schievano, A., et al., (2010). Evaluating inhibition conditions in high-solids anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology. Vol. 101, Issue 14, pp. 5728-5732. https://doi.org/10.1016/j.biortech.2010.02.032.
Perez Garcia, A. (2014). Techno-economic feasibility study of a small-scale biogas plant for treating market waste in the city of El Alto. Student thesis Thesis,
Nallathambi Gunaseelan, V., (1997). Anaerobic digestion of biomass for methane production: A review. Biomass and Bioenergy. Vol. 13, Issue 1, pp. 83-114. https://doi.org/10.1016/S0961-9534(97)00020-2.
Krich, K., et al., (2005). Biomethane from Dairy Waste, a Sourcebook for the Production and Use of Renewable Natural Gas. California Institute for Energy and Environment (CIEE), Planning & Evaluation. Vol. 11-20.
DW, H., (2007). Types of Anaerobic Digesters. US Environmental Protection Agency. 20.
Kaseng, K., et al., (1992). Extracellular enzymes and acidogen profiles of a laboratory-scale two-phase anaerobic digestion system. Process Biochemistry. Vol. 27, Issue 1, pp. 43-47. https://doi.org/10.1016/0032-9592(92)80008-Q.
Chen, L. and Neibling, H., (2014). Anaerobic Digestion Basics. Idaho: 2014. University of Idaho Extension. Vol. 1, Issue 2, pp. 1-6.
Ganidi, N., Tyrrel, S., and Cartmell, E., (2009). Anaerobic digestion foaming causes – A review. Bioresource Technology. Vol. 100, Issue 23, pp. 5546-5554. https://doi.org/10.1016/j.biortech.2009.06.024.
Ganesh, R., et al., (2014). Single-phase and two-phase anaerobic digestion of fruit and vegetable waste: Comparison of start-up, reactor stability and process performance. Waste Management. Vol. 34, Issue 5, pp. 875-885. https://doi.org/10.1016/j.wasman.2014.02.023.
Ward, A.J., et al., (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology. Vol. 99, Issue 17, pp. 7928-7940. DOI: https://doi.org/10.1016/j.biortech.2008.02.044.
Bouallagui, H., et al., (2005). Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochemistry. Vol. 40, Issue 3, pp. 989-995. https://doi.org/10.1016/j.procbio.2004.03.007.
Adekunle, K.F. and Okolie, J.A., (2015). A Review of Biochemical Process of Anaerobic Digestion. Advances in Bioscience and Biotechnology. Vol. Vol.06No.038. https://doi.org/10.4236/abb.2015.63020.
Jabłoński, S., Rodowicz, P., and Łukaszewicz, M., (2015). Methanogenic archaea database containing physiological and biochemical characteristics. International Journal of Systematic and Evolutionary Microbiology. Vol. 65, Issue Pt_4, pp. 1360-1368. https://doi.org/10.1099/ijs.0.000065.
Mondal, C. and Biswas, G.K., (2013). Effect of temperature on kinetic constants in anaerobic bio-digestion.Chitkara Chem. Rev. Vol. 1, Issue 3, pp. 19-28.
Bisswanger, H., (2017). Enzyme Kinetics: Principles and Methods. 3rd ed. 2017, UK: Wiley-Blackwell. ISBN: 352730343X.
Caballero-Arzápalo, N. (2015). Untersuchungen zum anaeroben Abbauprozess ausgewählter Abfallsubstrate mit Hilfe spezieller Mikroorganismen und Enzyme. Thesis, Fakultät Wissenschaftszentrum Weihenstephan, Technische Universität München, Germany.
Almeida Streitwieser, D., (2017). Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness. Bioresource Technology. Vol. 241985-992. https://doi.org/10.1016/j.biortech.2017.06.006.
Pandey, P. and Soupir, M., (2012). Impacts of temperatures on biogas production in dairy manure anaerobic digestion. IACSIT International Journal of Engineering and Technology. Vol. 4, Issue 5, pp. 629-631.
