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Abstract :

Although neural networks applicable to the solution of robotics control problems are,
in fact, neurocontrollers, their function is specialized mainly to provide solutions to robot
arm motion problems. In this paper, two types of neural network models are applied for
solving a number of robot kinematics problems these types are: Exact Radial Bases Neural
Network (RBENN) and General Regression Neural Networks (GRNN). Learning the robot
arms motions to achieve the desired final position are the main kinematics tasks covered
here. Hardware realization of a Neural Network, to a large extent depends on the efficient
implementation of a single neuron. Field Programmable Gate Array FPGA-based
reconfigurable computing architectures are suitable for hardware implementation of
neural networks. FPGA realization of NNs with a large number of neurons is still a
challenging task. This paper also discusses the issues involved in implementation of a
multi-input neuron with linear/nonlinear excitation functions using VHDL programming
language for FPGA.

Key words. Two-Axis Robot, Exact Radial Bases Neural Network (RBE-NN), General
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1. Introduction
For a manipulator with n degree of freedom, a any instant of time joint variables is
denoted by 6i = 0 (t), i =1, 2, 3,..., n and position variables x;j = x(t), j = 1, 2, 3,...m. The

relations between the end-effector position x(t) and joint angle 6(t) can be represented by the
following equation (112 ;

xp=feoC)) .. (1)
where f is a nonlinear, continuous and differentiable function. In a two-axis robotic arm,

given the angles of the joints, so the two forward kinematics equations (Eq.(2) and Eq. (3))
give the location of thetip of the arm.

X=lcos(6)+ |, scos(01+62) L. 2
y=lisin(0)+ lpsin(01+62) ... ?3)

Given a desired location for the tip of the robotic arm, what should the angles of the
joints be so asto locate the tip of the arm at the desired location (as shown in Figure. (1).

)\ (x.y) Desired location

Fig .(1): The two-axis robotic arm with the two angles, 8, and 0,
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On the other hand, with the given desired end effector position, the problem of finding
the values of the joint variables isinverse equation(4), which can be solved by:

o=fxo . 4)

There is usually more than one solution and can at times be a difficult problem to solve.
This is a typical problem in robotics that needs to be solved to control a robotic arm to
perform tasks it is designated to do. In a 2-dimensiona input space, with a two-axis robotic
arm and given the desired co-ordinate, the problem reduces to finding the two angles
involved. The first angle is between the first arm and the ground (or whatever it is attached
to). The second angle is between the first arm and the second arm. So in our case the inverse
Kinematics equation are :

0= tan(y/X) —tan*(ko/ks) 00 ... (5)

6= tan’(sin(6,) / cos(6,)) .. (6)
Where:

ki=l1+lcos(6) L (7)

ko=l,sin(6,) cos(6,) ... (8)

Since the two formulas for the two-axis robotic arm are known, x and y co-ordinates of
the tip of the arm are deduced for the entire range of angles of rotation of the two joints. The
co-ordinates and the angles are saved to be used as training data to train the two Neurd
Networks (RBENN and GRNN)for the two angles (6;and 6,) respectively.

During training, the two NNs learns to map the co-ordinates (x,y) to the angles (01, 6>).
The trained NNs are then used as a part of alarger control system to control the robotic arm.
Knowing the desired location of the robotic arm, the control system uses the trained NNs to
deduce the angular positions of the joints and applies force to the joints of the robotic arm
accordingly to move it to the desired location.

After training these NNs we will implement this network by using new hardware
implementation methods. Hardware realization of a Neural Network (NN), to a large extent
depends on the efficient implementation of a single neuron. Field Programmable Gate Array
FPGA-based reconfigurable computing architectures are suitable for hardware
implementation of neural networks. FPGA realization of NNs with a large number of neurons
is still a challenging task!34I],

The new proposed method of implementation is the FPGA, which is suitable for fast
implementation and quick hardware verification. FPGA based systems are flexible and can be
reprogrammed unlimited number of times.
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2. Exact Radial Bases (ERB) and General Regression Neural
Networks (GRNN)

Exact Radial Bases (ERB) neura network is atwo-layer network as shown as a blocks in
Figure(2). The first layer has neurons with radial bases transfer function, and calculates its
weighted inputs with Euclidean distance weight function and uses the network production for
the input function. The second layer has linear transfer function neurons, and calculates its
weighted input with dot product weight function and its inputs with network sum input
function. Both layers have biases see Figure.(3).

RBENN sets the first-layer weights to transpose of the input vector (P), and the first-
layer biases are al set to 0.8326/S, resulting in radial basis functions that cross 0.5 at
weighted inputs of +/- S, Where Sis the spread of radial basis functions 7.

