
Journal of Engineering and Sustainable Development
https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd

https://doi.org/10.31272/jeasd.27.3.2

 Vol. 27, No. 03, May 2023

ISSN 2520-0917

 308

*Corresponding Author: alwardi@uomustansiriyah.edu.iq

Work of This Research is
Licensed under CC BY

RECURSIVE TERNARY-BASED ALGORITHM FOR COMPUTING PRIME
IMPLICANTS OF MULTI-OUTPUT BOOLEAN FUNCTIONS

Zaid Al-Wardi1*, Osama Al-Wardi2

1 Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
2 Brandenburg University of Technology, Cottbus-Senftenberg, Germany

Received 16/3/2023 Accepted in revised form 24/4/2023 Published 1/5/2023

Abstract: The problem of computing the set of prime
implicants to represent a Boolean function is a classical
problem that is still considered a running problem for
research because all known approaches have limitations.
The article reviews existing methods for computing prime
implicants and highlights their limitations, particularly for
multi-output functions and limited scalability due to the
growth in memory required to complete the computation.
Then it proposes a recursive ternary-based minimization
algorithm to compute the prime implicants of multi-
output Boolean functions. The algorithm is based on the
concept of Programmable Logic Array (PLA) tables, which
provide a structured and efficient representation of
Boolean functions. The algorithm takes advantage of the
ternary logic system to efficiently compute the prime
implicants while maintaining scalability for large and
complex functions, which has significant implications for
digital circuit design and optimization.

Keywords: Boolean Algebra; sum of products; two-level

Boolean representation; Logic Circuit Synthesis

1. Introduction

Boolean functions are mathematical expressions

that take one or more binary inputs and produce

a single or multiple-bit output. The output value

of a Boolean function depends on the values of

its input variables and the logical operations

applied to them. Boolean functions are widely

used in digital design, computer science, and

other fields that involve binary logic [1-3].

A prime implicant of a single-output Boolean

function is a product term (a logical AND of one

or more input variables) that covers the function

and cannot be further reduced by removing any

input variables. In other words, a prime implicant

is a minimal product term that is necessary to

represent the function in a two-level sum-of-

products SOP format [4].

Computing prime implicants is an important step

in digital circuit design flow because they can be

used to simplify the circuit and reduce its

complexity. By identifying the prime implicants

of a Boolean function, one can find the smallest

set of product terms that can represent the

function and use it to design simpler, faster, more

efficient circuits, and lower cost [5,6].

There are several existing methods for

computing prime implicants of a Boolean

function. A widely used method to find all

possible prime implicants is the Quine-

McCluskey method, which performs pairwise

comparisons of adjacent minterms in a table. The

method is efficient for small functions but the

complexity of this approach grows exponentially

and becomes very expensive computationally for

large functions [7,8].

Original Research

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd
file:///C:/Users/Eng-Yahya/Downloads/alwardi@uomustansiriyah.edu.iq

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

309

On the other hand, Petrick’s method involves

converting the function into a set of equations

and solving them using matrix operations. The

method is more efficient than the Quine-

McCluskey method for large functions but can be

complex and time-consuming for highly variable

functions [9].

Existing exact methods can be computationally

expensive for large and highly variable functions

[10-12], making them impractical for use in some

applications, therefore approximate and heuristic

algorithms have been proposed to tackle the

problem of prime implicants computation

scalability. Heuristic approaches including

genetic algorithms, simulated annealing, and

Tabu search involve randomly generating

candidate solutions and iteratively refining them

based on fitness functions [13-17]. A heuristic

method called the Espresso algorithm is

proposed to minimize the Boolean function by

iteratively selecting prime implicants that cover

the most minterms. This algorithm is efficient

and widely used in practice but sometimes it

results in suboptimal solutions [18,19].

A mathematical approach to minimize Boolean

functions using ternary representation to identify

the candidate terms for minimization was

proposed in [20]. The problem associated with

this approach is the high memory requirement

associated with the computation, due to the

iterative computation style suggested in the

algorithm, which limits the scalability of this

approach [20]. A recursive style is considered in

this article to tackle the problem.

