
Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 159

A Two-Axis Robotic Arm Controller Design Using Exact
Radial Bases And General Regression Neural Networks

With FPGA Technique

Lecturer. Mohannad Abid Shehab Ahmed Lecturer. Emad Ahmed Hussien
Asst. Lecturer. Haithem Abd Al-Raheem Taha

Electrical Department, Engineering College, Al-Mustansiriyah University.

Abstract :

Although neural networks applicable to the solution of robotics control problems are,
in fact, neurocontrollers, their function is specialized mainly to provide solutions to robot
arm motion problems. In this paper, two types of neural network models are applied for
solving a number of robot kinematics problems these types are: Exact Radial Bases Neural
Network (RBENN) and General Regression Neural Networks (GRNN). Learning the robot
arms motions to achieve the desired final position are the main kinematics tasks covered
here. Hardware realization of a Neural Network, to a large extent depends on the efficient
implementation of a single neuron. Field Programmable Gate Array FPGA-based
reconfigurable computing architectures are suitable for hardware implementation of
neural networks. FPGA realization of NNs with a large number of neurons is still a
challenging task. This paper also discusses the issues involved in implementation of a
multi-input neuron with linear/nonlinear excitation functions using VHDL programming
language for FPGA.

Key words: Two-Axis Robot, Exact Radial Bases Neural Network (RBE-NN), General
Regression Neural Networks (GRNN), FPGA and VHDL.

تصمیم مسیطر ذراع الي من محورین باستخدام الشبكات العصبیة ذات الدالة النصف
 قطریة والارتداد العام مطبقة على مصفوفة البوابات المنطقیة المبرمجة

 ھیثم عبد الرحیم طھ .عماد احمد حسین م .م مھند عبد شھاب . م

 قسم الھندسة الكھربائیة، كلیة الھندسة، الجامعة المستنصریة

 : الخلاصة

ِ السیطرة لبالرغم من أن الشبكات العصبیة قابلة للتطبیق لح المس یطرات "، الآلي، في الحقیقة الإنسان على مشاكل
ف ي بحثن ا ھ ذا، نوع ان م ن .زوید الحلول إلى مشاكل حرك ة ال ذراع الآلی ةتلمتخصصة بشكل رئیسي ، وظیفتھم "العصبیة

الش بكة : ھ ي لعم ل الإنس ان الآل ي ھ ذه الأن واعالمش اكل الحركی ة المرافق ة أنواع الشبكات العصبیة ستطرح لحل عدد م ن

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 160

الملابوطة العصبیة تتض من). GRNN(الع ام الارتدادذات والشبكات العصبیة) RBENN(ذات الدالة النصف قطریة
م حركات الذراع الآلیة .حركات الذراع الآلي دراسة ھندسة معالج الإنسانحركة ّ ھ ي الموقع النھائي المطل وب لإعطاءتعل

 یة، لدرج ة كبی رة یعتم د عل ى التطبی قالإدراك المادي للش بكة العص ب .ھا ھنامن المھام الحركیة الرئیسیة التي تمت تغطیت
ِ لخلیة عصبیة مفردة تش كیل الحس ابات البنوی ة المناس بة لبن اء وتص میم إع ادةالمعتمدة على) FPGA(إلتقنیة .الكفوء

ِ ما زال تحدیا مھما نلتكوین عدد كبیر م) FPGA(إلالإدراك المادي لتقنیة إن .الشبكة العصبیة یناقش .الخلایا العصبیة
لا خطی ة / ع ددة الم داخل ذات دوال تغذی ة خطی ةخلیة عصبیة مت في تطبیق اشتركتالمعقدة التي القضایا ھذا البحث أیضا

