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Abstract
This paper present a simple method for reducing the linear higher order systems. The

coefficient of the reduction model is obtained by using the modified dominant pole
technique, while the coefficients of the numerator are obtained by reduced order model.
Linear Quadratic Regulator (LQR) is used to design a controller for the higher order
system depended on the linear reducing equations. LQR without and with integral effect
method are used and compared for controlling the higher order systems. The LQR
controller are designed and simulated using MATLAB/Simulink. Simulation results show
that both the controllers are capable of controlling the systems successfully. The LQR with
integral gives the better performance, compared to when the system without it. the LQR
controller scheme with smith predictor connection is suggested in order to maintain the
stability of the higher order plant in addition to improve the performance of the controlled
system. The simulation results for this scheme are tested with two higher order time delay

systems to illustrate the efficient performance for the proposed control scheme.
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1. Introduction
The reduction of complex high-order models to simple low-order models has been the

interest of many researchers [1]. Simple lower order models are very desired in the design of
control systems, as the analysis of higher order systems is exhausted and mathematically
dense. The reason of obtaining reduced model is to improve a good reduction for the higher
order systems, with keeping the characteristics of it as much as possible [1].

Different reduction methods have been proposed. Two approaches have attracted more
interested in this paper. These are dominant pole [2] and reduced order model [3]. Several
model order reduction techniques have been presented [4-7]. Each one has their own features
and applications. In recent times, mixed mathematical techniques [8-9] have taken much
significance in model order reduction Single-Input Single-Output (SISO) systems. Shamash
[4] has suggested a multivariable system reduction using Padé Approximation and dominant
Eigen values. This method proposed that the dominant pole of the higher order system are
known, then suffer from the flaw of its conformity to systems with no dominant poles, or
where the dominant poles are difficult to determine. Pal [5] has developed a system reduction
using the continued partition approach and Routh Hurwitz Array, in which the initial transient
response of the reduced order might not applicable with the higher order system, only the first
few time moments are assumed depending on the order of the reduced model. Control
methods based on traditional unity feedback control structure and (LQR) controller has been
developed [6]. A higher order system is reduced to a low order form plus a time delay. It is
known the smith predictor (SP) control structure which is more active for processes with
large time delay compared with a traditional unity feedback control structure [10]. The
common denominators of the transfer function of the reduced order model is determine by
using a dominant pole method, while the numerators is obtained using reduced order model.

The paper is organized as follows. Section 2 summarizes some well known properties
of scalar transfer functions and formulates the problem of computing the dominant poles and
reduced order model of a scalar transfer function. Numerical tested example is presented in
section 3 .Section 4 discusses the LQR controller with and without integral. In section 5,
simulation results are described. Section 6 A simple control scheme with smith predictor
connection is suggested for time delay higher order systems. Finally conclusion is

summarized.
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2. The Proposed Reduction Method

In this proposed method the features of mixed method of order reduction is used for

(SISO), where the numerator is reduced by reduced order model and second order reduced
denominator is derived by dominant pole method of higher order system.
The procedure for determining the reduced order model is described as follow:
Consider an n™ order stable linear single-input-single-output (SISO) system described

by the transfer function [3].

__N(s) _ Z?:_ol a;st
Gn(s) - D(S) - ?:()bi Si (1)

where a; (0 <i<n-1) and b;(0 <i <n) are scalar constants. The corresponding stable K (k<

n) order reduced model is of the form:

CNp(s) Y tagst
Rk (S) = D, (5) = 2{'{:0 o5t ...(2

where d; (0 <i <k-1) and e;(0 <i < k) are scalar constants.

Assuming the original system described by Eqg. (1), the required is to find a numerator
of the transfer function of the reduced order model in the form of Eq. (2) where the reduced
order model maintain the important characteristics of the original system and approximates its
response as closely as possible for the same type of inputs.

The n™ order original system given in Eq. (1) is equated to the k™ order reduced model
with unknown parameters represented by Eqg. (2).

Hence,

Gnh (S) =Rk (s) ...(3)

ai+als+a252+---+an_1s”_1 do+dis+dys?®+-4dy_qsk1

= e (4)

bo+b1s+bys?+-+b,sm egt+ers+eps+-tepsk

Cross multiplying and rearranging the Eq. (4).

agey + (age; + ajep)s + (ape, + ajey + azep)s? + -+ a,_1e s 11k

:bodo + (bodo + bldo)s + (bodz + b1d1 + bzdo)Sz + -+ bndk_ls"_Hk (5)
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Equating the coefficients of the corresponding terms in the Eq. (5), the following relations are
obtained:

agey = bydy

age; + arey = bgdy + by dy

apér + aéeq + a,eg = bodz + b1d1 + bzdo

The unknown parameters are determined by using the above relations and the other

unknown parameters are determined by the dominant pole method.