However, these existing methods have certain

limitations that can affect their effectiveness in

computing prime implicants, such as

computational complexity, inefficient use of

resources, limited scope, and suboptimal

solutions. Overall, the existing methods for

computing prime implicants have their strengths

and limitations, and researchers are constantly

exploring new algorithms and techniques to

address these limitations and improve the

efficiency and accuracy of prime implicant

computation.

The research problem addressed in this work is

the computation of prime implicants for multi-

output Boolean functions, which are functions

with multiple binary outputs. While existing

methods for computing prime implicants are

well-established for single-output Boolean

functions, they may not be directly applicable to

multi-output functions, which require a different

approach.

This study aims to present a novel recursive

algorithm based on ternary logic for computing

prime implicants of multi-output Boolean

functions. The proposed algorithm is intended to

be highly efficient and precise for functions with

any number of outputs. Moreover, it generates a

comprehensive set of prime implicants that can

be effectively utilized for circuit optimization

and design purposes.

The article is organized as follows: Section 2

presents the preliminaries to ensure self-

containment. Section 3, The Proposed

Minimization Algorithm, illustrates the proposed

method and outlines the recursive computation of

prime implicants using the ternary-based

minimization algorithm. In Section 4, the

proposed algorithm is discussed, highlighting its

distinctive characteristics compared to existing

methods. Finally, Section 5 concludes the article.

2. Background

The objective of this section is to provide readers

with a comprehensive understanding of Boolean

function representation. Specifically, it covers

the basics of two-level SOP form representation

and the widely adopted PLA table representation

of multi-output Boolean functions. This

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

310

information is essential for readers to grasp the

content of the article, ensuring that it is self-

contained.

2.1. Minterms and truth-tables

A truth table of a Boolean function enumerates

function values at all the points of the domain.

The points of the domain are all possible

permutations of binary-valued inputs. A total of

𝑀 = 2𝑁 permutations, where N is the number of

inputs (function’s binary arguments), see e.g.

Table 1. This exponential complexity doubles the

size of a truth table with each new input variable.

A specific permutation of inputs is called a

minterm, which is a Boolean conjunction, i.e.

Boolean AND operation between all input

variables each with the corresponding polarity,

i.e. either an inverted or non-inverted literal in

the product term. A minterm can be numerically

represented by the permutation that is equal to

the weighted binary sum of input bit values, i.e.

𝑚𝑿 = ∑ 𝑥𝑖
𝑁−1
𝑖=0 ∗ 2𝑖, where X is a specific

permutation (minterm) of the N-bit input vector.

For example, the minterm

𝑚11 = 1 ∗ 23 + 0 ∗ 22 + 1 ∗ 21 + 1 ∗ 20

= 𝑚(1011)2
 represents the Boolean expression

(𝑥3𝑥2
′𝑥1𝑥0). Another example is the minterm

 𝑚9 = 𝑚(1001)2
 is equivalent to the Boolean

expression (𝑥3𝑥2
′𝑥1

′𝑥0). This exponential

growth in complexity makes it practically

impossible to use this representation for

functions with a large number of inputs. The SOP

representation of a function is the disjunction of

all minterms.

Table 1. Truth-Table of Boolean function f(X)

m x3 x2 x1 x0 f1 f0

0 0 0 0 0 1 1

1 0 0 0 1 1 1

2 0 0 1 0 0 0

3 0 0 1 1 0 0

4 0 1 0 0 1 1

5 0 1 0 1 1 1

6 0 1 1 0 1 0

7 0 1 1 1 1 0

8 1 0 0 0 0 0

9 1 0 0 1 1 1

10 1 0 1 0 0 0

11 1 0 1 1 1 1

12 1 1 0 0 1 0

13 1 1 0 1 1 0

14 1 1 1 0 1 0

15 1 1 1 1 1 0

2.2. Cubes and PLA Tables

The minterms 𝑚11 and 𝑚9 in function 𝑓

demonstrated above are called adjacent

minterms, which means that they have exactly

one bit-difference in their expressions, i.e. (1011)