). FPGA(إللبرمجة) VHDL(برمجة لغة باستعمال

1. Introduction

 For a manipulator with n degree of freedom, at any instant of time joint variables is
denoted by θi = θ (t), i =1, 2, 3,..., n and position variables xj = x(t), j = 1, 2, 3,...,m. The
relations between the end-effector position x(t) and joint angle θ(t) can be represented by the
following equation [1][2] :

x(t) = f (θ(t)) (1)

where f is a nonlinear, continuous and differentiable function. In a two-axis robotic arm,
given the angles of the joints, so the two forward kinematics equations (Eq.(2) and Eq. (3))
give the location of the tip of the arm.

x= l1 cos(θ1)+ l2 scos(θ1+θ2) (2)

y= l1 sin(θ1)+ l2 sin(θ1+θ2) (3)

Given a desired location for the tip of the robotic arm, what should the angles of the
joints be so as to locate the tip of the arm at the desired location (as shown in Figure. (1).

Fig .(1): The two-axis robotic arm with the two angles, θ1 and θ2

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 161

On the other hand, with the given desired end effector position, the problem of finding
the values of the joint variables is inverse equation(4), which can be solved by:

θ(t) = f ′(x(t)) (4)

There is usually more than one solution and can at times be a difficult problem to solve.
This is a typical problem in robotics that needs to be solved to control a robotic arm to
perform tasks it is designated to do. In a 2-dimensional input space, with a two-axis robotic
arm and given the desired co-ordinate, the problem reduces to finding the two angles
involved. The first angle is between the first arm and the ground (or whatever it is attached
to). The second angle is between the first arm and the second arm. So in our case the inverse
kinematics equation are :

θ1= tan-1(y/x) – tan-1(k2/k1) (5)
θ2= tan-1(sin(θ2) / cos(θ2)) (6)

Where:

k1=l1+l2cos(θ2) (7)
k2=l2 sin(θ2) cos(θ2) (8)

Since the two formulas for the two-axis robotic arm are known, x and y co-ordinates of

the tip of the arm are deduced for the entire range of angles of rotation of the two joints. The
co-ordinates and the angles are saved to be used as training data to train the two Neural
Networks (RBENN and GRNN)for the two angles (θ1and θ2) respectively.

During training, the two NNs learns to map the co-ordinates (x,y) to the angles (θ1, θ2).
The trained NNs are then used as a part of a larger control system to control the robotic arm.
Knowing the desired location of the robotic arm, the control system uses the trained NNs to
deduce the angular positions of the joints and applies force to the joints of the robotic arm
accordingly to move it to the desired location.

After training these NNs we will implement this network by using new hardware
implementation methods. Hardware realization of a Neural Network (NN), to a large extent
depends on the efficient implementation of a single neuron. Field Programmable Gate Array
FPGA-based reconfigurable computing architectures are suitable for hardware
implementation of neural networks. FPGA realization of NNs with a large number of neurons
is still a challenging task[3][4][5].

The new proposed method of implementation is the FPGA, which is suitable for fast
implementation and quick hardware verification. FPGA based systems are flexible and can be
reprogrammed unlimited number of times.

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 162

2. Exact Radial Bases (ERB) and General Regression Neural
Networks (GRNN)

Exact Radial Bases (ERB) neural network is a two-layer network as shown as a blocks in

Figure(2). The first layer has neurons with radial bases transfer function, and calculates its
weighted inputs with Euclidean distance weight function and uses the network production for
the input function. The second layer has linear transfer function neurons, and calculates its
weighted input with dot product weight function and its inputs with network sum input
function. Both layers have biases see Figure.(3).

RBENN sets the first-layer weights to transpose of the input vector (P'), and the first-
layer biases are all set to 0.8326/S, resulting in radial basis functions that cross 0.5 at
weighted inputs of +/- S. Where S is the spread of radial basis functions [1][6][7].

The second-layer weights LW{2,1} and biases b{2} are found by simulating the first-
layer outputs a{1} and then solving the following linear expression:

 [LW{2,1} b{2}] * [a{1}; ones] = T (9)

Where T is the target vector and (ones) is a square matrix of ones elements. We know the

inputs to the second layer a{1} and the target (T), and the layer is linear. We can use the
following expression to calculate the weights and biases of the second layer to minimize the
sum-squared error.

