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UAbstract 
        This paper present a simple method for reducing the linear higher order systems. The 

coefficient of the reduction model is obtained by using the modified dominant pole 

technique, while the coefficients of the numerator are obtained by reduced order model. 

Linear Quadratic Regulator (LQR) is used to design a controller for the higher order 

system depended on the linear reducing equations. LQR without and with integral effect 

method are used and compared for controlling the higher order systems.   The LQR 

controller are designed and simulated using MATLAB/Simulink. Simulation results show 

that both the controllers are capable of controlling the systems successfully. The LQR with 

integral gives the better performance, compared to when the system without it. the LQR 

controller scheme with smith predictor connection is suggested in order to maintain the 

stability of the higher order plant in addition to improve the performance of the controlled 

system. The simulation results for this scheme are tested with two higher order time delay 

systems to illustrate the efficient performance for the proposed control scheme. 
 

 للانظمة ذات الرتبة العالية اعتمادا على نموذج ذات رتبة اقل LQRتصميم  مسيطر 
 مدرس مساعد نور صفاء عبد الجليل 

نصريةالجامعة المست/ قسم الهندسة الكهربائية   
2TUالخلاصة 

حيث تم الحصول على معاملات بسط معادلة . في هذا البحث تم تقديم طريقة بسيطة لتقليل الانظمة ذات الرتب العالية       
 reduced (بينما يتم الحصول على معاملات المقام باستخدام طريقة ) dominant pole(التقليل  باستخدام طريقة 

order .( السيطرة تم استخدام اسلوب)LQR   (حيث تم تطبيق هذا المسيطر . للسيطرة على الانظمة ذات الرتب العالية
النظام تم . ثم اجريت المقارنة بين الاسلوبين وبيان تاثيرهم على الانظمة ذات الرتب العالية، مع وبدون استخدام التكامل
الاسلوبين قادران على السيطرة على وقد اظهرت النتائج ان ، MATLAB/Simulink)( تصميمه باستخدام برنامج

في هذا البحث تم ، ايضا. لكن المسيطرمع استخدام التكامل قد اعطى نتائج افضل مقارنة  بدونه، النظام بصورة ناجحة
وذلك للحفاظ على استقرارية المنظومة ذات الدرجة العالية بالاضافة  Smith)(مع متنبئ  LQR)(طرح مخطط مسيطر 

 . وقد تم اختبار مثالين لتوضيح الاداء الكفوء لمخطط السيطرة المقترح.  لمنظومة المسيطر عليهاالى تحسين اداء ا

keywords:- higher order, dominant pole method, LQR controller, smith predictor, time delay. 
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1. Introduction
          The reduction of complex high-order models to simple low-order models has been the 

interest of many researchers [1]. Simple lower order models are very desired in the design of 

control systems, as the analysis of higher order systems is exhausted and mathematically 

dense. The reason of obtaining reduced model is to improve a good reduction for the higher 

order systems, with keeping the characteristics of it as much as possible [1].  

     

          Different reduction methods have been proposed. Two approaches have attracted more 

interested in this paper. These are dominant pole [2] and reduced order model [3]. Several 

model order reduction techniques have been presented [4-7]. Each one has their own features 

and applications. In recent times, mixed mathematical techniques [8-9] have taken much 

significance in model order reduction Single-Input Single-Output (SISO) systems. Shamash 

[4] has suggested a multivariable system reduction using Padé Approximation and dominant 

Eigen values. This method proposed that the dominant pole of the higher order system are 

known, then suffer from the flaw of its conformity to systems with no dominant poles, or 

where the dominant poles are difficult to determine. Pal [5] has developed a system reduction 

using the continued partition approach and Routh Hurwitz Array, in which the initial transient 

response of the reduced order might not applicable with the higher order system, only the first 

few time moments are assumed depending on the order of the reduced model. Control 

methods based on traditional unity feedback control structure and (LQR) controller has been 

developed [6]. A higher order system is reduced to a low order form plus a time delay. It is 

known the smith predictor (SP) control structure which is more active for processes  with 

large time delay  compared with a  traditional unity feedback control structure [10]. The 

common denominators of the transfer function of the reduced order model is determine by 

using a dominant pole method, while the numerators is obtained using reduced order model. 