Hamzah, M.A.F., et al., (2019). Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent. Energies. Vol. 12, Issue 13, pp. 2473.
Rohstoffe eV, F.N. (2016). Leitfaden Biogas: Von der Gewinnung zur Nutzung. Thesis, Gülzow-Prüzen, Fachagentur Nachwachsende Rohstoffe, Germany.
Chae, K.J., et al., (2008). The effects of digestion temperature and temperature shock on the biogas yields from the mesophilic anaerobic digestion of swine manure. Bioresource Technology. Vol. 99, Issue 1, pp. 1-6. https://doi.org/10.1016/j.biortech.2006.11.063.
Lemmer, A., Naegele, H.-J., and Sondermann, J., (2013). How Efficient are Agitators in Biogas Digesters? Determination of the Efficiency of Submersible Motor Mixers and Incline Agitators by Measuring Nutrient Distribution in Full-Scale Agricultural Biogas Digesters. Energies. Vol. 6, Issue 12, pp. 6255-6273.
Last, S. The Anaerobic Digestion Biofuels Blog. (2017). [cited 28 January 2019; Available from: https://blog.anaerobic-digestion.com/digestercleaning-services/.
Nandi, R., et al., (2017). Effect of mixing on biogas production from cow dung. Eco Friendly Agric. J. Vol. 107-13.
Brown, C., (1979). Process Design Manual for Sludge Treatment and Disposal. 1979: US Environmental Protection Agency, Municipal Environmental Research Laboratory, Office of Research and Development, Center for Environmental Research Information, Technology Transfer.
Karim, K., Thoma, G.J., and Al-Dahhan, M.H., (2007). Gas-lift digester configuration effects on mixing effectiveness. Water Research. Vol. 41, Issue 14, pp. 3051-3060. https://doi.org/10.1016/j.watres.2007.03.042.
Weiland, P., (2006). Biomass Digestion in Agriculture: A Successful Pathway for the Energy Production and Waste Treatment in Germany. Engineering in Life Sciences. Vol. 6, Issue 3, pp. 302-309. https://doi.org/10.1002/elsc.200620128.
Bártfai, Z., et al., (2015). Conditions of using propeller stirring in biogas reactors. HUNGARIAN AGRICULTURAL ENGINEERING. Issue 28, pp. 5-10. DOI: https://doi.org/10.17676/HAE.2015.28.5.
Botheju, D. and Bakke, R., (2011). Oxygen effects in anaerobic digestion-a review. The Open Waste Management Journal. Vol. 13, Issue 2020, pp. 1-19. https://doi.org/10.2174/1876400201104010001.
Tabatabaei, M. and Ghanavati, H., (2018). Biogas Fundamentals, Process, and Operation: Fundamentals, Process, and Operation. 1st ed. 2018: Springer. https://doi.org/10.1007/978-3-319-77335-3. ISBN: 978-3-319-77334-6.
Sibiya, N.T., Muzenda, E., and Tesfagiorgis, H.B.(2014). Effect of temperature and pH on the anaerobic digestion of grass silage. in Proceedings of the 6th International Conference on Green Technology, Renewable Energy and Environmental Engineering, Cape Town, South Africa, Nov. 27-28.
Ezekoye, V., Ezekoye, B., and Offor, P., (2011). Effect of retention time on biogas production from poultry droppings and cassava peels. Nigerian Journal of Biotechnology. Vol. 22, Issue 2011, pp. 53-59.
Kaosol, T. and Sohgrathok, N., (2012). Influence of Hydraulic Retention Time on Biogas Production from Frozen Seafood Wastewater Using Decanter Cake as Anaerobic Co-digestion Material. International Journal of Environmental and Ecological Engineering. Vol. 6, Issue 5, pp. 303-307.
