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Abstract:

Cascading chaotic of a non linear system with high Order has been used to increase the
security and to prevent eavesdropper of knowledge for processor stage number increasing.
The new system contains five variation parameters and exhibits Lorenz and Rosder like
attractors in numerical simulations. The basic dynamical properties of the new system are
analyzed by means of equilibrium points, eigenvalue structures. The use of high dimensional
chaotic system like Lorenz (Transmitter and Receiver) Rossler (Controller) system will give a
more complex structure, more system variables, and parameters. A new kind of dual-chaos
encryption algorithm which takes Logistic mapping as chaos model has been designed and
analyzed. A sequence is adopted for mapping chaos of integer space in high order to solve
limited precision expression problem, dual-chaos system expend control parameters and
increase complexity of chaos behavior to resisted attraction of chaos reconstruction.

Keywords. generalized synchronization, different fractional-order chaotic systems,
Chaotic masking.
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1. Introduction

The communication systems using chaotic waveforms have been studied using parameter
modulation of chaotic oscillators for transmitting an information signal and a synchronous
subsystem augmented with a nonlinear filter for detecting and recovering the transmitted
information. Specifically, claim that the construction of nonlinear filter is a new development
that may offer improved performance for practical chaotic communication systems [U-Chaos is
a common nonlinear phenomenon. It seems chaos, but it is not really messy, and is a class of
phenomena with inherent structure.

In fact, chaos has some good characteristics:

+ The sensitive dependence on initial conditions;
+ The semi-stochastic property;
 Periodicity.
The third characteristic makes chaos variables go through all states in certain ranges
without repetition?.

2. Lorenz System

It is a continuous time nonlinear system exhibiting chaotic trgjectories for specific values
of system parameters. Atmospheric scientist E. Lorenz ! proposed this system (1963) as a set
of three ordinary differential equations. Lorenz system is described as: The

¢ = o(y — x)
y:—xz+px—y (1)
z= xy—pz

Where [x y z] are state vector and o, p, and 3 are constant parameters.

2.1 Properties of Lorenz System Equations

Some important basic features of this system are [

1- The equations involve only first order time derivatives, so the evolution depends only on
the values of x, y, and z at the time. Due to the terms of xz and xy in the second and third
eguations, the system is non-linear.

2- The system is dissipative when the following inequality holds:

szg_z“L%“L%: —6—-1-$<0 2)
Since parameters ¢ and f3, are positive, the inequality aways holds and, thus, solutions are
bounded.

3- The system is symmetric, with respect to the z axis, which means it is invariant for the

coordinate transformation :( X, y, z) — (—X, =Y, 2).
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2.2 Chaotic Lorenz System Behavior

In order for the Lorenz system to give rise to chaotic dynamics, the Lorenz parameters (o,
pand ) must satisfy >

o.p, > 0 3)
o > ﬁ (4')
c(c +8 + 3)
P> o-B-D) %)
_ (oc(c+B+3))
Pe= “(e-B-1)) (6)

The variable p.in Equation (6) is the critical value for p.
To illustrate this formula choosing any value of () will be greater than zero.
Let g = 8/3; Choose o= 10;becausec > f to get chaotic state.

The results of testing these parameters in Lyapunov Exponents are shown in the following
Figure (1) below.

Dynamics of Lyapunov exponents

Lyapunov exponents

16 | |
[ 10 20 30

Time

Fig .(1) Lyapunov Exponents Spectrum of the Chaotic L orenz System for 6= 10,p = 28
and p=8/3
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2.3 Sensitivity to Initial Conditions

One feature of the Lorenz System is that, a small difference in initial conditions would
yield alarge difference in results; Figure (2) illustrates this phenomenon in the Lorenz System.
Two tragjectories begin with very close initial conditions; in particular, xa(0) = X,(0) = 10, ya(0)
= yp(0) = 0,z4(0) = 10 z,(0) = 10.00000000001.For the first 14 time units, the two trgectories
seem identical. However, beyond 15 time units, they seem completely unrelated to each other.
It isthis property of physical systems that
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Fig .(2): Two Numerical Solutions of the L orenz System Showing Sensitivity to Initial
Conditions