          The paper is organized as follows. Section 2 summarizes some well known properties 

of scalar transfer functions and formulates the problem of computing the dominant poles and 

reduced order model of a scalar transfer function. Numerical tested example is presented in 

section 3 .Section 4 discusses the LQR  controller with and without integral. In section 5, 

simulation results are described. Section 6 A simple control scheme with smith predictor 

connection is suggested for time delay higher order systems. Finally conclusion is 

summarized.  
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In this proposed method the features of mixed method of order reduction is used for 

(SISO), where the numerator is reduced by reduced order model and second order reduced 

denominator is derived by dominant pole method of higher order system. 

2. The Proposed Reduction Method 

The procedure for  determining the reduced order model is described as follow: 

Consider an nth

 

 order stable linear single-input-single-output (SISO) system described 

by the transfer function [3].  

            𝐺𝐺𝑛𝑛(𝑠𝑠) = 𝑁𝑁(𝑠𝑠)
𝐷𝐷(𝑠𝑠)

=  ∑ 𝑎𝑎𝑖𝑖  𝑠𝑠𝑖𝑖𝑛𝑛−1
𝑖𝑖=0

∑ 𝑏𝑏𝑖𝑖  𝑠𝑠𝑖𝑖  𝑛𝑛
𝑖𝑖=0

                                                                     …. (1)  

                                       

where 𝑎𝑎𝑖𝑖 (0 ≤ i ≤ n-1) and 𝑏𝑏𝑖𝑖(0 ≤ i ≤ n) are scalar constants. The corresponding stable kth

 

 (k< 

n) order reduced model is of the form: 

            R

 

k (𝑠𝑠)  = 𝑁𝑁𝑘𝑘(𝑠𝑠)
𝐷𝐷𝑘𝑘(𝑠𝑠)

=  ∑ 𝑑𝑑𝑖𝑖𝑠𝑠𝑖𝑖𝑘𝑘−1
𝑖𝑖=0
∑ 𝑒𝑒𝑖𝑖𝑠𝑠𝑖𝑖𝑘𝑘
𝑖𝑖=0

                             …. (2) 

where 𝑑𝑑𝑖𝑖  (0 ≤ i ≤ k-1) and 𝑒𝑒𝑖𝑖(0 ≤ i ≤ k) are scalar constants. 

Assuming the original system described by Eq. (1), the required is to find a numerator 

of the transfer function of the reduced order model in the form of Eq. (2) where the reduced 

order model maintain the important characteristics of the original system and approximates its 

response as closely as possible for the same type of inputs. 

The nth order original system given in Eq. (1) is equated to the kth

Hence,  

 order reduced model 

with unknown parameters represented by Eq. (2).  

 

 Gn (s) = Rk

             𝑎𝑎𝑖𝑖+𝑎𝑎1𝑠𝑠+𝑎𝑎2𝑠𝑠2+⋯+𝑎𝑎𝑛𝑛−1𝑠𝑠𝑛𝑛−1

𝑏𝑏0+𝑏𝑏1𝑠𝑠+𝑏𝑏2𝑠𝑠2+⋯+𝑏𝑏𝑛𝑛𝑠𝑠𝑛𝑛
 =  𝑑𝑑0+𝑑𝑑1𝑠𝑠+𝑑𝑑2𝑠𝑠2+⋯+𝑑𝑑𝑘𝑘−1𝑠𝑠𝑘𝑘−1

𝑒𝑒0+𝑒𝑒1𝑠𝑠+𝑒𝑒2𝑠𝑠2+⋯+𝑒𝑒𝑘𝑘𝑠𝑠𝑘𝑘
                   …. (4) 

 (s)                                             …. (3) 

 

Cross multiplying and rearranging the Eq. (4). 