Wb = T/[P; ones(1,Q)] (10)

Here Wb contains both weights and biases, with the biases in the last column.

Fig .(2): The two layers of ERB Neural Network

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 163

Fig .(3): Inside the two layers for the ERB Neural Network

General Regression neural networks (GRNN) are widely used for solving prediction
problems. GRNN is one of the type neural network that can be used for prediction. This type
of neural networks a kind of radial basis network that is often used for function
approximation.

As in RBENN, GRNN contain two-layers the first layer has radial bases neurons, and
calculates weighted inputs with Euclidean distance function and network input with
production function. The second layer has linear transfer function neurons but calculates
weighted input with normalized dot product weight function, and net inputs with network
sum. Only the first layer has biases.

GRNN sets the first layer weights to P', and the first layer biases are all set to 0.8326/S,
resulting in radial basis functions that cross 0.5 at weighted inputs of +/- S. The second layer
weights LW{2,1} are set to T as shown in Figure(4).

Fig .(4): The two layers for the GRNN

a{1}

1

radbasnetprod

b{1}

bias

IW{1,1}

weight

Delays 1

TDL

p{1}

1

a{2}

1

purelinnetsum

K-

LW{2,1}

weight

Delays 1

TDL

a{1}

1

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 164

3. Neural Network implementation using FPGA technique

During the 1980s and early 1990s there was significant work in the design and

implementation of hardware neurocomputers. Nevertheless, most of these efforts may be
judged to have been unsuccessful: at no time have hardware neurocomputers been in wide
use. This lack of success may be largely attributed to the fact that earlier work was almost
entirely aimed at developing custom neurocomputers, based on ASIC technology, but for such
niche areas this technology was never sufficiently developed or competitive enough to justify
large-scale adoption. On the other hand, gate-arrays of the period mentioned were never large
enough nor fast enough for serious artificial-neural network (ANN) applications. But
technology has now improved: the capacity and performance of current FPGAs are such that
they present a much more realistic alternative. Consequently neurocomputers based on
FPGAs are now a much more practical proposition than they have been in the past [4].

So, neural networks can be implemented using analog or digital systems. The digital
implementation is more popular as it has the advantage of higher accuracy, better
repeatability, lower noise sensitivity, better testability, higher flexibility, and compatibility
with other types of preprocessors. The digital NN hardware implementations are further
classified as [8][9]:

i. FPGA-based implementations
ii. DSP-based implementations

iii. ASIC-based implementations.

DSP based implementation is sequential and hence does not preserve the parallel
architecture of the neurons in a layer. ASIC implementations do not offer re-configurability
by the user. FPGA is a suitable hardware for neural network implementation as it preserves
the parallel architecture of the neurons in a layer and offers flexibility in
reconfiguration.[3][5][10]

4. Solution of the Forward and Inverse Kinematics Problem Using

Our method

In order for the two networks to be able to predict the angles (θ1 and θ2) they have to be
trained with sample input-output data. The first RBE network will be trained with X and Y
coordinates as input and corresponding θ1 values as output (see Figure.5(a)). Similarly, the
second network (GRNN) will be trained with X and Y coordinates as input and corresponding
θ2 values as output (Figure.5(b)). Each of the neural networks involved performs static
mapping of two two-variable functions as discussed earlier in Eq.(2) and Eq.(3)

Once the training is complete, the two networks would have learned to approximate the
angles (θ1 and θ2) as a function of the coordinates (X, Y). One advantage of using the two
approaches is that the RBE network would now approximate the angles for coordinates that
are similar but not exactly the same as it was trained with GRNN. For example, the trained

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 165

networks are now capable of approximating the angles for coordinates that lie between two
points that were included in the training dataset. This will allow the final controller to move
the arm smoothly in the input space.

We now have two trained networks which are ready to be deployed into the larger system
that will utilize these networks to control the robotic arms.