and (1001). One possible Boolean expression

reduction is by extracting the common part of

two adjacent minterms and replacing these two

minterms with one cube, which is only the

common part of the two minterms. For example,

the two adjacent minterms 𝑚11 and 𝑚9 are

replaced by one cube (10 − 1). which is

equivalent to the Boolean product term

(𝑥3𝑥
′
2𝑥0). without the literal 𝑥1 because it is

eliminated from the conjunction. To preserve the

position of the eliminated literally in the

expression, the character '-' in a cube replaces

either 0 or 1. One can achieve the additional

reduction by extending the same approach to

adjacent pairs of cubes. A larger cube can cover

more points in the domain by doing so. For

example, the cube (-0-0) can be obtained by

combining the adjacent cubes (00-0) and (10-0)

or the cubes (-000) and

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

311

(-010). The cubes that cannot be further reduced

are known as the prime implicants.

A Programmable Logic Array (PLA) is a digital

circuit design that allows the creation of complex

logic functions by combining simpler logic

functions. A PLA table is a compact

representation of a Boolean function using a truth

table that includes the input and output values for

the function. The PLA table is structured as a

two-dimensional array with a set of input

columns, a set of output columns, and a set of

product terms that map the inputs to the outputs.

In a PLA table, each row corresponds to a unique

combination of input values, and each column

corresponds to a Boolean function that maps the

inputs to a single output. The product terms

represent the logic operations that are performed

on the input variables to generate the output

variables. The product terms are typically

represented as a string of 0s, 1s, and don't care

symbols, where each symbol corresponds to the

state of a particular input variable [21].

Figure 1. A simple example of a PLA Table file

The sum-of-products SOP representation of a

Boolean function is the disjunction of its prime

implicants such that it covers all points in the

domain. PLA table representation of a multiple-

output Boolean function is based on this

minimized two-level SOP representation of

Boolean functions, see e.g. Figure 1. The entities

of this table are the prime implicants of the two-

output function f. In the left column array in the

table, we find the list of the cubes that form the

function, while the right column contains the

function value in response to each cube. This

representation is only exponential in the worst

case and hence it is suitable to represent larger

functions.

The computation of the entities of a PLA table,

i.e. the prime implicants, is not an intuitive

problem. Quine-McCuskey’s method, for

instance, requires an exhaustive search to detect

adjacent minterms [7,8]. Most approaches are

exponential computational problems both time

and space-wise.

3. The Proposed Minimization Algorithm

This section presents the main contribution of

this article, which is the explanation of a new

algorithm for computing prime implicants. The

proposed algorithm addresses two challenges

that have not been adequately handled in existing

approaches: handling multiple output functions,

and dealing with the memory size limit of

available computer systems when using exact

approaches.

To address these challenges, the proposed

algorithm is based on a ternary approach that

computes the prime implicants for all output bits

in a single computation. The algorithm uses

recursion to reduce memory requirements and

improve scalability. This approach is more

efficient and accurate than existing methods for

computing prime implicants.

3.1. Ternary Coding of Cubes

Unlike minterms that can be numerically

represented, cubes contain the non-numeric

symbol ‘-‘ to indicate an eliminated literal in the

conjunction term. To this end, we can observe

that we have a representation with three different

symbols {0, 1, -}.

.i 4

.o 2

.p 5

.ilb x3 x2 x1 x0

.ob f1 f2

-1-- 10

1-11 10

-001 11

10-1 01

0-0- 11

.e

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

312

Ternary-based algorithms are a type of algorithm

that uses a three-valued logic system (i.e., 0, 1,

and don't care) to compute the prime implicants

of a Boolean function. Unlike binary-based

algorithms that use only 0 and 1 values, ternary-

based algorithms can also take advantage of the

don't care values, which can greatly reduce the

computational complexity and memory

requirements of the algorithm [20-25]. The

advantages of ternary-based algorithms include:

• Improved Efficiency: Ternary-based

algorithms can be more efficient than

binary-based algorithms, especially for

large and complex functions. By taking

advantage of the don't care values, ternary-

based algorithms can reduce the number of

minterms that need to be compared and

merged, which can significantly reduce the

computational complexity and memory

requirements of the algorithm.