 

             =𝑏𝑏0𝑑𝑑0 + (𝑏𝑏0𝑑𝑑0 + 𝑏𝑏1𝑑𝑑0)𝑠𝑠 + (𝑏𝑏0𝑑𝑑2 + 𝑏𝑏1𝑑𝑑1 + 𝑏𝑏2𝑑𝑑0)𝑠𝑠2 +⋯+ 𝑏𝑏𝑛𝑛𝑑𝑑𝑘𝑘−1𝑠𝑠𝑛𝑛−1+𝑘𝑘   …. (5) 
                 𝑎𝑎0𝑒𝑒0 + (𝑎𝑎0 𝑒𝑒1 +  𝑎𝑎1𝑒𝑒0)𝑠𝑠 + (𝑎𝑎0𝑒𝑒2 + 𝑎𝑎1𝑒𝑒1 + 𝑎𝑎2𝑒𝑒0)𝑠𝑠2 +⋯+ 𝑎𝑎𝑛𝑛−1𝑒𝑒𝑘𝑘𝑠𝑠𝑘𝑘−1+𝑘𝑘  
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Equating the coefficients of the corresponding terms in the Eq. (5), the following relations are 

obtained: 

            𝑎𝑎0𝑒𝑒0 = 𝑏𝑏0𝑑𝑑0 

𝑎𝑎0𝑒𝑒1 + 𝑎𝑎1𝑒𝑒0 = 𝑏𝑏0𝑑𝑑1 + 𝑏𝑏1𝑑𝑑0  

              𝑎𝑎0𝑒𝑒2 + 𝑎𝑎1𝑒𝑒1 + 𝑎𝑎2𝑒𝑒0 = 𝑏𝑏0𝑑𝑑2 + 𝑏𝑏1𝑑𝑑1 + 𝑏𝑏2𝑑𝑑0 

 . . . 

 . . . 

 

The unknown parameters are determined by using the above relations and the other 

unknown parameters are determined by the dominant pole method. 

 

Otherwise, the procedure for determining the dominant pole method to find the 

denominator of the transfer function is described below [2]: 

The transfer function of a Single-Input Single-Output (SISO) system: 

 

          �
�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝐵𝐵(𝑡𝑡)                                  
𝑦𝑦(𝑡𝑡) =  𝐶𝐶𝑇𝑇𝑥𝑥(𝑡𝑡) + 𝐷𝐷𝐵𝐵(𝑡𝑡),                             

�        

where  

           A  ∈ Rn×n, x(t), B, C ∈ Rn

          H(s) = C

 and u(t), y(t), D ∈ R, is defined as: 
T (sI − A)−1

               

B + D                                                                          …. (6)  

where I ∈ Rn×n

         Let the eigenvalues (poles) of A and the corresponding right and left eigenvectors be 

given by the triplets (λ

 is the identity matrix and s ∈ C and  D = 0 in the following. 

j , xj , vj ). Let the right and left eigenvectors be scaled so that vjxj = 1, 

where (vjxk = 0 for j ≠ k). The transfer function G(s) can be expressed as a sum of residues Rj

             𝐺𝐺(𝑠𝑠) =  ∑ 𝑅𝑅𝑗𝑗
𝑠𝑠−λ𝑗𝑗

,𝑛𝑛
𝑗𝑗=1                                                                              …. (7) 

 

over first order poles: 

 

where the residues Rj

            R

 are: 

j

A pole λ

 = (𝑥𝑥𝑗𝑗𝑇𝑇C)(𝑣𝑣𝑗𝑗∗𝐵𝐵)                                       …. (8) 

j that corresponds to a residue Rj with large magnitude |Rj| is called a dominant pole, 

i.e. a pole that is well controllable in the transfer function. An reduction of G(s) that consists 

of  k < n terms with |Rj | above some value, determines the active transfer function: 
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            Gk

The problem of concern can now be formulated as: given a SISO linear, time invariant, 

dynamical system (A, B, C, D), compute k << n dominant poles 𝜆𝜆 

(s) =∑ 𝑅𝑅𝑗𝑗
𝑠𝑠− λ𝑗𝑗

,𝑘𝑘
𝑗𝑗=1                                                                                    …. (9) 

j and the corresponding 

right and left eigenvectors xj and vj . 