2.4 Sensitivity to Parameters

Two identical Lorenz systems (a & b) are taken with the same initial conditions but
starting from different parameters (nearly identical however). The difference in parameters
taken between two Lorenz variables x, and xyis chosen to be 10°®. Figure (3) depicts the time
series of variables X, and x, for two Lorenz systems. After some period, the two variables
quickly diverge from each other even though they started from identical parameters. This
means a long term prediction of chaotic systems is not possible since the slightest error in the
parameters will result in an exponentia increase in the error. M In particular, o1= o, =10, p1
=28 p»,=28.000001 p1= f.=8/3,x40) =xp(0) =10, y40) =yp(0) =0, z4(0) = z,(0) = 10
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Time

Fig .(3): Two Numerical Solutions of the L orenz System Showing Sensitivity to Parameters

3. Rossler system

The Rossler system can be concludedaccording to linear methods such as eigenvectors, but
the principal features of the system need to non-linear methods such as Poincaré maps and
bifurcation diagrams. The Rossler attractor was purposed to behave in the same way to the
Lorenz attractor, but also become facile to analyze specificaly. An orbit within the attractor
follows an external helica close to the x, y plane about an unstable steady point. Once the
graph helix out enough, a second steady point affects the graph, causing anincrease and twist
in the z-dimension. In the time domain, it is clear that although each variable is changing within
a certain range of values, the vacillations are chaotic. This attractor has partial similarities to
the Lorenz attractor, but is easier and has only one various. Rossler controller designed the
Rossler attractor in 1976, [ but the sourcely theoretical equations were recently found to be

beneficial in modeling balance in chemical reactions.

3.1 Synchronization in Chaotic Systems:

The concept of using synchronization methods in communications schemes is based on the
idea that two similar circuits or state space systems, one at the transmitter and the other at the
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receiver, can have at any particular time, the same dynamical state. It might seem that chaotic
synchronization is impossible to achieve in chaotic systems since they are very sensitive to
initial conditions and the slightest difference in the initial conditions will ultimately lead to
totally different trajectories. But after the seminal was work done by Pecora and Carroll (PC) [
they showed that, it is however possible to synchronize two chaotic systems starting from
different initial conditions under certain conditions. However they showed subsequently that, if
two chaotic systems are linked together by a common signal, it is possible to obtain chaotic
synchronization regardiess of the initial conditions. The earliest and the simplest form of
synchronization is a Complete Synchronization. It occurs in coupled identical systems and is
aso referred to as a conventional synchronization or an identical synchronization. Two
continuous-time chaotic systems:

x(t) = F(x(t)) (7)

And

2(t) = F(%()) (8)

are said to obtain Complete Synchronization if
limt [x(t) —x(®)]=0 9)

i.e., for any combination of initial conditions x(0) and x(0), the nature of coupling can have
two possibilities. When the evolution of one of the coupled system is unaffected by the
coupling mechanism, then this is unidirectional coupling or a drive-response coupling.
However, when both systems are connected to each other such that the evolution of both affects
each other, then this type of coupling is called bi-directional coupling mechanism ™.

Fig .(4): Mechanism of Complete Synchronization.

4. Chaotic Masking

Chaotic masking (CM) is one of the earliest chaotic communication techniques. It is based
on the principles of PC synchronization. It primarily involves the transmission of analog

signals™Y.
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4.1 Principles of Chaotic Masking

Chaotic masking involves the addition of a message signal m to a chaotic carrier signal X,
before the transmission of the sum of the two signals takes place. The block diagram
illustrating the principles of chaotic masking is shown in Figure(5)

Transmitter | | Receiver
(Master system) (Slave system)

Y

i- oG-

\ =T :1-‘— X, z
Channel " A
z=—bzt+x ¥y

D) y0) 20 XO0)  y(0)  z(0)

Fig .(5) The general block diagram of the chaotic communication System based
on the chaotic masking concept.