• Scalability: Ternary-based algorithms can

be easily scaled to handle functions with

any number of inputs and outputs, which

makes them well-suited for modern digital

circuit design.

Overall, ternary-based algorithms offer several

advantages over binary-based algorithms for

computing prime implicants of Boolean

functions and have become an increasingly

popular approach in digital circuit design and

optimization.

The radix-3 ternary numbering system can be

used to represent any cube numerically. In this

approach, the don't care bits '-' in the cubes are

replaced with a 2, following the suggestion in [9,

20]. In this case, there will be a unique positive

integer representation for each cube that is

computed from the ternary weight sum of the

bits, i.e.

𝑐𝑿 = ∑ 𝑥𝑖
𝑁−1
𝑖=0 ∗ 3𝑖where 𝑐𝑿 is the cube

representation of the N-bit ternary vector X.

Example: In the Boolean function 𝑓(𝑎. 𝑏. 𝑐. 𝑑).

The product term (𝑎  𝑏′ 𝑑) has an inverted

literal 𝑏′, with two non-inverted literals a and d,

while the literal c is missed, indicating an

eliminated literal. The PLA table coding of this

product term would be a cube (10 − 1). In the

suggested ternary coding of this cube ‘-‘ symbol

has to be replaced by a 2, resulting in the ternary-

coded integer (1021)3 = 34, which is calculated

from the ternary-weighted digits’ sum of

34 = 1 ∗ 33 + 0 ∗ 32 + 2 ∗ 31 + 1 ∗ 30. The

ternary coding of any possible cube in a Boolean

function can be exploited in the binary version of

the radix-generic minimization algorithm of

multiple-valued logic functions, as proposed in

[25], as in (1) below:

𝑓(𝑡) = ⋁ 𝑓(𝑡 − 3𝑘)  𝑓(𝑡 − 23𝑘)

∀ 𝑡𝑘=2

 (1)

where tk refers to the kth bit position with a value

equal to 2, which indicates a don’t care, i.e. an

eliminated literal in the kth bit position of cube

𝑡 = 𝑐𝑿. The proposed algorithm scans the array

of all possible cubes to compute the cubes that

cover the function. This approach suffers from

the serious drawback of exponential memory

growth that practically limits the scalability of

the algorithm. It is important to mention that the

function f is not limited to single output Boolean

function, but rather this relation is applicable to

multi-output Boolean functions. In this case, the

conjunction and disjunction operators are bit-

wise AND and OR operators respectively.

The computation is recursive as shown in relation

(1) above. The recursive computation begins

with the function call and the argument (𝑡 =
 3𝑁 − 1), where N represents the number of input

bits. The recursion process terminates when the

minterm t does not contain any don't care bit.

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

313

3.2. Recursive Computation of Prime Implicants

To reduce the exponential memory space

requirement, an equivalent recursive

computation of the same formula (1) can be

proposed, without the need to store the values in

an array of all possible cubes. Instead, it stores

only those cubes that are prime implicants and

hence candidate entities in the PLA table.

To test whether a specific cube t of function f is

a prime implicant, the function is tested among

any possible cube () that may cover the cube t,

where 𝑘 = 2 |∀ 𝑡𝑘2, i.e. replacing the kth

position in the cube t with 2 for each non ‘-‘ bit

in t. The cube is prime if the following inequality

is correct:

0  ⋁ 𝑓(𝑡) 𝑓′()

∀ 𝑡𝑘2

 (2)

The result of the disjunction of the function value

in response to the cube t with all other adjacent

cubes identifies whether t has to be stored with

the set of prime implicants in the PLA table.

This recursive computation continues until the

base case of a minterm value is passed as an

argument to the function call. In this case, the

function returns the function value at the

specified point in the domain instead of another

recursion. The value 𝑡 = 3𝑘 − 1 is used for the

main function call, i.e. the top-level recursion.

4. Discussion

The proposed recursive ternary-based algorithm

offers several advantages over existing

approaches.

Firstly, the algorithm is designed to efficiently

handle multiple output functions, which is a

significant improvement over existing

algorithms that were originally designed for

single output functions. This ensures that the

algorithm can provide comprehensive sets of

prime implicants that can be used for circuit

design and optimization.