            Consider the fourth order system transfer function given in [11]: 
3. Numerical Tested Example  

Gn

The denominator of the transfer function of the reduced order model is specified by 

using a dominant pole method. First, we must find the roots of the dominant, then take the 

roots that have the smallest magnitude, in this example the roots is:  

(s) = 
2400 +1800𝑠𝑠+496𝑠𝑠2+28𝑠𝑠3

240+360𝑠𝑠+204𝑠𝑠2+36𝑠𝑠3+2𝑠𝑠4                                                       …. (10) 

s1,2 = -7.8033 ±  j 1.3576, s3,4 

Here we choose the smallest one s

= 1.1967 ±  j 0.6934 

3,4 

The numerators of the transfer function  is presented by using a reduced order model 

method. Consider a second order reduced model represented by:  

when the magnitude is 1.38. 

 

𝑅𝑅𝑘𝑘 =  𝑑𝑑0+ 𝑑𝑑1𝑠𝑠
𝑒𝑒0+𝑒𝑒1+𝑒𝑒2𝑠𝑠2  =   𝑑𝑑0+ 𝑑𝑑1𝑠𝑠

1.913+2.393𝑠𝑠+𝑠𝑠2                                          …. (11) 

 
where d0, d1 are unknown parameters. 

  

 Equating Eq. (10) and Eq. (11) then cross multiplying, 
we obtain: 

           4591.2 + (3443.4+5743.2)s + (2400+4307.4+ 948.84) s2 + (1800 + 1186.928 +                            
53.56) s3+ (496 + 67.004) s4 + 28s5 = 240d0 + ( 360 d0+240d1) s + (204d0  + 360d1) s2  + (36d0 + 
204d1) s3 + (2d0+36d1) s4+ 2d1 s5

 
                                                                     …. (12) 

Comparing the terms in equation (12), we obtain the following: 
 

4591.2 = 240 d0

5743.2 + 3443.4 = 360d
                                                                                                …. (13) 

0 + 240d1 

2400 + 4307.4 + 948.84 = 204d
                                                                …. (14) 

0 + 360d1                                                                                             ….  

1800 + 1186.928 + 53.564 = 36d
(15) 

0 + 204d1

496 + 67.004 = 2d
                                                   …. (16) 

0 + 36d1

28 = 2d
                                                                           …. (17) 

1

 
                                                                                                       …. (18) 

By substitute any equations of (13-18), the unknown parameters are solved and the 
second order reduced model is obtained as: 

 
𝑅𝑅2 = 19.13+9.5825𝑠𝑠

1.913+2.393𝑠𝑠+𝑠𝑠2                                                                                …. (19) 
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For comparing the proposed method with different reduced order models [3, 12 and 
13], an error 'J' is used as bellow [12]: 

 
J = ∑ [𝑌𝑌(𝑡𝑡𝑖𝑖 𝑁𝑁

𝑖𝑖=0 ) −  𝑌𝑌𝑟𝑟(𝑡𝑡𝑖𝑖)]                                                                         …. (20) 
 

Where Y(ti) and Yr(ti) are the outputs of  the original and the reduce order systems 

respectively at the ith

Table 1. Comparison of Methods 

 sampling instant t and N is the number of sampling periods. The unit 

step responses of the reduced models [3, 13 and 14] with that the original system are shown in 

figure (1) . Otherwise, the comparison of different order reduction methods is given in table 1: 

Method of Reduction Reduced Model Cumulative error 
index 'J' at 10 sec 

1- Prasad method [13] R2
27.42 (s)  = 11.903720 +22.533255 𝑠𝑠

1.190362 +3.164997𝑠𝑠+𝑠𝑠2 

2- Routh-Hurwitz array 
method [14] 

R2
12.17 (s)  = 13.174378 +9.046883 𝑠𝑠

1.304548+1.701321 𝑠𝑠𝑠𝑠+𝑠𝑠2 

3-Reduced Order Model 
[3] 

R2
4.39 (s)  =  1411 .256+14𝑠𝑠

41.0236+29.5887𝑠𝑠+𝑠𝑠2 

4-Proposed method R2
1.93 (s)  =  19.13+9.5825𝑠𝑠

1.913+2.393𝑠𝑠+𝑠𝑠2 

  

 
Fig. (1): Comparison of unit step responses 

 
 

      In this section, LQR controller and LQR with integral effect is proposed and explained in 

detail, which is suggested from [15] for using it with the reduce higher order system to meet 

the desired performance specifications. 