In Figure (5),n denotes the additive white Gaussian noise (AWGN) component introduced
by the channel and x,denotes the received signal affected by AWGN. The slave system of the
receiver generates a signalzwhich is expected to besynchronized with the corresponding master
signa x of the transmitter. Assuming that the AWGN component is near zero, and that
sufficient amount of time has passed for x andxto synchronize. The transmitted message (m)can
be recovered in the form =

m=x,—X=(m+x)—2=mM (20)

The requirement of a chaotic masking scheme is for the power of the information signal to be
significantly lower than the power of the chaotic carrier [

4.2 Chaotic Masking within the Lorenz master-slave System

Chaotic masking within the Lorenz master-slave system has been demonstrated in™. The
system has been designed using the Lorenz x signal as the driving signal. Stability Lyapunov’s
direct method has been used in [*¥ to show that using the x signa as the driving signal the
master-slave system synchronizes. It has been shown that by adding a small amplitude speech
signa onto the chaotic carrier one is able to recover the speech signal at the receiver. The

117



Journal of Engineering and Development, Vol. 18, No.4, July 2014, ISSN 1813- 7822

communication system is based on chaotic masking, while implementing the Lorenz master-
slave system, is shown in Figure (6).

mn

Master system » Slave system

Transmitter Channel Receiver

Fig .(6)The Lorenz based communication system implementing chaotic masking.

The recovering of the transmitted information is demonstrated under noiseless conditions
in Figure (7) below, by processing and comparing the top and bottom graphs through the
system.

Transmitted signal = Chaotic carrier + Original message
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Fig .(7):The chaotic parameter values of the system have been: o0 =16,r =45.6
and b = 4.
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In the case of Figure (7), the chaotic parameter values of the system have been set to: 6 = 16, r
=45.6 and b = 4. An evident difference in power between the chaotic carrier and the speech
signa can be observed in Figure (7). The transmitted signal has been plotted in phase space in
Figure (8). The small ripple, observed on the strange attractor of Figure (8), is caused by the
message m embedded within it.
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The rippie caused by Z _
speech signals 2 =

10+
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2 | | | | | | |
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Fig .(8):The transmitted signal xs(t)plotted in phase space.

5. Chaotic Parameter Modulation within the Lorenz and Rossler
controller Systems

The concept of parameter modulation is now demonstrated on the Lorenz chaotic system
(1314 The binary message is used to alter the parameter b of the transmitter Lorenz chaotic
system between 4 and 4.4 depending on transmission. However, at the recelver side the
parameter b is fixed at 4 for all time. Thus, the synchronization either occurs or does not,
depending on the state of the parameter b at the transmitter side. The parameters o and r are
fixed at 16 and 45.6, respectively. For these parameter values the system is chaotic. In order to
implement the CPM scheme the authors of ™! have scaled the Lorenz chaotic system to allow
for the limited dynamic range of the operational amplifiers. The generdization of
synchronization Lorenz and Rossler controller Parameter this system, based on the PC
synchronization concept, is presented in Figure (9) that demonstrates the limits of the
requirements and we get a messy process synchronization of non-linear system using MATLAB
Simulink (R2011a) software.
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Fig .(9):The geniralzation Of synicrolazation Lorenz and Rossler Parameter.
The upper limits of the requirements of chaotic signals with specific limits mathematical

calculations can be made and the extent of their vulnerary ability initial conditions which is
shown in Figure (10) below.
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Fig .(10) The Chaiotic Signal with Lorenz Parameter a=16 , r=45.6 ,and b=4

The chaotic signal between Lorenz Parameter and Rossler controller parameter shows the
effect of the initial conditions of chaotic signals at a=0.2, b=0.2 and c=5.7 which is displayed in
Figure (11) below.
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Fig .(11)The Chaiotic Signal between Lorenz Parameters and Rossler Parameter
a=0.2 ,b=0.2, and c=5.7.
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The intial conditions of synchronization guess for the linear system of Chaiotic Signal
between Lorenz Parameters and Rossler controller are displayed and shown in Figure (12)
below.
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Fig .(12) The Linear Synchronization output with Lorenz and Rossler Cascading
Parameters

6. Conclusions

Chaos synchronization between two linearly coupled systems have been studied and
analyzed. Some sufficient conditions for global synchronization using Cascading of chaotic
masking will cancel the effects of signal amplitude on synchronization. Several chaotic
communication systems with receiver based on chaotic synchronization have been described. In
two-channel transmitted method, a faster synchronization can be achieved, and high nonlinear
encryption function can be used. These include the chaotic communication schemes of chaotic
masking, chaotic modulation and the new chaotic communication scheme of initial condition
modulation. A new method for analyzing the stability of synchronization solution of coupled
system has been introduced to investigate the stability of synchronization solution for the
classica Lorenz and Rossler controller system. The synchronization between the Lorenz
system and the Rossler controller system is given to illustrate the effectiveness of the proposed
scheme.
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