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Abstract 

Triaxial accelerometers are used in various applications, such as inertial navigation 
systems (INSs) and inclinometers. Such accelerometers must be calibrated as accurately as 
possible because accelerometers with even small biases could result in a very fast position 
drift when they are used for INS applications and could result in inaccurate tilt angle 
measurements. Since the calibration parameters of a triaxial accelerometer vary under 
different environmental conditions, including temperature change, the gain factors and biases 
change whenever the sensor is switched on. Thus, an accelerometer must be calibrated before 
use or when the temperature is significantly changed. This paper presents a triaxial 
accelerometer calibration method using a mathematical model of nine calibration 
parameters: three gain factors, three biases and three non orthogonality factors. The 
fundamental principle of the proposed calibration method is that the sum of the triaxial 
accelerometer outputs is equal to the gravity vector when the accelerometer is stationary. The 
proposed method requires the triaxial accelerometer to be placed in forty eight tilt angles to 
estimate the nine calibration parameters. Since the mathematical model of the calibration 
parameters is nonlinear, an iterative method is used Levenberg-marquardt algorithm (LMA). 
The results are verified by comparing the estimated data and corrected data with how far or 
close from surface of sphere that have radius 1g  and center (0,0,0) by calculating the 
standard deviation. 
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الخلاصة 
3T تستخدم اجهزة قياس التعجيل ثلاثي المحاور في مختلف التطبيقات، مثل نظم الملاحة بالقصور الذاتي
التحيز، حتى القيم الصغيرة يمكن أن تؤدي إلى قبل استخدام هذه الاجهزه يجب معايرتها بسبب وجود . وحساب الميل

الانجراف بشكل سريع جدا عندما يتم استخدامها لتطبيقات الملاحة يمكن أن يؤدي إلى قياسات غير دقيقة في زاوية 
ف، معاملات المعايرة لمقياس التعجيل الثلاثي المحاور تتغير بسبب تغير الظرو). كما في اجهزة المساحة الالكترونية(الميل

. بما في ذلك تغير درجة الحرارة، ووضعية الخزن لمده طويله حيث تتغير معاملات المعايرة كلما تم تشغيل جهاز استشعار
يقدم هذا المقال طريقة معايرة باستخدام . وبالتالي، يجب معايرة الاجهزة قبل الاستخدام أو عند تغيير كبير في درجة الحرارة

المبدأ الأساسي . ثلاثة للتحيز وثلاثة عوامل لعدم التعامد للكسب و ثلاثة عوامل: معايرةسعة معاملات نموذج رياضي من ت
. الساكنةلطريقة المعايرة المقترح هو أن مجموع المخرجات لمقياس التعجيل يساوي متجه الجاذبية في حالة الوضعية 

. لحساب معاملات المعايرة التسعة ية مختلفةواتتطلب الطريقة المقترحة ان يوضع جهاز قياس التعجيل في ثمان وأربعين ز
بعد ذلك يتم التحقق من ). LMA(بما ان النموذج الرياضي لمعاملات المعايرة هو غير خطي، يتم استخدام أسلوب التكرار 

النتائج بمقارنة البيانات المقاسة من جهاز الاستشعار مع البيانات المصححة و مدى قربها من سطح الكرة التي نصف 
. باحتساب الانحراف المعياري)  0,0,0(ومركزها ) 1g(رها قط

1 INTRODUCTION: 

An accelerometer is a device that measures proper acceleration (g-force). Proper 
acceleration is not the same as coordinate acceleration (rate of change of velocity). For 
example, an accelerometer at rest on the surface of the Earth will measure an acceleration g= 
9.81 m/sP

2
P straight upwards. By contrast, accelerometers in free fall orbiting and accelerating 

due to the gravity of Earth will measure zero. 