4. LQR control design for higher order system 
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     LQR control is a method to find the solution for the problem of reduction that ensures the 

system stability in closed loop, also its easy in calculation. The most general problem that 

solved by this method can given by the follow equation of the dynamic system [15]: 

4.1 LQR (Linear Quadratic Regulator) 

     
  �̇�𝑥(t) = Ax(t) + Bu(t);    x(t0) = x0

with t ∈ [t
                                                                   …. (15) 

0, t1

 
] 

The Eq. (16) represent the quadratic cost function to minimize: 
      𝐽𝐽 =  1

2 
 ∫ [𝑥𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄𝑥𝑥 +  𝐵𝐵𝑇𝑇(𝑡𝑡)𝑅𝑅𝐵𝐵𝐵𝐵(𝑡𝑡)]𝑡𝑡1
𝑡𝑡𝑡𝑡 𝑑𝑑𝑡𝑡 + 1

2
𝑥𝑥𝑇𝑇(𝑡𝑡1)𝑃𝑃𝑡𝑡1𝑥𝑥(𝑡𝑡1)                     …. (16)         

Ru > 0, Pt1  ≥ 0, A(t) and B(t) are continuous-time function, Ru and Pt1

     u(t) = -R

 are continuous-time 

and bounded functions respectively. Thus the general problem in LQR method is to find an 

input u(t) in time domain between the initial and final given times. The input is defined by the 

Eq. (17): 

u
-1 BT

where P(t) in Eq. (18) is the solution to the Ricatti differential equation: 

 P(t) x(t) = -K(t)x(t)                                                     …. (17) 

    -�̇�𝑃 (t) = AT P(t) + P(t)A + Q - P(t)BRu
-1 BT

For linear time invariant systems, Eq. (18) reaches a value in stable state that is reduced to the 

Eq. (19): 

P(t)                                                    …. (18)  

         ATP + PA + Q - PBR-1 BT

named the Control Algebraic Ricatti Equation (CARE) and it is find the optimum value of P. 

The optimum input is defined 

P = 0                                                                    …. (19) 

in Eq. (20): 

        u(t) = -Kx(t)                                                                                                …. (20) 

        The value K is found by the Matlab control toolbox using the sintax: K = lqr(A; B; Q; R). 

The Matlab function lqr help to choose two parameters R and Q which will balance the 

relative importance of the control effort (u) and the error. In the cost function that we are 

trying to optimize, the simplest case is to assume R = 1 and Q = CT R C.  The diagram that 

describe the stabilizing control is shown in the figure 2. A, B and C are the matrix associated 

to the linearized system and R 

 

is weight matrix. 
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                                     Fig. (2): LQR control to stabilize the system 
 
 
4.2  LQR with Integral Effect 
         By the concept of the control from the previous section and adding the integral to the 

block diagram to solve the oscillation problem of the system with LQR controller without 

affecting on it, therefore with y(t) = C x(t) the outputs and r(t) the reference which is the 

additional new states xI (t), therefore the equations states xI

          

(t) with its respective costs in the 

cost function.  

 
With x(t) = [x(t) xI (t)]T

         J = ∫ [𝑥𝑥𝑇𝑇 (𝑡𝑡) 𝑄𝑄 𝑥𝑥(𝑡𝑡) +  𝐵𝐵𝑇𝑇 (𝑡𝑡)𝑅𝑅𝐵𝐵(𝑡𝑡)]𝑑𝑑𝑡𝑡∞
0                                                     …. (21)  

 the new cost function is defined in Eq. (21): 

 therefore: 

        u(t) = - [ K  KI 

 

] � 𝑥𝑥(𝑡𝑡)
𝑥𝑥𝐼𝐼(𝑡𝑡)

� =- K x(t)          …. (22) 

When the control has been designed, it must take the block in the closed loop transfer 
function shown in the diagram in figure 2: 
 

 
 

              Fig. (3): LQR control with integral effect following the reference 
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5. Simulation results 
           In this section, the Matlab (version 9.0) can be used to simulated the suggested LQR 

controller and LQR controller with integral effect with different examples. Two higher order 

transfer function are tested to explain the improve properties of the suggested method on the 

controlled examples. 

