MAXIMUM POWER EXTRACTION USING TWISTING SLIDING MODE CONTROLLER FOR WIND ENERGY SYSTEMS
DOI:
https://doi.org/10.31272/jeasd.27.4.9Keywords:
Phase locked loop, total harmonics distortion, machine side converter, grid side converter, twisting sliding mode controlAbstract
This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.
References
Jenkins, N., Burton, T., Bossanyi, E., Sharpe, D., & Graham, M. (2021). "Wind Energy Handbook 3e". Wiley. ISBN:9781119451143. https://doi.org/10.1002/9781119451143
Kaldellis, J. K., & Apostolou, D. (2017). "Life cycle energy and carbon footprint of offshore wind energy Comparison with onshore counterpart". Renewable Energy, Vol.108, August 2017, pp. 72-84. https://doi.org/10.1016/j.renene.2017.02.039
Hossain, M. M., & Ali, Mohd. H. (2015). "Future research directions for the wind turbine generator system". Renewable and Sustainable Energy Reviews. Vol. 49, September 2015, pp. 481-489.
https://doi.org/10.1016/j.rser.2015.04.126
Moutchou, R., & Abbou, A. (2019). "Comparative Study of SMC and PI Control of a Permanent Magnet Synchronous
Generator Decoupled by Singular Perturbations". 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), 2019, pp. 1-7, https://doi.org/10.1016/j.rser.2015.04.12610.1109/IRSEC48032.2019.9078310
Yang, B., Zhang, X., Yu, T., Shu, H., & Fang, Z. (2017). "Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator-based wind turbine". Energy Conversion and Management, Vol. 133, 1 February 2017, pp. 427-443. https://doi.org/10.1016/j.enconman.2016.10.062
Xie, D., Lu, Y., Sun, J., & Gu, C. (2017). "Small signal stability analysis for different types of PMSGs connected to the grid". Renewable Energy, Vol. 106, June 2017, pp. 149-164. https://doi.org/10.1016/j.renene.2017.01.021
Tripathi, S. M., Tiwari, A. N., & Singh, D. (2015). "Grid-integrated permanent magnet synchronous generator-based wind energy conversion systems". A technology reviews. Renewable and Sustainable Energy Reviews, Vol. 51, November 2015, pp. 1288-1305. https://doi.org/10.1016/j.rser.2015.06.060
Hassanain, N. A. M., & Fletcher, J. E. (2007). "Analysis three- and five-phase permanent magnet machines supplying diode bridge rectifiers for small-scale wind generators". 2007 International Conference on Power Engineering, Energy and Electrical Drives, 2007, pp. 648-653. https://doi.org/10.1109/POWERENG.2007.4380174
Parsa, L., Toliyat, H. A., & Goodarzi, A. (2007). "Five-Phase Interior Permanent-Magnet Motors with Low Torque Pulsation". in IEEE Transactions on Industry Applications, Vol. 43, Issue 1, pp. 40-46, Jan.-Feb.2007. https://doi.org/10.1109/TIA.2006.887235
Reusser, C. A., Kouro, S., & Cardenas, R. (2015). "Dual three-phase PMSG based wind energy conversion system using 9-switch dual converter". 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 1021-1022. https://doi.org/10.1109/ECCE.2015.7309800
I. Abdelsalam, G. P. Adam, D. Holliday, and B. W. Williams, "Assessment of a wind energy conversion system based on a six-phase permanent magnet synchronous generator with a twelve-pulse PWM current source converter," 2013 IEEE ECCE Asia Downunder, 2013, pp. 849-854. https://doi.org/10.1109/ECCE-Asia.2013.6579203
Mekri, F., Benelghali, S., Benbouzid, M., & Charpentier, J. F. (2011). "A fault-tolerant multiphase permanent magnet generator for marine current turbine applications". 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 2079-2084, https://doi.org/10.1109/ISIE.2011.5984481
Dwari, S., & Parsa, L. (2011). "Fault-Tolerant Control of Five-Phase Permanent-Magnet Motors with Trapezoidal Back EMF". IEEE Transactions on Industrial Electronics, Vol. 58, Issue 2, pp. 476-485, Feb. 2011. https://doi.org/10.1109/TIE.2010.2045322
D. Kumar, K. Chatterjee, "A review of conventional and advanced MPPT algorithms for wind energy systems," Renew. Sustain. Energy Rev. Vol. 55, March 2016, pp. 957-970. https://doi.org/10.1016/j.rser.2015.11.013.