The second-layer weights LW{ 2,1} and biases b{2} are found by simulating the first-
layer outputs & 1} and then solving the following linear expression:

[LW{2,1} b{2}] * [&{1};0nes] =T ... 9)
Where T isthe target vector and (ones) is a square matrix of ones elements. We know the
inputs to the second layer a{1} and the target (T), and the layer is linear. We can use the

following expression to calculate the weights and biases of the second layer to minimize the
sum-sguared error.

Wb=T/[P ones(LQ)] .. (10)

Here Wb contains both weights and biases, with the biases in the last column.

el —»fn o » )
¥{1t  Process Input 1 Layer 1 a{l}
afl} a2}
Layer 2
(D
a{l} Process Output 1 T

Fig .(2): The two layers of ERB Neural Network
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(1—»L—»{ueig

p{f}  Delays 1 W{1.1}> A1)
hias netprod radbas a{1}
b1t

@ PTOL P weight

af1} Delays 1 I_W{2.1}>ti »l 2 p.@
hias netsum purelin a2}
b{2}

Fig .(3): Inside the two layers for the ERB Neural Network

General Regression neura networks (GRNN) are widely used for solving prediction
problems. GRNN is one of the type neural network that can be used for prediction. This type
of neural networks a kind of radial basis network that is often used for function
approximation.

As in RBENN, GRNN contain two-layers the first layer has radia bases neurons, and
calculates weighted inputs with Euclidean distance function and network input with
production function. The second layer has linear transfer function neurons but calculates
weighted input with normalized dot product weight function, and net inputs with network
sum. Only thefirst layer has biases.

GRNN sets the first layer weights to P, and the first layer biases are al set to 0.8326/S,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/- S. The second layer
weights LW{2,1} areset to T as shown in Figure(4).

@—}TDL — weight
>E

p{1} Delays 1 IW{1,1} X »K >@
bias etprod radbas a{l}
b{l}

@—VTDL — P> weight * » >@

a{l} Delays 1 LW{2,1} netsum purelin af2}

Fig .(4): The two layers for the GRNN
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3. Neural Network implementation using FPGA technique

During the 1980s and early 1990s there was significant work in the design and
implementation of hardware neurocomputers. Nevertheless, most of these efforts may be
judged to have been unsuccessful: at no time have hardware neurocomputers been in wide
use. This lack of success may be largely attributed to the fact that earlier work was almost
entirely aimed at devel oping custom neurocomputers, based on ASIC technology, but for such
niche areas this technology was never sufficiently developed or competitive enough to justify
large-scale adoption. On the other hand, gate-arrays of the period mentioned were never large
enough nor fast enough for serious artificial-neura network (ANN) applications. But
technology has now improved: the capacity and performance of current FPGAs are such that
they present a much more redistic alternative. Consequently neurocomputers based on
FPGASs are now amuch more practical proposition than they have been in the past [

So, neural networks can be implemented using analog or digital systems. The digital
implementation is more popular as it has the advantage of higher accuracy, better
repeatability, lower noise sengitivity, better testability, higher flexibility, and compatibility
with other types of preprocessors. The digital NN hardware implementations are further
classified as!®%

i. FPGA-based implementations
ii.  DSP-based implementations
iii.  ASIC-based implementations.

DSP based implementation is sequential and hence does not preserve the pardlé
architecture of the neurons in a layer. ASIC implementations do not offer re-configurability
by the user. FPGA is a suitable hardware for neural network implementation as it preserves
the paralel architecture of the neurons in a layer and offers flexibility in
reconfiguration.FIPI

4. Solution of the Forward and Inverse Kinematics Problem Using
Our method

In order for the two networks to be able to predict the angles (6, and 6,) they have to be
trained with sample input-output data. The first RBE network will be trained with X and Y
coordinates as input and corresponding 0, values as output (see Figure.5(a)). Similarly, the
second network (GRNN) will be trained with X and Y coordinates as input and corresponding
0, values as output (Figure.5(b)). Each of the neural networks involved performs static
mapping of two two-variable functions as discussed earlier in Eq.(2) and Eq.(3)

Once the training is complete, the two networks would have learned to approximate the
angles (0, and 0;) as a function of the coordinates (X, Y). One advantage of using the two
approaches is that the RBE network would now approximate the angles for coordinates that
are similar but not exactly the same as it was trained with GRNN. For example, the trained
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networks are now capable of approximating the angles for coordinates that lie between two
points that were included in the training dataset. This will alow the final controller to move
the arm smoothly in the input space.

We now have two trained networks which are ready to be deployed into the larger system
that will utilize these networks to control the robotic arms.

