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Abstract 
 

this study presents a solution of electromagnetic scattering from an arbitrary oriented 
thin-wire excited by an incident electromagnetic plane wave by using Method of Moment 
(MoM). The solution for the axial current is obtained.  The application of the Method of 
Moment (MoM) solution to the thin wire integral equation is obtained by enforcing the 
boundary condition on the electric field; this method inherently produces a full and dense 
matrix. The numerical results are performed for validation of the efficiency and accuracy 
of the proposed method.    

Keywords: Method of Moments (MoM); arbitrary oriented thin wire; magnetic vector 
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تحلیل الاستطارة الكھرومغناطیسیة  باستخدام  )Axial Current(الحل المحسن لل 
  للسلك

 

كاظم الماجدي. د. م. أ  
 قسم ھندسة الحاسبات والبرمجیات ، كلیة الھندسة ، الجامعة المستنصریة

  
  : الخلاصة

  

مھیج بواسطة موجة  الاتجاهفي ھذه الدراسة، نقدم حلا للاستطارة الكھرومغناطیسیة من سلك رقیق عشوائي 
وتم الحصول على حل . Method of Moment ((MoM)(طریقة  باستخدامكھرومغناطیسیة ساقط بصورة مستویة 

ً من خلال فرض شروط  أعلاهأن تطبیق حلول الطریقة . للتیار المحوري على المعادلة التكاملیة للسلك الرقیق كان ممكنا
ً للتأكد من صحة . ة تنتج بطبیعتھا مصفوفة كثیفةھذه الطریق. حدودیة على المجال الكھربائي تم تنفیذ الطریقة عددیا
 . وكفاءة ودقة الطریقة المقترحة

 
 

 Introduction 
 

The analysis of electromagnetic scattering from arbitrarily shaped conducting and/or 
dielectric bodied has been of considerable interest. The integral Equations based on Electric 
and Magnetic Field are termed the (EFIE) and (MFIE) [1, 2 ,3, 4], respectively. For these kinds of 
problems the Method of Moments (MoM) [5, 6] is the most suitable tool due to its accuracy and 
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versatility. By means of this technique, an approximate included current is obtained. For 
simple antennas such as a wire of constant radius or a circular loop, special analytical 
methods have been developed [7, 8].  In the integral equation approach, the most popular and 
highly accurate method of solving electromagnetic field problems is the familiar Method of 
Moments (MoM). Many numerical schemes for studying a wire antenna of arbitrary shape are 
based on the Method of Moments (MoM) [2] [9] [10]. Attempts have been made to enhance the 
accuracy by replacing the reduce kernel with the exact kernel the satisfactory results were 
observed [11-13]. The coal of this paper, the Moment of Method (MoM) is applied to 
conventional electromagnetic scattering problems, this problem included currents on 
arbitrarily oriented thin wires due to an incident electromagnetic field.  

This paper is organized as follows, in the next Section; we develop the thin wire analysis 
with comprehensive treatments and an efficient analysis of arbitrary wire by using a moment 
method and develop an efficient solution by solving the matrix to obtain the induced currents. 
The electric field integral equation is used with the moment method to solve the currents on 
the antenna, and the triangle basis and pulse testing functions exactly follow of the arbitrary. 
Section three shows the numerical results for the currents from the arbitrary wire structures. 
Finally, some conclusions based on this work are givened. 
 
1. Theory and Formulations 

 

On conducting wire surface, ( )sI r
r

 is the current along the axis of an arbitrary shape thin 

wire, we can write the scattering field sE
uur

in terms of the magnetic vector potential ,A and the 

electric scalar potential  Φ  as [1]  
 

sE jw A= − − ∇Φ
uuur

                                  …………………………(1) 
  
 
where  
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where µ  and ε  are the permeability and permittivity of the space, `ŝ
a is the unite vector 

along the surface at `r
ur

, a  is the radius of the wire (a <<  )λ , and r
r

and `r
ur

 (seen in Figure. 1) 
are the position vectors to the observation and source points, from the coordinate origin, 
respectively. After applying the boundary condition the total tangential electric field on the 
surface of the wire (along the axis) is zero, which implies that  
 

`ˆ( ) 0i s
s

E E a+ ⋅ =  For wr s∈
r

, to obtain the integral equation given by 

 

`

`
` ` ` ` `

`

( )ˆ ˆ ˆ( ) ( , )( ) ( , ) ( )is
s s sssw

sw

dI rjjk I r G r r a a ds G r r ds E r a
k s ds
η

η
∂

⋅ + = ⋅
∂∫ ∫

ur
ur ur urr r r

     ……….(5) 

