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Abstract: The problem of computing the set of prime 
implicants to represent a Boolean function is a classical 
problem that is still considered a running problem for 
research because all known approaches have limitations. 
The article reviews existing methods for computing prime 
implicants and highlights their limitations, particularly for 
multi-output functions and limited scalability due to the 
growth in memory required to complete the computation. 
Then it proposes a recursive ternary-based minimization 
algorithm to compute the prime implicants of multi-
output Boolean functions. The algorithm is based on the 
concept of Programmable Logic Array (PLA) tables, which 
provide a structured and efficient representation of 
Boolean functions. The algorithm takes advantage of the 
ternary logic system to efficiently compute the prime 
implicants while maintaining scalability for large and 
complex functions, which has significant implications for 
digital circuit design and optimization. 

Keywords: Boolean Algebra; sum of products; two-level 

Boolean representation; Logic Circuit Synthesis   

1. Introduction  

Boolean functions are mathematical expressions 

that take one or more binary inputs and produce 

a single or multiple-bit output. The output value 

of a Boolean function depends on the values of 

its input variables and the logical operations 

applied to them. Boolean functions are widely 

used in digital design, computer science, and 

other fields that involve binary logic [1-3]. 

A prime implicant of a single-output Boolean 

function is a product term (a logical AND of one 

or more input variables) that covers the function 

and cannot be further reduced by removing any 

input variables. In other words, a prime implicant 

is a minimal product term that is necessary to 

represent the function in a two-level sum-of-

products SOP format [4]. 

Computing prime implicants is an important step 

in digital circuit design flow because they can be 

used to simplify the circuit and reduce its 

complexity. By identifying the prime implicants 

of a Boolean function, one can find the smallest 

set of product terms that can represent the 

function and use it to design simpler, faster, more 

efficient circuits, and lower cost [5,6]. 

There are several existing methods for 

computing prime implicants of a Boolean 

function. A widely used method to find all 

possible prime implicants is the Quine-

McCluskey method, which performs pairwise 

comparisons of adjacent minterms in a table. The 

method is efficient for small functions but the 

complexity of this approach grows exponentially 

and becomes very expensive computationally for 

large functions [7,8]. 
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On the other hand, Petrick’s method involves 

converting the function into a set of equations 

and solving them using matrix operations. The 

method is more efficient than the Quine-

McCluskey method for large functions but can be 

complex and time-consuming for highly variable 

functions [9]. 

Existing exact methods can be computationally 

expensive for large and highly variable functions 

[10-12], making them impractical for use in some 

applications, therefore approximate and heuristic 

algorithms have been proposed to tackle the 

problem of prime implicants computation 

scalability. Heuristic approaches including 

genetic algorithms, simulated annealing, and 

Tabu search involve randomly generating 

candidate solutions and iteratively refining them 

based on fitness functions [13-17]. A heuristic 

method called the Espresso algorithm is 

proposed to minimize the Boolean function by 

iteratively selecting prime implicants that cover 

the most minterms. This algorithm is efficient 

and widely used in practice but sometimes it 

results in suboptimal solutions [18,19]. 

A mathematical approach to minimize Boolean 

functions using ternary representation to identify 

the candidate terms for minimization was 

proposed in [20]. The problem associated with 

this approach is the high memory requirement 

associated with the computation, due to the 

iterative computation style suggested in the 

algorithm, which limits the scalability of this 

approach [20].  A recursive style is considered in 

this article to tackle the problem. 

However, these existing methods have certain 

limitations that can affect their effectiveness in 

computing prime implicants, such as 

computational complexity, inefficient use of 

resources, limited scope, and suboptimal 

solutions. Overall, the existing methods for 

computing prime implicants have their strengths 

and limitations, and researchers are constantly 

exploring new algorithms and techniques to 

address these limitations and improve the 

efficiency and accuracy of prime implicant 

computation. 

The research problem addressed in this work is 

the computation of prime implicants for multi-

output Boolean functions, which are functions 

with multiple binary outputs. While existing 

methods for computing prime implicants are 

well-established for single-output Boolean 

functions, they may not be directly applicable to 

multi-output functions, which require a different 

approach. 

This study aims to present a novel recursive 

algorithm based on ternary logic for computing 

prime implicants of multi-output Boolean 

functions. The proposed algorithm is intended to 

be highly efficient and precise for functions with 

any number of outputs. Moreover, it generates a 

comprehensive set of prime implicants that can 

be effectively utilized for circuit optimization 

and design purposes. 