           The two examples of the higher order transfer function with controller are given as 

following:  

Example 1: 
        Consider the fourth order transfer function given in [11]:        
         𝐺𝐺𝑛𝑛(𝑠𝑠) = 2400 + 1800𝑠𝑠+496𝑠𝑠2+ 28𝑠𝑠3

240+360𝑠𝑠+204𝑠𝑠2 + 36𝑠𝑠3+ 2𝑠𝑠4                                                       …. (23) 
 
          By applying the proposed method, the reduced order model is:       
            𝑅𝑅2(𝑠𝑠) = 19.13+9.5825𝑠𝑠

1.913+2.393𝑠𝑠+𝑠𝑠2                                                                           …. (24) 

 
         Applying the LQR controllers to the reduced model. The values of the parameters are 

located in the linear model of the form �̇�𝑥(t) = Ax(t) + Bu(t), with �̇�𝑦(𝑡𝑡) =  𝐶𝐶𝑥𝑥(𝑡𝑡) +  𝐷𝐷𝐵𝐵(𝑡𝑡), 

whose values for A, B, C and D are these: 

 

A = �−2.393 −1.913
1 0 �                               B = �40� 

 
                             C = [2.395  4.782]                                    D = [0] 
          
         From the above matrices, the matrix Q  and the matrix R, the solution of LQR problem 
is found with the lqr command in control toolbox of Matlab (version 9.0), thus: 
 
          Q = � 5.7389 11.4570

11.4570 22.8723�                  R = [1]   
 
         And the constant matrix of control k is calculated. Its value is: 
 
         K = [2.2759  4.3281] 
 
         Figure (4) shows the output response for the open loop and close loop connection for 

both original transfer function Eq. (23) and the reduced transfer function Eq. (24) under unit 

step input, figures (5) shows the step response of the higher order system with LQR and LQR 

with integral effect. 
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                       (a)                    (b) 
Fig.(4): a) Output response for open loop connection of original and reduced 

linear  transfer function. b) Output response for closed loop 
connection of original and reduced linear transfer function 

 
Fig. (5): the step response of the higher order system with LQR and LQR with       

integral effect 
 
        We can see from the figure above that both of the controllers make the system follow 

the desired input with zero steady state, but LQR with integral effect solved the problem of 

the oscillation of the LQR controller, this controller (LQR with integral effect) are tuned to 

obtain a response with the desired performance specification. 
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Example 2: 
        Consider the eighth order system transfer function given in [16]: 
         𝐺𝐺𝑛𝑛(𝑠𝑠) = 

 
194480 + 482964𝑠𝑠 + 511812𝑠𝑠2 +  278376𝑠𝑠3 +  82402𝑠𝑠4 +  13285𝑠𝑠5 + 1086𝑠𝑠6 + 35𝑠𝑠7 

17760 + 45952𝑠𝑠 + 46350𝑠𝑠2 + 24469𝑠𝑠3 + 7669𝑠𝑠4 + 1558𝑠𝑠5 + 220𝑠𝑠6 + 21𝑠𝑠7 + 𝑠𝑠8    

 …. (25)  
 
        The roots that have the smallest magnitude to obtain the denominator of the transfer 
function of the reduced order model is (  -1.56 ±  j 6.21 ). 
       
        By applying the proposed method (as detailed in section 2), the second order reduce 
model is obtained as: 
        𝑅𝑅2(𝑠𝑠) = 405.166+35.754𝑠𝑠

𝑠𝑠2+2𝑠𝑠+37                                                                               …. (26)  
                                                           
       Applying the LQR controllers to the reduced model, the values of A, B, C and D are: 
       A = �−2 −4.625

    8 0 �      B = �40�      C = [4.469  6.33]      D = [0] 
 
      With the previous matrices, the weight matrices Q, R and the constant matrix of control k 
are:   

       Q = �19.9737 28.2900
28.2900 40.0689�                                       R = [1]     

       K = [5.3707  5.7782] 
        Figure (6) shows the output response for the open loop and close loop connection for 
both original transfer function Eq. (25) and the reduced transfer function Eq. (26) under unit 
step input, figures (7) shows the step response of the higher order system with LQR and LQR 
with integral effect. 
 