 

for wr s∈
r

and 

 

( )i jk rE r E e − ⋅=
r

o

r
                                                        ………………………… (6) 

 

in Equation (5) and equation (6),  2k π
λ

=  is the wavenumber, η  is the wave impedance 

of the medium. In order to solve for the induced axial current on the wire using Equation (5), 
by using the moment method solution procedure with triangle expansion function, which can 
be written in form as 
                                                                                               

                             
1

` `

1

( ) ( )
N

s n n
n

I r I P r
−

=

≈ ∑
ur ur

                                  ………………………… (7) 

Where the nI  are the unknown coefficient, now by substituting equation (7) into equation (5) 

and defining   
                      

                          
1
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1
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−
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v

r v v v
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`
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+

−
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                       ………………………… (9) 
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Next, we apply the testing procedure. Here, we used pulse function as testing functions, which 
defined as 
 

               
11,

( ) 2 2
0,

m m
m m

m

s sr r r
Q r

otherwise

+∆ ∆ − ≤ ≤ += 


v v v
v

               ………………………… (11)                          

    
for 1, 2,...., 1m N= − . By defining the symmetric product as 
 

 

                ( ), ( ) ( ) ( )
wS

a r b r a r b r ds= ∫
v v v v

                              …………………………(12) 

Get 
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for 1, 2,...., 1m N= − . To simplify the testing procedure, evaluate 1( )h r
r

 and ˆ( )
i

sE r a⋅
v

, in 

Equation (15) at center of the pulse, and multiply by m∆  where 1

2
m ms s

m
+

∆ + ∆ 
∆ =  

 
. The term  

2 ( )h r
s
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v
 in Equation (15) may be evaluated as 
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Thus, we have 
 

           
1

1
1 2 2

1
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2 2
m m
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s s

m mn m
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j jI jk h r h r h r
k k
η η
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m
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               ……………..(15) 

 
for 1, 2,...., 1m N= − , which is a system of equations and be written in the matrix form as 
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1

1

1
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2,1 2,2 2, 1 2 2
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−− − − −−
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uuv v
L
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MM O M M
uuv v

L

         ………………………… (16) 

 
Each of the impedance elements of Equation (16) are given by 
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Lastly, the elements of the excitation vector are given by 
                                                    

                            ˆ ˆ( ) m

m m

i jk r
mm s m sE r a E e a− ⋅∆ ⋅ = ∆ ⋅

v

o

v
           ……………… (18)     

                         
Equation (16) can now be solved to obtain the current induced along the axis of the wire 

due to the incident electromagnetic field. Using this standard approach, we note that this 
method generate a full/dense complex impedance matrix. For electrically large wires, the 
storage and solution of this matrix can be prohibitive. 
 
 
2.   Numerical Results and Discussion    

   

     For comparison with the previous references, we present case study to test the validity of 
the moment of method to create a banded matrix for arbitrary wire problem. For the case 
presented in this section, we choose the wire radius equal to 0.001λ. We consider a 20λ along 
straight wire illuminated by an axially polarized, normally incident plane wave. This incident 
field is shown in (Figure 2). For the numerical solution, the wire divided into 200 equal 
divisions, which resulted in 199 unknowns because the current at the ends of the wire is 
assumed to be zero. In Figure 2 (a, b), the results for the Moment Method solution are 
presented and the magnitude of the current as well as the real and imaginary parts. In               
(Figure 3) shows the incident field we consider the circumference of the circular wire is 40λ 
long and the wire is divided into 400 linear divisions. The result for the moment method also 
plotted in (Figure  3). 
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Fig .(1) Arbitrary shaped thin wire illumination by an electromagnetic plane 
wave. 
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Fig .(2-a) Induced currents (Real Part) on 20λ long straight wire due to an 

axially polarized incident field 
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Fig . (2-b) Induced currents (Imaginary Part) on 20λ long straight wire due to an 

axially polarized incident field. 
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Fig .(3) Induced currents on 40λ long straight wire due to an axially polarized 

incident field incident on the face of the loop. 
 
 

3.   Conclusion  
 
 This paper has been presented an accurate solution method to analysis a wire scattering 

by using the Moment of Method (MoM) and we develop an efficient solution by solving the 
banded matrix to obtain the induced current. The application of the Method of Moment 
solution procedure to the thin wire integral equation is obtained by enforcing the boundary 
condition on the electric field. The details of the moment method are outlined and associated 
illustrative examples are described. The arbitrarily thin wire approximation is used throughout 
the analysis and the wire is assumed to be oriented. 
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