The article is organized as follows: Section 2 

presents the preliminaries to ensure self-

containment. Section 3, The Proposed 

Minimization Algorithm, illustrates the proposed 

method and outlines the recursive computation of 

prime implicants using the ternary-based 

minimization algorithm. In Section 4, the 

proposed algorithm is discussed, highlighting its 

distinctive characteristics compared to existing 

methods. Finally, Section 5 concludes the article. 

2. Background  

The objective of this section is to provide readers 

with a comprehensive understanding of Boolean 

function representation. Specifically, it covers 

the basics of two-level SOP form representation 

and the widely adopted PLA table representation 

of multi-output Boolean functions. This 
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information is essential for readers to grasp the 

content of the article, ensuring that it is self-

contained. 

2.1. Minterms and truth-tables 

A truth table of a Boolean function enumerates 

function values at all the points of the domain. 

The points of the domain are all possible 

permutations of binary-valued inputs. A total of   

𝑀 = 2𝑁 permutations, where N is the number of 

inputs (function’s binary arguments), see e.g. 

Table 1. This exponential complexity doubles the 

size of a truth table with each new input variable. 

A specific permutation of inputs is called a 

minterm, which is a Boolean conjunction, i.e.  

Boolean AND operation between all input 

variables each with the corresponding polarity, 

i.e. either an inverted or non-inverted literal in 

the product term. A minterm can be numerically 

represented by the permutation that is equal to 

the weighted binary sum of input bit values, i.e.  

𝑚𝑿 = ∑ 𝑥𝑖
𝑁−1
𝑖=0 ∗  2𝑖, where X is a specific 

permutation (minterm) of the N-bit input vector. 

For  example, the minterm 

𝑚11 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20 

= 𝑚(1011)2
 represents the Boolean expression 

(𝑥3𝑥2
′𝑥1𝑥0). Another example is the minterm 

 𝑚9 = 𝑚(1001)2
 is equivalent to the Boolean 

expression (𝑥3𝑥2
′𝑥1

′𝑥0). This exponential 

growth in complexity makes it practically 

impossible to use this representation for 

functions with a large number of inputs. The SOP 

representation of a function is the disjunction of 

all minterms. 

 

Table 1. Truth-Table of Boolean function f(X) 

m x3  x2 x1 x0 f1 f0 

0 0 0 0 0 1 1 

1 0 0 0 1 1 1 

2 0 0 1 0 0 0 

3 0 0 1 1 0 0 

4 0 1 0 0 1 1 

5 0 1 0 1 1 1 

6 0 1 1 0 1 0 

7 0 1 1 1 1 0 

8 1 0 0 0 0 0 

9 1 0 0 1 1 1 

10 1 0 1 0 0 0 

11 1 0 1 1 1 1 

12 1 1 0 0 1 0 

13 1 1 0 1 1 0 

14 1 1 1 0 1 0 

15 1 1 1 1 1 0 

 

2.2. Cubes and PLA Tables 

The minterms 𝑚11 and 𝑚9 in function 𝑓 

demonstrated above are called adjacent 

minterms, which means that they have exactly 

one bit-difference in their expressions, i.e. (1011) 

and (1001). One possible Boolean expression 

reduction is by extracting the common part of 

two adjacent minterms and replacing these two 

minterms with one cube, which is only the 

common part of the two minterms. For example, 

the two adjacent minterms 𝑚11 and 𝑚9 are 

replaced by one cube (10 − 1). which is 

equivalent to the Boolean product term 

(𝑥3𝑥
′
2𝑥0). without the literal 𝑥1 because it is 

eliminated from the conjunction. To preserve the 

position of the eliminated literally in the 

expression, the character '-' in a cube replaces 

either 0 or 1. One can achieve the additional 

reduction by extending the same approach to 

adjacent pairs of cubes. A larger cube can cover 

more points in the domain by doing so. For 

example, the cube (-0-0) can be obtained by 

combining the adjacent cubes (00-0) and (10-0) 

or the cubes (-000) and  
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(-010). The cubes that cannot be further reduced 

are known as the prime implicants.  

A Programmable Logic Array (PLA) is a digital 

circuit design that allows the creation of complex 

logic functions by combining simpler logic 

functions. A PLA table is a compact 

representation of a Boolean function using a truth 

table that includes the input and output values for 

the function. The PLA table is structured as a 

two-dimensional array with a set of input 

columns, a set of output columns, and a set of 

product terms that map the inputs to the outputs. 