 
 
 
 
 
 
 
 
 
 

 
(a)                                                                 (b)      

Fig.(6): a) Output response for open loop connection of original and reduced 
linear   transfer function. b) Output response for close loop 
connection of original and reduced linear transfer function 
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Fig. (7): The step response of the higher order system with LQR and LQR with 
integral effect 

 
          Figure (7) show that the controllers make the system follow the input with zero steady 

state, LQR with integral effect solved the problem of the oscillation of the LQR controller. 

 
6. Smith Predictor: 
           A higher order system is reduced to  a low order form  plus a time delay [10]. It is  

known the smith  predictor (SP) control structure. The block-diagram for the proposed control 

scheme is shown in Fig.(8). 

Where: 

𝐺𝐺ℎ(𝑠𝑠): transfer function for the higher order.  

𝐺𝐺𝑟𝑟(𝑠𝑠): reduced second order model. 

𝑒𝑒−𝑑𝑑𝑠𝑠 : the actual time delay. 

𝑒𝑒−𝑑𝑑𝑝𝑝𝑠𝑠: the predicted time delay. 

           With Matlab\Simulink, two higher order examples are tested LQR controller with smith 

predictor connection, to show the stability when the difference between the actual and the 

predication time delay become large. The purpose for selected two tested examples is to 

illustrate the ability of the suggested method in reduce any higher order transfer function to 

second order transfer function. Note the parameters of the LQR controller are obtained for the 

reduced order model.  

 

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (sec)

Ou
tpu

t R
esp

on
se

 

 

LQR with integral effect
LQR



Journal of Engineering and Development, Vol.20, No.2, march.  2015, ISSN 1813- 7822 
 

 54 

 
Fig. (8): the LQR controller with smith predictor 

 
Example (3): 
          consider the fourth order transfer function which is given in Eq. (23), the reduced 
second order model is given in Eq. (24), the simulation results for this example with time 
delay for example: d = 0.4 sec. and different predicted time delay dp = (0.3, 0.6) sec. are 
shown in Fig. (9). 
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(a)       (b) 
 

Fig. (9): the output response for Ex.3. with d=0.4 sec., (a): with controller and 
dp=0.3 sec., (b): with controller and dp=0.6 sec. 
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Example (4): 
          consider the eighth order transfer function which is given in Eq. (25), the reduced 

second order model is given in Eq. (26), The simulation results for this example with time 

delay  for example: d = 0.7 sec. and different predicted time delay dp = (0.7, 1) sec. are shown 

in Fig. (12). 

 

 

 

 
 
 
 
 
 
 
 
 
 

(a)       (b) 
Fig. (10): the output response for Ex.4. with d=0.7 sec., a): with controller and 

dp=0.7 sec., b): with controller and dp=0.9 sec. 
 

           The response of the two simulated examples (3 and 4) with (LQR and smith predictor) 

when d is determined and different dp values, show that these controller maintain the system 

stability but some times the oscillation increase when the difference between the actual d and 

the predicted time delay dp increase and hence this can be led to make the system unstable.  

 

7. Conclusion: 
          A mixed model reduction has been proposed for higher order stable plant. The 

suggested approach is evaluated for Linear Single-Input Single-Output (SISO) system, the 

results proved to be better than the other proposed methods. LQR with and without  integral 

effect, are designed and compared to research a more appropriate control method. The 

simulation results demonstrate that both of these controllers are effective and suitable for 

improving the characteristics of system response. According to the results, LQR controller 

with integral effect method give the better performance compared to LQR without it. 
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Otherwise, A LQR controller scheme with smith predictor is suggested in this paper, since the 

suggested scheme is considered to enhance the proposed method, therefore it is applied the 

same examples that are presented in this paper. The simulation results with this proposed 

show accurate and faster for the tested examples. 
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