Having trained the networks, an important follow up step is to validate the networks to
determine how well the networks would perform inside the larger control system. Since this
paper deals with a two-joint robotic arm whose inverse kinematics formulae derived in Eq.(5)
and Eq.(6), it is possible to test the answers that the networks produce with the answers from
the derived formul ae.

Now given a specific task, such as robots picking up an object in an assembly line, the larger
control system will use the trained networks as a reference, much like a lookup table, to
determine what the angles of the arms must be, given a desired location for the tip of the arm.
Knowing the desired angles and the current angles of the joints, the system will apply force
appropriately on the joints of the arms to move them towards the desired location.

After al this completed the program will be trandated to a Simulink diagram using
MATLAB. With the use of Simulink® HDL Coder™ software [ that lets us generate hardware
description language (VHDL) code based on Simulink® models the coder brings the Model-
Based Design approach into the domain of FPGA development. Using the coder, we can spend
more time on fine-tuning algorithms and models through rapid prototyping and experimentation
and less time on VHDL coding that Xilinx’s core generator can read. All parts in the two neural
networks will be compiled to VHDL program then all parts will be collected to represent the
whole network structure that we use it in our work. The flowchart of our procedure is shown in
Figure.(6).

X Z:> RBE Neural X GR Neural
0 ﬁ>e
Y Networ k :> ! Y Networ k 2

(@) (b)

Fig .(5): RBE and GR Neural Network for robot kinematics transformation: (a)
forward kinematics problem and (b) inverse kinematics problem.
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Give parameters to 8; and 8; Give random parameters to X Convert the resulted two
and ¥ networks to (RBNN and
l * {GRNN) to Simulink model
E\'aluate.X and.Y from t:he Evaluate the desired 814 and 84 l
for\ra;:d lunemjiu;‘és eguauons from the reverse kinematics Compile the Simulink to VDL
42) andEq(3) equations Equ.(5) and Equ.(6) code using Simulink® HDL
l l Coder™ software
Initialize the REENN and K N i
GRNN simulate the RBENN and
GRINN to obtain the predicted Program the FPGA device
l angles 8;; and 82; using the resulted VHDL
program
Give the parameters for
learning: Spread Constant{S)and v
Tolerance {error) Validate the results and h 4
¢ compute the difference error: Place the programmed FPGA
- Bygisr= 014 - B1p device in 1.'.he system k.] control
Startlearning process Boai= 24— B2p the motion of robetic arm

Fig .(6): A flow chart of the whole process for the proposal

5. Simulated Example

Let us assume that length of first arm (I;) = 10 and length of second arm () = 7. The first
joint has limited freedom to rotate and it can rotate between 0 and 90 degrees. Similarly, assume
that the second joint has limited freedom to rotate and can rotate between 0 and 180 degrees.
Hence, 0<= 6,<= /2 and 0<= 0,<= 1 (see Figure .7).

v

All possible 8; values
O<@=m

b All possible 8; values

-‘/—‘ﬂ:‘ 8= mi2

Fig .(7): lllustration of all possible 81 and 02 values.
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Now, for every combination of 6, and 6, values the X and Y coordinates are deduced using
forward kinematics formulae (Eq.2 and Eq.3).The datais generated for al combination of 6; and
0, values and saved into amatrix to be used as training data for RBENN and RGNN. Fig.8 shows
al the X-Y data points generated by cycling through different combinations of 6, and 6, and
deducing X and Y co-ordinates for each.

RBENN and GRNN represent the two trained neural networks that will be deployed in the
larger control system. With Spread constant (S) = 1 and 5 for RBENN and GRNN respectively
we can train the two networks.

Let's assume that it is important for the networks to have low errors within the operating
range 0<x<2 and 8<y<10. The 0; and 0, values are deduced mathematically from the x and y
coordinates using inverse kinematics formulae (Eq.5 and Eq.6) to get 014 and 02q.

thetal and theta? values predicted by the trained RBENN and GRNN networks
respectively to obtain the predicted angles 61p and 02p.

oty o+
+
16 ; ++ + ++ h; +W -
T T I A
+ + | 4+ T o+
+ + +
14 + R R E =t
+ 7 T+ + o+ I+
+ + + + + +
121 i L : %
+ + + oy
+ + + i + Tt
+ + 1+ + t + + +
- + L U AR o
> g 4T IR S 4 + o+
n + T T + o+ T+ T
+ o+ L e R N
oLt L+t Ty TR ot F
T n + - e
++ ++++++++ +++ ++ i
+
4 + ++4++4_p == +, T+
+ |- +
R, +++ E
2 s
2 E
0
5 0 5 10 15

X

Fig .(8): X-Y coordinates generated for all 81 and 82 combinations

Now, we can see how close the networks outputs are with respect to the deduced values by
using the following formulas (see Figure.9 and Figure.10):

01diff = 014- 01p
ezdiff = 92d— ezp

The resulted Mean square error (MSE) for the two networks is: 0.0085 for RBENN and
0.0037 for GRNN which is a fairly good number for the application it is being used in.
However this may not be acceptable for another application, in which case the parameters to
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the networks may be tweaked until an acceptable solution is arrived at. Also, other techniques
like input selection and alternate ways to model the problem may be explored.