Secondly, the algorithm reduces the memory

requirement of the computation by employing a

recursive approach. Compared to existing

approaches, which encounter exponential growth

in computation time and memory space, this

makes the algorithm more scalable.

Additionally, the ternary-based approach used in

the algorithm allows for the determination of

prime implicants of all output bits within the

same computation. This makes the algorithm

more efficient and accurate compared to existing

approaches that require separate computations

for each output bit.

Overall, the proposed algorithm provides an

efficient and exact approach to computing prime

implicants of multi-output Boolean functions.

The recursive and ternary-based approach used

in the algorithm ensures that it is scalable and can

handle large multi-output functions without

compromising its accuracy and efficiency.

5. Conclusions

In conclusion, most of the known methods to

compute prime implicants are designed for

single-output Boolean functions. The

exponential complexity of this problem limits the

scalability of most exact methodologies. This is

tackled with either heuristic approaches which

result in semi-optimum or approximate results, or

with extensive usage of memory resources and

also intensive computations to obtain exact

solutions. In this article, we proposed a recursive

ternary-based algorithm for computing prime

implicants capable of efficiently handling multi-

output Boolean functions. The algorithm

provides an exact set of prime implicants. As

compared to existing approaches, the proposed

algorithm reduces the memory size required to

run the computation and increases scalability

because of its recursive nature. This reduction in

memory requirement is traded-off with extra

computational complexity. Therefore, further

research efforts may be invested in reducing

computational complexity with respect to time,

and in generalizing this approach in minimizing

Boolean systems that are combined from several

interconnected sub-functions.

Acknowledgments

The authors would like to acknowledge

Mustansiriyah University, Baghdad, Iraq,

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

314

(www.uomustansiriyah.edu.iq), for their support

and resources during this research. The facilities

provided by the university were instrumental in

the successful completion of this study.

Abbreviations

X The vector of binary-valued inputs

N Number of bits in X

f(X) A Boolean function of X

xi The ith rightmost-bit in the vector X

mx The minterm x binary-coded

cx The cube x ternary-coded

t Ternary-coded integer

 Adjacent ternary-coded integer

Conflict of interest

The authors declare that there are no conflicts of

interest regarding the publication of this

manuscript.

Author Contribution Statement

Author Zaid Al-Wardi: proposed the algorithm.

Author Osama Al-Wardi: analyzed the

complexity of the proposed algorithm and

developed the software.

Both authors discussed the results and

contributed to the final manuscript.

References

1. Prasad, V. C. (2018). Novel method to

simplify Boolean functions.

Automatyka/Automatics, 22(2), 29.

https://doi.org/10.7494/automat.2018.22.2.2

9

2. Rai, S., Neto, W. L., Miyasaka, Y., Zhang,

X., Yu, M., Yi, Q., Fujita, M., Manske, G.

B., Pontes, M. F., da Rosa, L. S., de Aguiar,

M. S., Butzen, P. F., Chien, P.-C., Huang,

Y.-S., Wang, H.-R., Jiang, J.-H. R., Gu, J.,

Zhao, Z., Jiang, Z., … Chatterjee, S. (2021).

Logic Synthesis Meets Machine Learning:

Trading Exactness for Generalization. 2021

Design, Automation & Test in Europe

Conference & Exhibition (DATE).

https://doi.org/10.23919/date51398.2021.94

73972

3. Fujita, M. (2019). Basic and Advanced

Researches in Logic Synthesis and their

Industrial Contributions. Proceedings of the

2019 International Symposium on Physical

Design.

https://doi.org/10.1145/3299902.3311069

4. Salhi, Y. (2018). Approaches for

Enumerating All the Essential Prime

Implicants. Lecture Notes in Computer

Science, 228–239.

 https://doi.org/10.1007/978-3-319-99344-

7_21

5. Mados, B., Bilanova, Z., Chovancova, E.,

and Adam, N. (2019). Field Programmable

Gate Array Hardware Accelerator of Prime

Implicants Generation for Single-Output

Boolean Functions Minimization. 2019 17th

International Conference on Emerging

ELearning Technologies and Applications

(ICETA).