In a PLA table, each row corresponds to a unique 

combination of input values, and each column 

corresponds to a Boolean function that maps the 

inputs to a single output. The product terms 

represent the logic operations that are performed 

on the input variables to generate the output 

variables. The product terms are typically 

represented as a string of 0s, 1s, and don't care 

symbols, where each symbol corresponds to the 

state of a particular input variable [21]. 

 

 

Figure 1. A simple example of a PLA Table file 

The sum-of-products SOP representation of a 

Boolean function is the disjunction of its prime 

implicants such that it covers all points in the 

domain. PLA table representation of a multiple-

output Boolean function is based on this 

minimized two-level SOP representation of 

Boolean functions, see e.g. Figure 1. The entities 

of this table are the prime implicants of the two-

output function f. In the left column array in the 

table, we find the list of the cubes that form the 

function, while the right column contains the 

function value in response to each cube. This 

representation is only exponential in the worst 

case and hence it is suitable to represent larger 

functions. 

The computation of the entities of a PLA table, 

i.e. the prime implicants, is not an intuitive 

problem. Quine-McCuskey’s method, for 

instance, requires an exhaustive search to detect 

adjacent minterms [7,8]. Most approaches are 

exponential computational problems both time 

and space-wise. 

3. The Proposed Minimization Algorithm 

This section presents the main contribution of 

this article, which is the explanation of a new 

algorithm for computing prime implicants. The 

proposed algorithm addresses two challenges 

that have not been adequately handled in existing 

approaches: handling multiple output functions, 

and dealing with the memory size limit of 

available computer systems when using exact 

approaches. 

To address these challenges, the proposed 

algorithm is based on a ternary approach that 

computes the prime implicants for all output bits 

in a single computation. The algorithm uses 

recursion to reduce memory requirements and 

improve scalability. This approach is more 

efficient and accurate than existing methods for 

computing prime implicants. 

3.1. Ternary Coding of Cubes 

Unlike minterms that can be numerically 

represented, cubes contain the non-numeric 

symbol ‘-‘ to indicate an eliminated literal in the 

conjunction term. To this end, we can observe 

that we have a representation with three different 

symbols {0, 1, -}. 

.i 4 

.o 2 

.p 5 

.ilb x3 x2 x1 x0  

.ob f1 f2 

-1-- 10 

1-11 10 

-001 11 

10-1 01 

0-0- 11 

.e 
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Ternary-based algorithms are a type of algorithm 

that uses a three-valued logic system (i.e., 0, 1, 

and don't care) to compute the prime implicants 

of a Boolean function. Unlike binary-based 

algorithms that use only 0 and 1 values, ternary-

based algorithms can also take advantage of the 

don't care values, which can greatly reduce the 

computational complexity and memory 

requirements of the algorithm [20-25]. The 

advantages of ternary-based algorithms include: 

• Improved Efficiency: Ternary-based 

algorithms can be more efficient than 

binary-based algorithms, especially for 

large and complex functions. By taking 

advantage of the don't care values, ternary-

based algorithms can reduce the number of 

minterms that need to be compared and 

merged, which can significantly reduce the 

computational complexity and memory 

requirements of the algorithm. 

• Scalability: Ternary-based algorithms can 

be easily scaled to handle functions with 

any number of inputs and outputs, which 

makes them well-suited for modern digital 

circuit design. 

Overall, ternary-based algorithms offer several 

advantages over binary-based algorithms for 

computing prime implicants of Boolean 

functions and have become an increasingly 

popular approach in digital circuit design and 

optimization. 

The radix-3 ternary numbering system can be 

used to represent any cube numerically. In this 

approach, the don't care bits '-' in the cubes are 

replaced with a 2, following the suggestion in [9, 

20]. In this case, there will be a unique positive 

integer representation for each cube that is 

computed from the ternary weight sum of the 

bits, i.e.  

𝑐𝑿 = ∑ 𝑥𝑖
𝑁−1
𝑖=0 ∗  3𝑖where  𝑐𝑿 is the cube 

representation of the N-bit ternary vector X. 

Example: In the Boolean function 𝑓(𝑎. 𝑏. 𝑐. 𝑑). 

