• Asaad Abed Faisal Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author
  • Turki Kahawish Hassan Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq Author



Phase locked loop, total harmonics distortion, machine side converter, grid side converter, twisting sliding mode control


This paper presents a systematic control scheme for a wind energy conversion system with variable speed and describes a permanent magnet synchronous generator PMSG with five phases. The machine employs back-to-back converters, while the grid-side converters are used. Stator current and mechanical rotation speed control are employed to accomplish maximum power point tracking operation on the machine side converter at wind speed below the rated speed. The pitch of the angle is used to limit the extracted wind energy when the wind surpasses the specified wind. The grid current control loop regulates both active and reactive power injection at the unity power factor for the grid side converter. The five-phase PMSG rotor speed is controlled by the twisting sliding mode controller in order to maintain the reference speed in various wind speeds. Performance comparisons between the twisting sliding mode controller, conventional proportional integral controller, and integral sliding mode controller show that the twisting sliding mode controller is superior to the other controllers in steady state error. According to this study, the overall efficiency is increased to 94% when using the TSMC controller rather than the ISMC and PI controllers, which are currently at 92.45% and 88.12% respectively. MATLAB/Simulink simulation results are used to verify the effectiveness of the suggested control technique.


Jenkins, N., Burton, T., Bossanyi, E., Sharpe, D., & Graham, M. (2021). "Wind Energy Handbook 3e". Wiley. ISBN:9781119451143.

Kaldellis, J. K., & Apostolou, D. (2017). "Life cycle energy and carbon footprint of offshore wind energy Comparison with onshore counterpart". Renewable Energy, Vol.108, August 2017, pp. 72-84.

Hossain, M. M., & Ali, Mohd. H. (2015). "Future research directions for the wind turbine generator system". Renewable and Sustainable Energy Reviews. Vol. 49, September 2015, pp. 481-489.

Moutchou, R., & Abbou, A. (2019). "Comparative Study of SMC and PI Control of a Permanent Magnet Synchronous

Generator Decoupled by Singular Perturbations". 2019 7th International Renewable and Sustainable Energy Conference (IRSEC), 2019, pp. 1-7,

Yang, B., Zhang, X., Yu, T., Shu, H., & Fang, Z. (2017). "Grouped grey wolf optimizer for maximum power point tracking of doubly-fed induction generator-based wind turbine". Energy Conversion and Management, Vol. 133, 1 February 2017, pp. 427-443.

Xie, D., Lu, Y., Sun, J., & Gu, C. (2017). "Small signal stability analysis for different types of PMSGs connected to the grid". Renewable Energy, Vol. 106, June 2017, pp. 149-164.

Tripathi, S. M., Tiwari, A. N., & Singh, D. (2015). "Grid-integrated permanent magnet synchronous generator-based wind energy conversion systems". A technology reviews. Renewable and Sustainable Energy Reviews, Vol. 51, November 2015, pp. 1288-1305.

Hassanain, N. A. M., & Fletcher, J. E. (2007). "Analysis three- and five-phase permanent magnet machines supplying diode bridge rectifiers for small-scale wind generators". 2007 International Conference on Power Engineering, Energy and Electrical Drives, 2007, pp. 648-653.

Parsa, L., Toliyat, H. A., & Goodarzi, A. (2007). "Five-Phase Interior Permanent-Magnet Motors with Low Torque Pulsation". in IEEE Transactions on Industry Applications, Vol. 43, Issue 1, pp. 40-46, Jan.-Feb.2007.

Reusser, C. A., Kouro, S., & Cardenas, R. (2015). "Dual three-phase PMSG based wind energy conversion system using 9-switch dual converter". 2015 IEEE Energy Conversion Congress and Exposition (ECCE), 2015, pp. 1021-1022.

I. Abdelsalam, G. P. Adam, D. Holliday, and B. W. Williams, "Assessment of a wind energy conversion system based on a six-phase permanent magnet synchronous generator with a twelve-pulse PWM current source converter," 2013 IEEE ECCE Asia Downunder, 2013, pp. 849-854.