https://doi.org/10.1109/iceta48886.2019.90

40020

6. Kubica, M., Opara, A., and Kania, D.

(2020). Methods for Representing Boolean

Functions—Basic Definitions. Technology

Mapping for LUT-Based FPGA, 15–24.

https://doi.org/10.1007/978-3-030-60488-

2_2

7. Quine, W. V. (1952). The Problem of

Simplifying Truth Functions. The American

Mathematical Monthly, 59(8), 521–531.

https://doi.org/10.1080/00029890.1952.119

88183

8. McCluskey, E. J. (1956). Minimization of

Boolean Functions*. Bell System Technical

Journal, 35(6), 1417–1444.

http://www.uomustansiriyah.edu.iq/
https://doi.org/10.7494/automat.2018.22.2.29
https://doi.org/10.7494/automat.2018.22.2.29
https://doi.org/10.7494/automat.2018.22.2.29
https://doi.org/10.23919/date51398.2021.9473972
https://doi.org/10.23919/date51398.2021.9473972
https://doi.org/10.1145/3299902.3311069
https://doi.org/10.1007/978-3-319-99344-7_21
https://doi.org/10.1007/978-3-319-99344-7_21
https://doi.org/10.1109/iceta48886.2019.9040020
https://doi.org/10.1109/iceta48886.2019.9040020
https://doi.org/10.1007/978-3-030-60488-2_2
https://doi.org/10.1007/978-3-030-60488-2_2
https://doi.org/10.1080/00029890.1952.11988183
https://doi.org/10.1080/00029890.1952.11988183

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

315

https://doi.org/10.1002/j.1538-

7305.1956.tb03835.x

9. Petrick, S. R., and Sethares, G. C. (1968). On

the Determination of Complete Sets of

Logical Functions. IEEE Transactions on

Computers, C-17(3), 273–273.

https://doi.org/10.1126/science.162.3858.11

09

10. Seda, P., Seda, M., Hosek, J., Dvorak, J., and

Sedova, J. (2019). The Improvement of

Quine-McCluskey Method Using Set

Covering Problem for Safety Systems. 2019

4th International Conference on Intelligent

Green Building and Smart Grid (IGBSG).

https://doi.org/10.1109/igbsg.2019.8886174

11. Joshi, M., Sunori, S. K., Tewari, N., Maurya,

S., Joshi, M., and Juneja, P. K. (2021).

Formulation of C++ program for Quine–

McCluskey Method of Boolean Function

Minimization. Machine Learning, Advances

in Computing, Renewable Energy and

Communication, 341–346.

https://doi.org/10.1007/978-981-16-2354-

7_31

12. Vu, H.-G., Bui, N.-D., Nguyen, A.-T., and

ThanhBangLe. (2021). Performance

Evaluation of Quine-McCluskey Method on

Multi-core CPU. 2021 8th NAFOSTED

Conference on Information and Computer

Science (NICS).

https://doi.org/10.1109/nics54270.2021.970

1506

13. Balasubramanian, P., Bernasconi, A.,

Ciriani, V., and Villa, T. (2021). A Boolean

Heuristic for Disjoint SOP Synthesis. 2021

24th Euromicro Conference on Digital

System Design (DSD).

https://doi.org/10.1109/dsd53832.2021.000

19

14. Su, S., Zou, C., Kong, W., Han, J., and Qian,

W. (2020). A Novel Heuristic Search

Method for Two-Level Approximate Logic

Synthesis. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and

Systems, 39(3), 654–669.

https://doi.org/10.1109/tcad.2018.2890532

15. Miao, J., Gerstlauer, A., & Orshansky, M.

(2013). Approximate logic synthesis under

general error magnitude and frequency

constraints. 2013 IEEE/ACM International

Conference on Computer-Aided Design

(ICCAD).

https://doi.org/10.1109/iccad.2013.6691202

16. Ammes, G., Neto, W. L., Butzen, P.,

Gaillardon, P.-E., & Ribas, R. P. (2022). A

Two-Level Approximate Logic Synthesis

Combining Cube Insertion and Removal.

IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems,

41(11), 5126–5130.

https://doi.org/10.1109/tcad.2022.3143489

17. Ammes, G., Butzen, P. F., Reis, A. I., &

Ribas, R. (2022). Two-Level and Multilevel

Approximate Logic Synthesis. Journal of

Integrated Circuits and Systems, 17(3), 1–

14. https://doi.org/10.29292/jics.v17i3.661

18. Kanakia, H., Nazemi, M., Fayyazi, A., &

Pedram, M. (2021). ESPRESSO-GPU:

Blazingly Fast Two-Level Logic

Minimization. 2021 Design, Automation

& Test in Europe Conference &

Exhibition (DATE).

https://doi.org/10.23919/date51398.2021.94

73961

19. Potvin, N., Bersini, H., and Milojevic, D.

(2022). Espresso to the rescue of genetic

programming facing exponential

complexity. Proceedings of the Genetic and

Evolutionary Computation Conference

https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1126/science.162.3858.1109
https://doi.org/10.1126/science.162.3858.1109
https://doi.org/10.1109/igbsg.2019.8886174
https://doi.org/10.1007/978-981-16-2354-7_31
https://doi.org/10.1007/978-981-16-2354-7_31
https://doi.org/10.1109/nics54270.2021.9701506
https://doi.org/10.1109/nics54270.2021.9701506
https://doi.org/10.1109/dsd53832.2021.00019
https://doi.org/10.1109/dsd53832.2021.00019
https://doi.org/10.1109/tcad.2018.2890532
https://doi.org/10.1109/iccad.2013.6691202
https://doi.org/10.1109/tcad.2022.3143489
https://doi.org/10.29292/jics.v17i3.661
https://doi.org/10.23919/date51398.2021.9473961
https://doi.org/10.23919/date51398.2021.9473961

Journal of Engineering and Sustainable Development (Vol. 27, No. 03, May 2023) ISSN 2520-0917

316

Companion.

https://doi.org/10.1145/3520304.3529005

20. Duşa, A. (2008). A mathematical approach

to the boolean minimization problem.

Quality & Quantity, 44(1), 99–113.

https://doi.org/10.1007/s11135-008-9183-x

21. Rudell, R. L., and Sangiovanni-Vincentelli,

A. (1987). Multiple-Valued Minimization

for PLA Optimization. IEEE Transactions

on Computer-Aided Design of Integrated

Circuits and Systems, 6(5), 727–750.

https://doi.org/10.1109/tcad.1987.1270318

22. Fiser, P., Rucky, P., and Vanova, I. (2008).

Fast Boolean Minimizer for Completely

Specified Functions. 2008 11th IEEE

Workshop on Design and Diagnostics of

Electronic Circuits and Systems.

https://doi.org/10.1109/ddecs.2008.453876

8

23. Lee, S.-Y., Kim, S., and Kang, S. (2019).

Ternary Logic Synthesis with Modified

Quine-McCluskey Algorithm. 2019 IEEE

49th International Symposium on Multiple-

Valued Logic (ISMVL).

https://doi.org/10.1109/ismvl.2019.00035

24. Stanković, R. S., Astola, J. T., and Moraga,

C. (2012). Representation of Multiple-

Valued Logic Functions. Synthesis Lectures

on Digital Circuits & Systems, Morgan &

Claypool Publishers. ISBN: 978-3-031-

79852-8

25. Al-Wardi, Z. (2021). Radix-p Multiple

Valued Logic Function Simplification using

Higher Radix Representation. Journal of

Physics: Conference Series, 1804(1),

012016. https://doi.org/10.1088/1742-

6596/1804/1/012016

https://doi.org/10.1145/3520304.3529005
https://doi.org/10.1007/s11135-008-9183-
https://doi.org/10.1109/tcad.1987.1270318
https://doi.org/10.1109/ddecs.2008.4538768
https://doi.org/10.1109/ddecs.2008.4538768
https://doi.org/10.1109/ismvl.2019.00035
https://doi.org/10.1088/1742-6596/1804/1/012016
https://doi.org/10.1088/1742-6596/1804/1/012016