Accelerometers have multiple applications in industry and science. Highly sensitive 
accelerometers are components of inertial navigation systems for aircraft, missiles, UAV’s 
and robots [1]. Accelerometers are used to detect and monitor vibration in rotating machinery. 
Accelerometers are used in tablet computers and digital cameras so that images on screens are 
always displayed upright [2]. Accelerometers are used in drones for flight stabilisation. Pairs  
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of accelerometers extended over a region of space can be used to detect differences 
(gradients) in the proper accelerations of frames of references associated with those points. 
These devices are called gravity gradiometers, as they measure gradients in the gravitational 
field. Such pairs of accelerometers in theory may also be able to detect gravitational waves [3] 

Single and multi-axis models of accelerometer are available to detect magnitude and 
direction of the proper acceleration (or g-force), as a vector quantity, and can be used to sense 
orientation (because direction of weight changes), coordinate acceleration (so long as it 
produces g-force or a change in g-force), vibration, shock, and falling in a resistive medium (a 
case where the proper acceleration changes [4], since it starts at zero, then 
increases). Micromachined accelerometers are increasingly present in portable electronic 
devices and video game controllers, to detect the position of the device or provide for game 
input [4]. 

Triaxial accelerometers supplied for the consumer market are typically calibrated by 
using a six-element linear model(ellipsoid formula with arbitrary  center ) comprising a gain 
and offset or a nine-element nonlinear model comprising a gain, non-orthogonally and offset 
each of the three axes [5]. This factory calibration will change slightly as a result of the 
thermal stresses during soldering of the accelerometer to the circuit board. Additional small 
errors, external to the accelerometer, including rotation of the accelerometer package relative 
to the circuit board and misalignment of the circuit board to the final product, will also be 
introduced during the soldering and final assembly process, therefore we looking to obtain 
improved accuracy [6]. 

The accelerometer provides information about acceleration, speed and position of the 
Vehicle, by using statistical filtering. The development of such a system requires the 
calibration of sensor, which is a challenging task [7] , [8], [9], because, the data output 
depends on:   

1. Local acceleration. 

2. The sensor attitude. 

3. The real gain and bias parameters. 

In a 3D sensor each axis i have a different gain noted as αi and a bias noted as βi

Figure 1
. 

 represents a 3D sensor with offset T
zyx ),,( ββββ =


, gains zyx ααα ,,  and orthogonality 

errors  yzxzxy SSS ,,  for accelerometer; the model of the sensor output is given by [4] see 
Figure 2. 
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Figure 1 Sensor behavior 

where ε is a residual error or noise, Sij represents the orthogonality errors between 
sensor axes(cosine of angles between axes of sensor x-y,y-z ,z-x where Sxy= Syx , Syz= Szy, and 
Szx= Sxz 4). The matrix α is considered symmetrical [ ].  

 

 

Figure 2 Acceleration vector a
  measured as a′


 

2 CALIBRATION PROCEDURE 

2.1 Acquisition of a set of points 

A simple test rig (see Figure 3) consisting of an adjustable platform, a cube mounted 
with a triaxial accelerometer and a V-block was built to perform these forty eight positions 
[6]. Set of measurements with various attitudes are needed, so the parameters in equation (1) 
can be estimated. In the case of an accelerometer, the magnitude of the local force (or 
acceleration) must be precisely known; it equals the magnitude of the Earth gravity force 
(1g).                                        72       
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The calibration procedure stops when the measurements cover most of the surface of 
equation (1) [10]. The minimum procedure is to rotate the sensor in the reference XYZ 
coordinate system to measure a set of points which describes a closed solid. 

 

2.2 2D projection of measurements 

The calibration can be facilitated by a display of measured acceleration magnitude in 
spherical coordinates r(t) ,ϕ(t) and θ(t) (see Figure 4). This transformation requires an 
estimation of parameters that is obtained from the first measured points [11]: 

 

 

 

Figure 3 Experiment platform setup 
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2.3 Estimation of parameters 

To estimate the matrix α and the vector β


 in equation (1), we can minimize the 
following error function [12]: 

 
 ∑=

t
p tepE 2))(()( , (5) 

with: 
 ))(()())(()( 212 βαβ


−′−′−= − tataate T

p , (6) 

where 
 gtatataa zyx 1)()()( 2222 =++=


, (7) 

 

T
zyxyzxzxyzyx SSSp ],,,,,,,,[ βββααα= , the parameters vector to be estimated using 

LMA (Levenberg–Marquardt Algorithm) 

 