Errami, Y., Obbadi, A., & Sahnoun, S. (2020). "MPPT Control for Grid Connected Wind Energy Conversion System Based Permanent Magnet Synchronous Generator (PMSG) and Five-Level Neutral Point Clamped Converter". IOP Conference Series: Materials Science and Engineering, Vol. 765, Issue 1, 012042. https://doi.org/10.1088/1757-899X/765/1/012042
Putri, R. I., Pujiantara, M., Priyadi, A., Hery, P. M., & Taufik. (2016). "Optimum control strategy of grid connected PMSG wind turbine based on energy storage system". 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2016, pp. 623-628. https://doi.org/10.1109/ISITIA.2016.7828732
Ramesh, M., & Jyothsna, T. R. (2016). " A concise review on different aspects of wind energy system". 2016 3rd International Conference on Electrical Energy Systems (ICEES), 2016, pp. 222-227. https://doi.org/10.1109/ICEES.2016.7510644
Zhou, J. Z., Ding, H., Fan, S., Zhang, Y., & Gole, A. M. (2014). " Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter". IEEE Transactions on Power Delivery, Vol. 29, Issue 5, pp. 2287-2296, Oct. 2014. https://doi.org/10.1109/TPWRD.2014.2330518
Hu, L., Xue, F., Qin, Z., Shi, J., Qiao, W., Yang, W., & Yang, T. (2019). "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system". Applied Energy, Vol. 248, 15 August 2019, pp. 567-575. https://doi.org/10.1016/j.apenergy.2019.04.073
Asri, A., Mihoub, Y., Hassaine, S., Logerais, P., & Allaoui, T. (2019). "Intelligent maximum power tracking control of a PMSG wind energy conversion system". Asian Journal of Control, Vol.21, Issue 4, pp. 1980–1990. https://doi.org/10.1002/asjc.2090
Mousa, H. H. H., Youssef, A.-R., & Mohamed, E. E. M. (2020). "Optimal power extraction control schemes for five-phase PMSG based wind generation systems". Engineering Science and Technology, an International Journal. Vol. 23, Issue 1, February 2020, pp. 144-155. https://doi.org/10.1016/j.jestch.2019.04.004
Janaszek, M. (2016). "Structures of vector control of n-phase motor drives based on generalized Clarke transformation". Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 64, Issue (4), pp. 865–872. https://doi.org/10.1515/bpasts-2016-0094
Hosseyni, A., Trabelsi, R., Mimouni, M. F., & Iqbal, A. (2014). "Vector controlled five-phase permanent magnet synchronous motor drive". 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 2122-2127. https://doi.org/10.1109/ISIE.2014.6864945
Amira, L., Tahar, B., & Abdelkrim, M. (2020). "Sliding Mode Control of Doubly-fed Induction Generator in Wind Energy Conversion System". 2020 8th International Conference on Smart Grid (icSmartGrid), 2020, pp. 96-100. https://doi.org/10.1109/icSmartGrid49881.2020.9144778
MEHEDI, F., NEZLI, L., & MAHMOUDI, M. O. (2018). "Speed Control of Series-Connected Five-Phase Two PMSM using Sliding Mode Control". 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2018, pp. 1-6. https://doi.org/10.1109/CISTEM.2018.8613341
Rezkallah, M., Sharma, S. K., Chandra, A., Singh, B., & Rousse, D. R. (2017). "Lyapunov Function and Sliding Mode Control Approach for the Solar-PV Grid Interface System". IEEE Transactions on Industrial Electronics, Vol. 64, Issue 1, pp. 785-795, Jan. 2017. https://doi.org/10.1109/TIE.2016.2607162