Baudez, J.C., et al., (2011). The rheological behaviour of anaerobic digested sludge. Water Research. Vol. 45, Issue 17, pp. 5675-5680. https://doi.org/10.1016/j.watres.2011.08.035.
IRENA. Bioenergy. (2020). [cited 2021; International Renewable Energy Agency, Available from: https://www.irena.org/bioenergy
Banks, C., Zhang, Y., Jiang, Y., Heaven, S. 2012. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. Bioresour. Technol., 104, 127-135.
Romero-Güiza, M., Vila, J., Mata-Alvarez, J., Chimenos, J., Astals, S. 2016. The role of additives on anaerobic digestion: A review. Renew. Sustain. Energy Rev., 58, 1486-1499.
Kougias, P., Boe, K., Tsapekos, P., Angelidaki, I., 2014. Foam suppression in overloaded manure-based biogas reactors using antifoaming agents. Bioresour. Technol. 153, 198–205.
Grimberg, S., Hilderbrandt, D., Kinnunen, M., Rogers, S., 2015. Anaerobic digestion of food waste through the operation of a mesophilic two-phase pilot scale digester - Assessment of variable loadings on system performance. Bioresour. Technol. 178, 226–229.
McCarty, P.L., McKinney, R., 1961. Salt toxicity in anaerobic digestion. J. Water Pollut. Control Fed. 33, 399–415.
Oude Elferink, S.J.W.H., Visser, A., Hulshoff Pol, L.W., Stams, A.J.M., 1994. Sulphate reduction in methanogenic bioreactors. FEMS Microbiol. Rev. 15, 119–136.
Megawatt. Installierte elektrische Leistung der Biogasanlagen in Deutschland in den Jahren 2001 bis 2021. (2021). [cited 2022; statista.com, Germany Available from: https://de.statista.com/statistik/daten/studie/167673/umfrage/installierte-elektrische-leistung-von-biogasanlagen-seit-1999/.
Parker, S.P., (2002). McGraw-Hill Dictionary of Scientific & Technical Terms. 6th ed. 2002: McGraw Hill. ISBN: 007042313X.
Zhang, Z., et al., (2012). Agricultural Wastes. Water Environment Research. Vol. 84, Issue 10, pp. 1386-1406. https://doi.org/10.2175/106143012X13407275695193.
Wint, W. and Robinson, T., (2007). Gridded Livestock of the World. FAO, Rome.
Poschl, M., Ward, S., Owende, P. (2010). Evaluation of energy efficiency of various biogas production and utilization pathways. Applied Energy. 87, 3305–3321.
Appels, L., et al., (2011). Anaerobic digestion in global bio-energy production: Potential and research challenges. Renewable and Sustainable Energy Reviews. Vol. 15, Issue 9, pp. 4295-4301. https://doi.org/10.1016/j.rser.2011.07.121.
Mtui, G.Y., (2007). Trends in industrial and environmental biotechnology research in Tanzania. African Journal of Biotechnology. Vol. 6, Issue 25, pp.
Oboh, G., (2005). Isolation and characterization of amylase from fermented cassava (Manihot esculenta Crantz) wastewater. African journal of biotechnology. Vol. 4, Issue 10, pp.
Raposo Bejines, F., et al., (2012). Anaerobic digestion of solid organic substrates in batch mode: An overview relating to methane yields and experimental procedures. Renewable and Sustainable Energy Reviews. Vol. 16, Issue 1, pp. 861-877. https://doi.org/0.1016/j.rser.2011.09.008.
Edenhofer O, Pichs-Madruga R, Sokona Y, Seyboth K, Kadner S, Zwickel T et al (2011). Renewable energy sources and climate change mitigation: special report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge.
Downloads
Key Dates
Received
Revised
Accepted
Published Online First
Published
Issue
Section
License
Copyright (c) 2024 Raghad Maher Wadi, Sroor Atallah Khalifa (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.