The product term (𝑎  𝑏′ 𝑑) has an inverted 

literal  𝑏′, with two non-inverted literals a and d, 

while the literal c is missed, indicating an 

eliminated literal. The PLA table coding of this 

product term would be a cube (10 − 1). In the 

suggested ternary coding of this cube ‘-‘ symbol 

has to be replaced by a 2, resulting in the ternary-

coded integer (1021)3 = 34, which is calculated 

from the ternary-weighted digits’ sum of  

34 =  1 ∗ 33 + 0 ∗ 32 + 2 ∗ 31 + 1 ∗ 30. The 

ternary coding of any possible cube in a Boolean 

function can be exploited in the binary version of 

the radix-generic minimization algorithm of 

multiple-valued logic functions, as proposed in 

[25], as in (1) below: 

𝑓(𝑡) = ⋁ 𝑓(𝑡 − 3𝑘)  𝑓(𝑡 − 23𝑘) 

∀ 𝑡𝑘=2

  (1) 

where tk refers to the kth bit position with a value 

equal to 2, which indicates a don’t care, i.e. an 

eliminated literal in the kth bit position of cube 

𝑡 = 𝑐𝑿. The proposed algorithm scans the array 

of all possible cubes to compute the cubes that 

cover the function. This approach suffers from 

the serious drawback of exponential memory 

growth that practically limits the scalability of 

the algorithm. It is important to mention that the 

function f is not limited to single output Boolean 

function, but rather this relation is applicable to 

multi-output Boolean functions. In this case, the 

conjunction and disjunction operators are bit-

wise AND and OR operators respectively. 

The computation is recursive as shown in relation 

(1) above. The recursive computation begins 

with the function call and the argument (𝑡 =
 3𝑁 − 1), where N represents the number of input 

bits. The recursion process terminates when the 

minterm t does not contain any don't care bit. 
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3.2. Recursive Computation of Prime Implicants 

To reduce the exponential memory space 

requirement, an equivalent recursive 

computation of the same formula (1) can be 

proposed, without the need to store the values in 

an array of all possible cubes. Instead, it stores 

only those cubes that are prime implicants and 

hence candidate entities in the PLA table. 

To test whether a specific cube t of function f is 

a prime implicant, the function is tested among 

any possible cube () that may cover the cube t, 

where 𝑘 =  2 |∀ 𝑡𝑘2, i.e. replacing the kth 

position in the cube t with 2 for each non ‘-‘ bit 

in t. The cube is prime if the following inequality 

is correct: 

0  ⋁  𝑓(𝑡) 𝑓′() 

∀ 𝑡𝑘2

                 (2) 

The result of the disjunction of the function value 

in response to the cube t with all other adjacent 

cubes identifies whether t has to be stored with 

the set of prime implicants in the PLA table. 

This recursive computation continues until the 

base case of a minterm value is passed as an 

argument to the function call. In this case, the 

function returns the function value at the 

specified point in the domain instead of another 

recursion. The value  𝑡 = 3𝑘 − 1 is used for the 

main function call, i.e. the top-level recursion. 

4. Discussion 

The proposed recursive ternary-based algorithm 

offers several advantages over existing 

approaches. 

Firstly, the algorithm is designed to efficiently 

handle multiple output functions, which is a 

significant improvement over existing 

algorithms that were originally designed for 

single output functions. This ensures that the 

algorithm can provide comprehensive sets of 

prime implicants that can be used for circuit 

design and optimization. 

Secondly, the algorithm reduces the memory 

requirement of the computation by employing a 

recursive approach. Compared to existing 

approaches, which encounter exponential growth 

in computation time and memory space, this 

makes the algorithm more scalable. 

Additionally, the ternary-based approach used in 

the algorithm allows for the determination of 

prime implicants of all output bits within the 

same computation. This makes the algorithm 

more efficient and accurate compared to existing 

approaches that require separate computations 

for each output bit. 

Overall, the proposed algorithm provides an 

efficient and exact approach to computing prime 

implicants of multi-output Boolean functions. 

The recursive and ternary-based approach used 

in the algorithm ensures that it is scalable and can 

handle large multi-output functions without 

compromising its accuracy and efficiency. 

5. Conclusions  

In conclusion, most of the known methods to 

compute prime implicants are designed for 

single-output Boolean functions. The 

exponential complexity of this problem limits the 

scalability of most exact methodologies. This is 

tackled with either heuristic approaches which 

result in semi-optimum or approximate results, or 

with extensive usage of memory resources and 

also intensive computations to obtain exact 

solutions. In this article, we proposed a recursive 

ternary-based algorithm for computing prime 

implicants capable of efficiently handling multi-

output Boolean functions. The algorithm 

provides an exact set of prime implicants. As 

compared to existing approaches, the proposed 

algorithm reduces the memory size required to 

run the computation and increases scalability 

because of its recursive nature. This reduction in 

memory requirement is traded-off with extra 

computational complexity. Therefore, further 

research efforts may be invested in reducing 

computational complexity with respect to time, 

and in generalizing this approach in minimizing 

Boolean systems that are combined from several 

interconnected sub-functions.  
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