Merabet, A., Labib, L., Ghias, A. M. Y. M., Ghenai, C., & Salameh, T. (2017). "Robust Feedback Linearizing Control with Sliding Mode Compensation for a Grid-Connected Photovoltaic Inverter System Under Unbalanced Grid Voltages". IEEE Journal of Photovoltaics, Vol. 7, Issue3, pp. 828-838, May 2017. https://doi.org/10.1109/JPHOTOV.2017.2667724
B. Yang, T. Yu, H. Shu, Y. Zhang, J. Chen, Y. Sang, L. Jiang, (2018) "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine", Renew. Energy, Vol. 119, April 2018, pp. 577-589. https://doi.org/10.1016/j.renene.2017.12.07
Sun, D., Wang, X., Nian, H., & Zhu, Z. Q. (2018). "A Sliding-Mode Direct Power Control Strategy for DFIG Under Both Balanced and Unbalanced Grid Conditions Using Extended Active Power". IEEE Transactions on Power Electronics, Vol. 33, Issue 2, pp. 1313-1322, Feb. 2018. https://doi.org/10.1109/TPEL.2017.2686980
Xiong, L., Wang, J., Mi, X., & Khan, M. W. (2018). "Fractional Order Sliding Mode Based Direct Power Control of Grid-Connected DFIG". IEEE Transactions on Power Systems, Vol. 33, Issue3, pp. 3087-3096, May 2018. https://doi.org/10.1109/TPWRS.2017.2761815
Sadeghi, R., Madani, S. M., Ataei, M., Agha Kashkooli, M. R., & Ademi, S. (2018). "Super-Twisting Sliding Mode Direct Power Control of a Brushless Doubly Fed Induction Generator". IEEE Transactions on Industrial Electronics, Vol. 65, Issue 11, pp. 9147-9156, Nov. 2018. https://doi.org/10.1109/TIE.2018.2818672
Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). "Sliding Mode Control and Observation". Springer New York. ISBN: 978-0-8176-4893-0. https://doi.org/10.1007/978-0-8176-4893-0
Mousa, H. H. H., Youssef, A.-R., & Mohamed, E. E. M. (2019). "Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system". International Journal of Electrical Power & Energy Systems, Vol. 108, June 2019, pp. 218-231. https://doi.org/10.1016/j.ijepes.2018.12.044
Youssef, Abdel-Raheem & Sayed, Mahmoud & Abe Wahab, M.N. & Shabib, Gaber & Sayed, M. (2015). "MPPT Control Technique for Direct-Drive Five-Phase PMSG Wind Turbines with Wind Speed Estimation". International Journal of Sustainable and Green Energy. Vol. 4, Issue 5, September 2015, pp. 195-205. https://doi.org/10.11648/j.ijrse.20150405.14
Toliyat, H. A., Rahimian, M. M., & Lipo, T. A. (n.d.). (1991). "dq modeling of five phase synchronous reluctance machines including third harmonic of air-gap MMF". Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1991, pp. 231-237 vol.1. https://doi.org/10.1109/IAS.1991.178160
Moutchou, R., & Abbou, A. (2021). "Control of grid side converter in wind power based PMSG with PLL method". International Journal of Power Electronics and Drive Systems (IJPEDS), Vol 12, Issue 4, pp. 2191- 2200. https://doi.org/10.11591/ijpeds.v12.i4.
Nasiri, M., Milimonfared, J., & Fathi, S. H. (2015). "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines". Renewable and Sustainable Energy Reviews, Vol. 47, July 2015, pp. 399-415. https://doi.org/10.1016/j.rser.2015.03.079
Downloads
Key Dates
Published
Issue
Section
License
Copyright (c) 2023 Asaad Abed Faisal, Turki Kahawish Hassan
This work is licensed under a Creative Commons Attribution 4.0 International License.