Having trained the networks, an important follow up step is to validate the networks to
determine how well the networks would perform inside the larger control system. Since this
paper deals with a two-joint robotic arm whose inverse kinematics formulae derived in Eq.(5)
and Eq.(6), it is possible to test the answers that the networks produce with the answers from
the derived formulae.

Now given a specific task, such as robots picking up an object in an assembly line, the larger
control system will use the trained networks as a reference, much like a lookup table, to
determine what the angles of the arms must be, given a desired location for the tip of the arm.
Knowing the desired angles and the current angles of the joints, the system will apply force
appropriately on the joints of the arms to move them towards the desired location.

After all this completed the program will be translated to a Simulink diagram using
MATLAB. With the use of Simulink® HDL Coder™ software [6] that lets us generate hardware
description language (VHDL) code based on Simulink® models the coder brings the Model-
Based Design approach into the domain of FPGA development. Using the coder, we can spend
more time on fine-tuning algorithms and models through rapid prototyping and experimentation
and less time on VHDL coding that Xilinx’s core generator can read. All parts in the two neural
networks will be compiled to VHDL program then all parts will be collected to represent the
whole network structure that we use it in our work. The flowchart of our procedure is shown in
Figure.(6).

Fig .(5): RBE and GR Neural Network for robot kinematics transformation: (a)
forward kinematics problem and (b) inverse kinematics problem.

RBE Neural

 Network
X
Y θ1

(a)

GR Neural

 Network
X
Y θ2

(b)

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 166

Fig .(6): A flow chart of the whole process for the proposal

5. Simulated Example

Let us assume that length of first arm (l1) = 10 and length of second arm (l2) = 7. The first
joint has limited freedom to rotate and it can rotate between 0 and 90 degrees. Similarly, assume
that the second joint has limited freedom to rotate and can rotate between 0 and 180 degrees.
Hence, 0<= θ1<= π/2 and 0<= θ2<= π (see Figure .7).

Fig .(7): Illustration of all possible θ1 and θ2 values.

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 167

Now, for every combination of θ1 and θ2 values the X and Y coordinates are deduced using
forward kinematics formulae (Eq.2 and Eq.3).The data is generated for all combination of θ1 and
θ2 values and saved into a matrix to be used as training data for RBENN and RGNN. Fig.8 shows
all the X-Y data points generated by cycling through different combinations of θ1 and θ2 and
deducing X and Y co-ordinates for each.

RBENN and GRNN represent the two trained neural networks that will be deployed in the
larger control system. With Spread constant (S) = 1 and 5 for RBENN and GRNN respectively
we can train the two networks.

Let's assume that it is important for the networks to have low errors within the operating
range 0<x<2 and 8<y<10. The θ1 and θ2 values are deduced mathematically from the x and y
coordinates using inverse kinematics formulae (Eq.5 and Eq.6) to get θ1d and θ2d.

theta1 and theta2 values predicted by the trained RBENN and GRNN networks
respectively to obtain the predicted angles θ1P and θ2P.

Fig .(8): X-Y coordinates generated for all θ1 and θ2 combinations

Now, we can see how close the networks outputs are with respect to the deduced values by
using the following formulas (see Figure.9 and Figure.10):

θ1diff = θ1d - θ1P
θ2diff = θ2d – θ2P

The resulted Mean square error (MSE) for the two networks is: 0.0085 for RBENN and
0.0037 for GRNN which is a fairly good number for the application it is being used in.
However this may not be acceptable for another application, in which case the parameters to

-5 0 5 10 15

0

2

4

6

8

10

12

14

16

X

Y

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 168

the networks may be tweaked until an acceptable solution is arrived at. Also, other techniques
like input selection and alternate ways to model the problem may be explored.

With the use of MATLAB Ver.7.6.0 (R2008a) we can convert our program to Simulink
model as shown previously in Figure.2, Figure.3 and Figure.4.