Otherwise, the procedure for determining the dominant pole method to find the
denominator of the transfer function is described below [2]:

The transfer function of a Single-Input Single-Output (SISO) system:

{X(t) = Ax(t) + Bu(t)
y(t) = CTx(t) + Du(t),

where

A eR™" x(t), B, C eR"and u(t), y(t), D R, is defined as:

HS)=C' (sl —4) 'B+D ... (6)
where | € R"" is the identity matrix and s € C and D = 0 in the following.

Let the eigenvalues (poles) of A and the corresponding right and left eigenvectors be
given by the triplets (4; , X; , vj ). Let the right and left eigenvectors be scaled so that vjx; = 1,
where (vjxx = 0 for j # k). The transfer function G(s) can be expressed as a sum of residues R;

over first order poles:

= yn R
G(s) = T e (D)
where the residues R; are:
Rj = (ijC)(vj*B) ... (8)

A pole 4; that corresponds to a residue R; with large magnitude |R;| is called a dominant pole,
i.e. a pole that is well controllable in the transfer function. An reduction of G(s) that consists

of k <n terms with |R; | above some value, determines the active transfer function:
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Gi(s) =X :"lj : o (9)

The problem of concern can now be formulated as: given a SISO linear, time invariant,
dynamical system (A, B, C, D), compute k << n dominant poles A j and the corresponding

right and left eigenvectors x; and v; .

3. Numerical Tested Example
Consider the fourth order system transfer function given in [11]:
2400 +18005+49652+285s3
Gn(s) =

... (10)
240+3605+20452+3653+2s%
The denominator of the transfer function of the reduced order model is specified by

using a dominant pole method. First, we must find the roots of the dominant, then take the
roots that have the smallest magnitude, in this example the roots is:

S1,2, =-7.8033 + j 1.3576, s34 =1.1967 + j 0.6934
Here we choose the smallest one s34 when the magnitude is 1.38.

The numerators of the transfer function is presented by using a reduced order model

method. Consider a second order reduced model represented by:

R — d0+ dls — d0+d1$ (11)
k™ eg+eq+eys? 1.91342.3935+s2

where do, d; are unknown parameters. Equating Eq. (10) and Eq. (11) then cross multiplying,
we obtain:

4591.2 + (3443.4+57432)s + (2400+4307.4+ 948.84) s* + (1800 + 1186.928 +
53.56) s>+ (496 + 67.004) s*+ 28s° = 240d, + ( 360 do+240d,) s + (204d, + 360d,) s° + (36dy +
204d,) s* + (2do+36d1) s*+ 2d; §° e (12)

Comparing the terms in equation (12), we obtain the following:

4591.2 = 240 d ... (13)
5743.2 + 3443.4 = 360d, + 240d, ... (19)
2400 + 4307.4 + 948.84 = 204d, + 360d; ... (15)
1800 + 1186.928 + 53.564 = 36d, + 204d; ... (16)
496 + 67.004 = 2d,, + 36d; ... (17)

28 = 2d, ... (18)

By substitute any equations of (13-18), the unknown parameters are solved and the
second order reduced model is obtained as:

_ 19.1349.5825s
2 7 1913+2.3935+52

... (19)
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For comparing the proposed method with different reduced order models [3, 12 and
13], an error 'J" is used as bellow [12]:

I=To[Y (t) — Y (t)] ... (20)

Where Y(ti)) and Y.(tj) are the outputs of the original and the reduce order systems
respectively at the i™ sampling instant t and N is the number of sampling periods. The unit
step responses of the reduced models [3, 13 and 14] with that the original system are shown in
figure (1) . Otherwise, the comparison of different order reduction methods is given in table 1:

Table 1. Comparison of Methods

Method of Reduction Reduced Model Cumulative error
index 'J" at 10 sec
2 1.190362 +3.164997 s+s2

13.1743784+9.046883 s 12.17
1.304548+1.701321 ss+s2

2- Routh-Hurwitz array R,(s) =
method [14]
3-Reduced Order Model R,(s) = = 0;‘;1612265;;‘;;52 4.39
[3] ' '

4-Proposed method R,(s) = % 1.93

12
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Fig. (1): Comparison of unit step responses

4. LOR control design for higher order system
In this section, LQR controller and LQR with integral effect is proposed and explained in

detail, which is suggested from [15] for using it with the reduce higher order system to meet

the desired performance specifications.
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4.1 LOR (Linear Quadratic Regulator)
LQR control is a method to find the solution for the problem of reduction that ensures the

system stability in closed loop, also its easy in calculation. The most general problem that

solved by this method can given by the follow equation of the dynamic system [15]:

x(t) = Ax(t) + Bu(t); X(to) = Xo .... (15)
witht € [to, tl]