Mekri, F., Benelghali, S., Benbouzid, M., & Charpentier, J. F. (2011). "A fault-tolerant multiphase permanent magnet generator for marine current turbine applications". 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 2079-2084,

Dwari, S., & Parsa, L. (2011). "Fault-Tolerant Control of Five-Phase Permanent-Magnet Motors with Trapezoidal Back EMF". IEEE Transactions on Industrial Electronics, Vol. 58, Issue 2, pp. 476-485, Feb. 2011.

D. Kumar, K. Chatterjee, "A review of conventional and advanced MPPT algorithms for wind energy systems," Renew. Sustain. Energy Rev. Vol. 55, March 2016, pp. 957-970.

Errami, Y., Obbadi, A., & Sahnoun, S. (2020). "MPPT Control for Grid Connected Wind Energy Conversion System Based Permanent Magnet Synchronous Generator (PMSG) and Five-Level Neutral Point Clamped Converter". IOP Conference Series: Materials Science and Engineering, Vol. 765, Issue 1, 012042.

Putri, R. I., Pujiantara, M., Priyadi, A., Hery, P. M., & Taufik. (2016). "Optimum control strategy of grid connected PMSG wind turbine based on energy storage system". 2016 International Seminar on Intelligent Technology and Its Applications (ISITIA), 2016, pp. 623-628.

Ramesh, M., & Jyothsna, T. R. (2016). " A concise review on different aspects of wind energy system". 2016 3rd International Conference on Electrical Energy Systems (ICEES), 2016, pp. 222-227.

Zhou, J. Z., Ding, H., Fan, S., Zhang, Y., & Gole, A. M. (2014). " Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter". IEEE Transactions on Power Delivery, Vol. 29, Issue 5, pp. 2287-2296, Oct. 2014.

Hu, L., Xue, F., Qin, Z., Shi, J., Qiao, W., Yang, W., & Yang, T. (2019). "Sliding mode extremum seeking control based on improved invasive weed optimization for MPPT in wind energy conversion system". Applied Energy, Vol. 248, 15 August 2019, pp. 567-575.

Asri, A., Mihoub, Y., Hassaine, S., Logerais, P., & Allaoui, T. (2019). "Intelligent maximum power tracking control of a PMSG wind energy conversion system". Asian Journal of Control, Vol.21, Issue 4, pp. 1980–1990.

Mousa, H. H. H., Youssef, A.-R., & Mohamed, E. E. M. (2020). "Optimal power extraction control schemes for five-phase PMSG based wind generation systems". Engineering Science and Technology, an International Journal. Vol. 23, Issue 1, February 2020, pp. 144-155.

Janaszek, M. (2016). "Structures of vector control of n-phase motor drives based on generalized Clarke transformation". Bulletin of the Polish Academy of Sciences Technical Sciences, Vol. 64, Issue (4), pp. 865–872.

Hosseyni, A., Trabelsi, R., Mimouni, M. F., & Iqbal, A. (2014). "Vector controlled five-phase permanent magnet synchronous motor drive". 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), 2014, pp. 2122-2127.

Amira, L., Tahar, B., & Abdelkrim, M. (2020). "Sliding Mode Control of Doubly-fed Induction Generator in Wind Energy Conversion System". 2020 8th International Conference on Smart Grid (icSmartGrid), 2020, pp. 96-100.

MEHEDI, F., NEZLI, L., & MAHMOUDI, M. O. (2018). "Speed Control of Series-Connected Five-Phase Two PMSM using Sliding Mode Control". 2018 International Conference on Electrical Sciences and Technologies in Maghreb (CISTEM), 2018, pp. 1-6.