The final step is to program the Xilinx FPGA instrument depending on Simulink® HDL
Coder™ software that comes with the MATLAB package. The HDL coder can compile the
resulted Simulink to VHDL program. Now the FPGA device was ready to program using the
resulted VHDL program with the use of the board (Spartan-3 Startup Kit Demo Board)
interfaced with Pentium-4 PC of speed 3.02 GHz and RAM 2.0 GB.

Fig .(9): Deduced θ1-Predected θ1

Fig .(10): Deduced θ2-Predected θ2

x

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 169

Here is a samples for some VHDL code in some parts in our network. Figure.11 shows
the VHDL code for the first layer IW{1,1} and Figure.12 for the second layer LW{2,1}.

Fig .(11): A sample of VHDL code for the input layer IW{1,1}

Fig .(12): A sample of VHDL code for the input layer LW{2,1}

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 170

6. Conclusions

We can conclude the following points from our work:

• This paper takes two types of neural networks to control a two axes robotic arm and to
solve the inverse kinematics problem.

• The use of different types of neural network depending on the preferred of some
networks in a specific application on other networks. This depends on our sense and the
type of the used application also depends on trial and error.

• As we can see from the previous figures (Fig.(9) and Fig.(10)) that the difference
between the deduced and the predicted angles can decrease as the iterations (X,Y
samples) increased.

• The difference in theta deduced and the data predicted clearly depicts that the proposed
method results in an acceptable mean square error.

• Our trained networks can be utilized to provide fast and acceptable solutions of the
inverse kinematics problem.

• This paper also presents design solution to eliminate the FPGA design for a neural
network. The motivation for this study stems form the fact that an FPGA coprocessor
with limited logic density and capabilities can used in building many complex, flexible,
and faster design systems.

References

1. Jacek M. Zurada, “Introduction to Artificial Neural Systems”, WEST
PUBLISHING COMPANY, COPYRIGHT © 1992.

2. Srinivasan Alavandar, M.J. Nigam, “Inverse Kinematics Solution of 3DOF Planar
Robot using ANFIS”, Int. J. of Computers, Communications & Control, ISSN
1841-9836, E-ISSN 1841-9844 Vol. III (2008), Suppl. issue: Proceedings of ICCCC
2008, pp. 150-155

3. AMOS R. OMONDI and JAGATH C. RAJAPAKSE, “FPGA Implementations of
Neural Networks”, All Rights Reserved © 2006 Springer, Printed in the
Netherlands.

4. Haitham Kareem Ali and Esraa Zeki Mohammed, “Design Artificial Neural
Network Using FPGA”, IJCSNS International Journal of Computer Science and
Network Security, VOL.10 No.8, August 2010.

5. A. Muthuramalingam, S. Himavathi, E. Srinivasan, “Neural Network
Implementation Using FPGA: Issues and Application”, International Journal of
Information and Communication Engineering 4:6 2008.

6. Howard Demuth and Mark Beale, “Neural Network Toolbox For Use with
MATLAB®”, copyrighted© 2002 by The MathWorks, Inc.

Journal of Engineering and Development, Vol. 18, No.2, March 2014, ISSN 1813- 7822

 171

7. Martin T., Howard B, and Mark B”, “Neural Network Design, Original
copyrighted© 1996 by PWS publishing Company. All right reserved.

8. Y.J.Chen, Du Plessis, “Neural Network Implementation on a FPGA”, Proceedings
of IEEE Africon, vol.1, pp. 337-342, 2002.

9. Sund Su Kim, Seul Jung, “Hardware Implementation of Real Time Neural
Network Controller with a DSP and an FPGA”, IEEE International Conference
on Robotics and Automation, vol. 5, pp. 3161-3165, April 2004.

10. Aydoğan Savran, Serkan Ünsal, “Hardware Implementation of a Feed forward
Neural Network Using FPGAs”, Ege University, Department of Electrical and
Electronics Engineering, 2003.