The Eq. (16) represent the quadratic cost function to minimize:
J =7 [T 00x + uT (ORu(B)] dt + 327 (¢)Pryx(ty) ... (16)
Ru> 0, Py >0, A(t) and B(t) are continuous-time function, R, and Py are continuous-time
and bounded functions respectively. Thus the general problem in LQR method is to find an
input u(t) in time domain between the initial and final given times. The input is defined by the
Eq. (17):
u(t) = -Ry BT P() x(t) = -K(t)x(t) ... (17)
where P(t) in Eq. (18) is the solution to the Ricatti differential equation:
-P (t) = ATP(t) + P(H)A + Q - P()BR, ™ B'P(t) .... (18)
For linear time invariant systems, Eq. (18) reaches a value in stable state that is reduced to the
Eq. (19):
A'P+PA+Q-PBR'B'P=0 ... (19)
named the Control Algebraic Ricatti Equation (CARE) and it is find the optimum value of P.
The optimum input is defined
in Eq. (20):
u(t) = -Kx(t) ... (20)
The value K is found by the Matlab control toolbox using the sintax: K = Igr(A; B; Q; R).
The Matlab function Igr help to choose two parameters R and Q which will balance the
relative importance of the control effort (u) and the error. In the cost function that we are
trying to optimize, the simplest case is to assume R = 1 and Q = C' R C. The diagram that
describe the stabilizing control is shown in the figure 2. A, B and C are the matrix associated

to the linearized system and R is weight matrix.
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plant

-K*u H

K

Fig. (2): LQR control to stabilize the system

4.2 LOR with Integral Effect
By the concept of the control from the previous section and adding the integral to the

block diagram to solve the oscillation problem of the system with LQR controller without
affecting on it, therefore with y(t) = C x(t) the outputs and r(t) the reference which is the
additional new states X, (t), therefore the equations states x,(t) with its respective costs in the

cost function.

With x(t) = [x(t) x; (t)]" the new cost function is defined in Eq. (21):

I=[Ix" () Qx(t) + u" (DR, (D)]dt ... (21)
therefore:
) =-[K K] [;‘I((?) = K x(t) o (22)

When the control has been designed, it must take the block in the closed loop transfer
function shown in the diagram in figure 2:

REFERENCE
r

Integral
Gain

Proportional
Gain

Fig. (3): LQR control with integral effect following the reference
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5. Simulation results
In this section, the Matlab (version 9.0) can be used to simulated the suggested LQR

controller and LQR controller with integral effect with different examples. Two higher order
transfer function are tested to explain the improve properties of the suggested method on the
controlled examples.

The two examples of the higher order transfer function with controller are given as

following:

Example 1:

Consider the fourth order transfer function given in [11]:

G, (s) = 2400 4 18005+4965s2+ 2853
n T 2404360s+204s2 + 3653+ 254

.. (23)

By applying the proposed method, the reduced order model is:

_ 19.13+9.5825s
Ry(s) = 1.913+2.3935+52 - (24)

Applying the LQR controllers to the reduced model. The values of the parameters are
located in the linear model of the form x(t) = Ax(t) + Bu(t), with y(t) = Cx(t) + Du(t),

whose values for A, B, C and D are these:

S o=l

C =[2.395 4.782] D = [0]

From the above matrices, the matrix Q and the matrix R, the solution of LQR problem
is found with the Igr command in control toolbox of Matlab (version 9.0), thus:

_[5.7389 11.4570 _
Q_[11.4570 22.8723] R=1[1]

And the constant matrix of control k is calculated. Its value is:
K =[2.2759 4.3281]

Figure (4) shows the output response for the open loop and close loop connection for
both original transfer function Eq. (23) and the reduced transfer function Eq. (24) under unit
step input, figures (5) shows the step response of the higher order system with LQR and LQR

with integral effect.

50



12

10

Output Response
o

0.8
% (
S 06 K
8
(14
5
g 04
juu]
(0]

0.2

Original Eq.
0 = Reduce Eq.
0 1 2 3 4
Time (sec)
\q)

N o~
§

Original Eq.
0 ~—* Reduced Eq.
0 1 2 3 4
Time (sec)
\V)

5

Fig.(4): a) Output response for open loop connection of original and reduced
linear transfer function. b) Output response for closed loop
connection of original and reduced linear transfer function
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Fig. (5): the step response of the higher order system with LQR and LQR with
integral effect

We can see from the figure above that both of the controllers make the system follow

the desired input with zero steady state, but LQR with integral effect solved the problem of

the oscillation of the LQR controller, this controller (LQR with integral effect) are tuned to

obtain a response with the desired performance specification.
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Example 2:

Consider the eighth order system transfer function given in [16]:
Gy, (S) =
194480 + 4829645 + 5118125 + 278376s> + 82402s* + 13285s° + 1086s° + 35s”
17760 + 459525 + 4635052 + 2446953 + 7669s* + 155855 + 22056 + 2157 + 58

... (25)

The roots that have the smallest magnitude to obtain the denominator of the transfer
function of the reduced order model is ( -1.56 + j 6.21).