Rezkallah, M., Sharma, S. K., Chandra, A., Singh, B., & Rousse, D. R. (2017). "Lyapunov Function and Sliding Mode Control Approach for the Solar-PV Grid Interface System". IEEE Transactions on Industrial Electronics, Vol. 64, Issue 1, pp. 785-795, Jan. 2017.

Merabet, A., Labib, L., Ghias, A. M. Y. M., Ghenai, C., & Salameh, T. (2017). "Robust Feedback Linearizing Control with Sliding Mode Compensation for a Grid-Connected Photovoltaic Inverter System Under Unbalanced Grid Voltages". IEEE Journal of Photovoltaics, Vol. 7, Issue3, pp. 828-838, May 2017.

B. Yang, T. Yu, H. Shu, Y. Zhang, J. Chen, Y. Sang, L. Jiang, (2018) "Passivity-based sliding-mode control design for optimal power extraction of a PMSG based variable speed wind turbine", Renew. Energy, Vol. 119, April 2018, pp. 577-589.

Sun, D., Wang, X., Nian, H., & Zhu, Z. Q. (2018). "A Sliding-Mode Direct Power Control Strategy for DFIG Under Both Balanced and Unbalanced Grid Conditions Using Extended Active Power". IEEE Transactions on Power Electronics, Vol. 33, Issue 2, pp. 1313-1322, Feb. 2018.

Xiong, L., Wang, J., Mi, X., & Khan, M. W. (2018). "Fractional Order Sliding Mode Based Direct Power Control of Grid-Connected DFIG". IEEE Transactions on Power Systems, Vol. 33, Issue3, pp. 3087-3096, May 2018.

Sadeghi, R., Madani, S. M., Ataei, M., Agha Kashkooli, M. R., & Ademi, S. (2018). "Super-Twisting Sliding Mode Direct Power Control of a Brushless Doubly Fed Induction Generator". IEEE Transactions on Industrial Electronics, Vol. 65, Issue 11, pp. 9147-9156, Nov. 2018.

Shtessel, Y., Edwards, C., Fridman, L., & Levant, A. (2014). "Sliding Mode Control and Observation". Springer New York. ISBN: 978-0-8176-4893-0.

Mousa, H. H. H., Youssef, A.-R., & Mohamed, E. E. M. (2019). "Variable step size P&O MPPT algorithm for optimal power extraction of multi-phase PMSG based wind generation system". International Journal of Electrical Power & Energy Systems, Vol. 108, June 2019, pp. 218-231.

Youssef, Abdel-Raheem & Sayed, Mahmoud & Abe Wahab, M.N. & Shabib, Gaber & Sayed, M. (2015). "MPPT Control Technique for Direct-Drive Five-Phase PMSG Wind Turbines with Wind Speed Estimation". International Journal of Sustainable and Green Energy. Vol. 4, Issue 5, September 2015, pp. 195-205.

Toliyat, H. A., Rahimian, M. M., & Lipo, T. A. (n.d.). (1991). "dq modeling of five phase synchronous reluctance machines including third harmonic of air-gap MMF". Conference Record of the 1991 IEEE Industry Applications Society Annual Meeting, 1991, pp. 231-237 vol.1.

Moutchou, R., & Abbou, A. (2021). "Control of grid side converter in wind power based PMSG with PLL method". International Journal of Power Electronics and Drive Systems (IJPEDS), Vol 12, Issue 4, pp. 2191- 2200.

Nasiri, M., Milimonfared, J., & Fathi, S. H. (2015). "A review of low-voltage ride-through enhancement methods for permanent magnet synchronous generator based wind turbines". Renewable and Sustainable Energy Reviews, Vol. 47, July 2015, pp. 399-415.


Key Dates



How to Cite

MAXIMUM POWER EXTRACTION USING TWISTING SLIDING MODE CONTROLLER FOR WIND ENERGY SYSTEMS. (2023). Journal of Engineering and Sustainable Development, 27(4), 527-544.

Similar Articles

1-10 of 516

You may also start an advanced similarity search for this article.