With the use of MATLAB Ver.7.6.0 (R2008a) we can convert our program to Simulink
model as shown previoudly in Figure.2, Figure.3 and Figure.4.

The fina step is to program the Xilinx FPGA instrument depending on Simulink® HDL
Coder™ software that comes with the MATLAB package. The HDL coder can compile the
resulted Simulink to VHDL program. Now the FPGA device was ready to program using the
resulted VHDL program with the use of the board (Spartan-3 Startup Kit Demo Board)
interfaced with Pentium-4 PC of speed 3.02 GHz and RAM 2.0 GB.

] T | I !

-0.02 F----

-0.04

-0.06

-0.08

THETAID - THETAIF

-0.1

0.063

0.066

0.084

0.062

0.06

0.058

THETAZ2D - THETAZF

0.036

0.054

0.032
0

Fig .(10): Deduced 0,-Predected 0,
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Here is a samples for some VHDL code in some parts in our network. Figure.11 shows
the VHDL code for thefirst layer IW{1,1} and Figure.12 for the second layer LW{2,1}.

LIBRARY IEEE;

USE IEEE.std _logic 1164.ALL:
USE IEEE.numeric std.ALL;
USE work.nonol pkg.ALL;

ENTITY IW 1 1 T3
PORT( pd_1 1 : IN vector of real(0 TO 1): —— double [2]
iz 1 1 - OUT vector of real(0 TO 13) —— double [1l6]
):
—— Component Configuration Statements
FOR ALL : distl
USE ENTITY work.distl(rtl):

FOR ALL : distZ
USE ENTITY work.distZ (rtl):

—— Signals=s

SIGHNAL IW 1 1 1 outl : vector of real(0 TO 1) = (OTHERS =>» 0.0): -
- double [2]

SIGNAL distl outl : real = 0.0; -- double

SIGHNAL IW 1 1 2 outl : vector of real(0 TO 1) = (OTHERS =>» 0.0); -
— double [2]

SIGNAL distZ outl

Fig .(11): A sample of VHDL code for the input layer IW{1,1}

—— Component Configuration Statements
FOR ALL : dotprodl
USE ENTITY work.dotprodl(rtl):

—— Signals

SIGHNAL IW 2 1 1 outl : vector of real(0 TO 15) := (OTHERS =>
0.0); -- double [16]

SIGHNAL dotprodl outl i real := 0.0; -- double

SIGHAL Mux outl : real := 0.0; -- double
IW 2 1 1 outl{0) <= -7.5778031686867950E-001;

IN 2 1 1 cutl({l) <= -6.89674375155472545E-001;

I 2 1 1 outl(2) <= -5.89672714420356308E-001;

I 2 1 1 outl(3) <= -4.89655040051601318E-001;
IW 2 1 1 outl(4) «= -3.9624066445480005E-001;
I 2 1 1 outl(3) <= -2.8587876808554481E-001;
IN 2 1 1 outl(e) <= -1.857347174931537T4E-001;
IN 2 1 1 outl(7) <= -0.6547648553877863E-002;
I 2 1 1 outl(8) <= 0.0000000000000000E+000;
IW 2 1 1 outl(9) <= 9.0761446381729324E-002;
IW 2 1 1 outl(1l0) <= 1.709610480083665%E-001;
IW 2 1 1 outl({ll) <= Z.367595919%8538135E-001;

Fig .(12): A sample of VHDL code for the input layer LW{2,1}
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6. Conclusions

We can conclude the following points from our work:

This paper takes two types of neural networks to control a two axes robotic arm and to
solve the inverse kinematics problem.

The use of different types of neura network depending on the preferred of some
networks in a specific application on other networks. This depends on our sense and the
type of the used application also depends on trial and error.

As we can see from the previous figures (Fig.(9) and Fig.(10)) that the difference
between the deduced and the predicted angles can decrease as the iterations (X,Y
samples) increased.

The difference in theta deduced and the data predicted clearly depicts that the proposed
method results in an acceptable mean square error.

Our trained networks can be utilized to provide fast and acceptable solutions of the
inverse kinematics problem.

This paper aso presents design solution to eliminate the FPGA design for a neura
network. The motivation for this study stems form the fact that an FPGA coprocessor
with limited logic density and capabilities can used in building many complex, flexible,
and faster design systems.
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