By applying the proposed method (as detailed in section 2), the second order reduce

model is obtained as:

405.166+35.754s

Applying the LQR controllers to the reduced model, the values of A, B, C and D are:

_[—2 —4.625 _[4 _ —
A= . ] B-[O] C=[4469 633] D =][0]
With the previous matrices, the weight matrices Q, R and the constant matrix of control k
are:
19.9737 28.2900 R =[1]

Q= [28.2900 40.0689
K = [5.3707 5.7782]

Figure (6) shows the output response for the open loop and close loop connection for
both original transfer function Eq. (25) and the reduced transfer function Eq. (26) under unit
step input, figures (7) shows the step response of the higher order system with LQR and LQR
with integral effect.

20

1.4
15
1 L .
5
0.8 = Y e ]
¢ 10
0.6 E x /
3
0.4
5
0.2 Original Eq. [
0 = Reduce Eq.
0 1 2 3 4 5 0o 1 2 3 4 5
Time (sec) Time (sec)
(@) (b)

Fig.(6): a) Output response for open loop connection of original and reduced
linear transfer function. b) Output response for close loop
connection of original and reduced linear transfer function
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Output Response

LOR with integral effect
LOR

.
(0} 1 2 3 4 5
Time (sec)

Fig. (7): The step response of the higher order system with LQR and LQR with
integral effect

Figure (7) show that the controllers make the system follow the input with zero steady

state, LQR with integral effect solved the problem of the oscillation of the LQR controller.

6. Smith Predictor:
A higher order system is reduced to a low order form plus a time delay [10]. It is

known the smith predictor (SP) control structure. The block-diagram for the proposed control
scheme is shown in Fig.(8).

Where:

Gy, (s): transfer function for the higher order.

G, (s): reduced second order model.

e~%: the actual time delay.

e~%S: the predicted time delay.

With Matlab\Simulink, two higher order examples are tested LQR controller with smith
predictor connection, to show the stability when the difference between the actual and the
predication time delay become large. The purpose for selected two tested examples is to
illustrate the ability of the suggested method in reduce any higher order transfer function to
second order transfer function. Note the parameters of the LQR controller are obtained for the

reduced order model.
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+ o+ Y(s

R(s) —_:O' ; e

\ 4
D

y
x

=

Fig. (8): the LQR controller with smith predictor

Example (3):
consider the fourth order transfer function which is given in Eq. (23), the reduced

second order model is given in Eq. (24), the simulation results for this example with time
delay for example: d = 0.4 sec. and different predicted time delay dp = (0.3, 0.6) sec. are
shown in Fig. (9).

1.4
1.2 12
1 1 e
@ r b
2 c
2 08 8 0.8
8 8
x [0
3 06 2 06
3 3
0.4 0.4
0.2 0.2
0 0
0 2 4 6 8 10 0 2 4 6 8 10
(a) (b)

Fig. (9): the output response for Ex.3. with d=0.4 sec., (a): with controller and
dp=0.3 sec., (b): with controller and dp=0.6 sec.
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Example (4):

consider the eighth order transfer function which is given in Eq. (25), the reduced
second order model is given in Eg. (26), The simulation results for this example with time
delay for example: d = 0.7 sec. and different predicted time delay dp = (0.7, 1) sec. are shown
in Fig. (12).

14

1.2

0.8

0.6

Output Response

0.4

0.2

2 4 6 8 10 0 2 4 6 8 10
Time (sec) Time (sec)

(a) (b)
Fig. (10): the output response for Ex.4. with d=0.7 sec., a): with controller and
dp=0.7 sec., b): with controller and dp=0.9 sec.

The response of the two simulated examples (3 and 4) with (LQR and smith predictor)
when d is determined and different dp values, show that these controller maintain the system
stability but some times the oscillation increase when the difference between the actual d and
the predicted time delay dp increase and hence this can be led to make the system unstable.

7. Conclusion:
A mixed model reduction has been proposed for higher order stable plant. The

suggested approach is evaluated for Linear Single-Input Single-Output (SISO) system, the
results proved to be better than the other proposed methods. LQR with and without integral
effect, are designed and compared to research a more appropriate control method. The
simulation results demonstrate that both of these controllers are effective and suitable for
improving the characteristics of system response. According to the results, LQR controller

with integral effect method give the better performance compared to LQR without it.
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Otherwise, A LQR controller scheme with smith predictor is suggested in this paper, since the
suggested scheme is considered to enhance the proposed method, therefore it is applied the
same examples that are presented in this paper. The simulation results with this proposed

show accurate and faster for the tested examples.
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