Figure 4 Sphere coordinates 

2.4 The levenberg-marquardt method for nonlinear least squares 

The Levenberg-Marquardt method is a standard technique used to solve nonlinear 
least squares problems. Least squares problems arise when fitting a parameterized function to 
a set of measured data points by minimizing the sum of the squares of the errors between the  
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data points and the function. Nonlinear least squares problems arise when the function 
is not linear in the parameters. Nonlinear least squares methods involve an iterative 
improvement to parameter values in order to reduce the sum of the squares of the errors 
between the function and the measured data points. The Levenberg-Marquardt curve-fitting 
method is actually a combination of two minimization methods: the gradient descent method 
and the Gauss-Newton method. In the gradient descent method, the sum of the squared errors 
is reduced by updating the parameters in the direction of the greatest reduction of the least 
squares objective. In the Gauss-Newton method, the sum of the squared errors is reduced by 
assuming the least squares function is locally quadratic, and finding the minimum of the 
quadratic. The Levenberg-Marquardt method acts more like a gradient-descent method when 
the parameters are far from their optimal value, and act more like the Gauss-Newton method 
when the parameters are close to their optimal value. 

  

 
Figure 5 Measurement data of acceleration in 2d projection 

In fitting a function );(ˆ pty of an independent variable t and a vector of n parameters p 
to a set of m data points ),( ii yt , it is customary and convenient to minimize the sum of the 
weighted squares of the errors (or weighted residuals) between the measured data )( ity  and 
the curve-fit function );(ˆ pty i . This scalar-valued goodness-of-fit measure is called the chi-
squared error criterion [10]. 
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 yWyyWyWyyp TTT ˆˆˆ2)(2 +−=χ , (10) 

The value iw  is a measure of the error in measurement )( ity . The weighting matrix W 
is diagonal with 𝑊𝑊𝑖𝑖𝑖𝑖 = 1/𝑤𝑤𝑖𝑖. If the function 𝑦𝑦� is nonlinear in the model parameters p, then the 
minimization of χ2 with respect to the parameters must be carried out iteratively. The goal of 
each iteration is to find a perturbation h to the parameters p that reduces χ2

The Levenberg-Marquardt algorithm adaptively varies the parameter updates between 
the gradient descent update and the Gauss-Newton update [

.  

10], 
 [ ] )ˆ( yyWJhIWJJ TT −=+ λ , (11) 

where m × n Jacobian matrix  J = ∂y�/ ∂p and small values of the algorithmic 
parameter λ result in a Gauss-Newton update and large values of λ result in a gradient descent 
update. The parameter λ is initialized to be large. If iteration happens to result in a worse 
approximation, λ is increased. As the solution approaches the minimum, λ is decreased, the 
Levenberg-Marquardt method approaches the Gauss-Newton method, and the solution 
typically converges rapidly to the local minimum [6]. Marquardt’s suggested update 
relationship [10], 

  

 [ ] )ˆ()( yyWJhWJJdiagWJJ TTT −=+λ , (12) 

The alg orith m adjusts  λ acco rd ing  to  whether χ2

Given an initial guess for the set of fitted parameters p 

 is increasing or decreasing as 
follows: 

1. Compute χ2

2. Choose a value for λ, for instance λ = 0:001 
(p) 

3. Calculate h and evaluate χ2

4. If χ
 (p+h) 

2(p+h) ≥ χ2

5. If χ
(p) increase λ by a factor and go to (3) and try an update again. 

2(p+h) < χ2

The reasoning of the method is that if the error is increasing, the quadratic 
approximation in the Gauss-Newton method is not working well and we are likely not near a 
minimum, so λ should be increased in order to blend more towards steepest descent.  

(p) decrease λ by a factor, accept the updated trial solution p ← p+h and go 
to (3) and try an update again. 
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On the other hand,  

if the error is decreasing, the approximation is working well, and we expect that we 
are getting closer to a minimum so λ is decreased to blend more towards Gauss-Newton. 
Levenberg-Marquardt’s algorithm has the disadvantage that if the value of damping factor, λ, 
is large, inverting (JT 12WJ + λ I) is not used at all. Marquardt [ ] realized that each component 
of the gradient can be scaled according to the curvature so that there is larger movement along 
the directions where the gradient is smaller. Thereby avoiding slow convergence in the 
direction of small gradient. Marquardt utilized this by replacing the identity matrix, I in 
Levenberg-Marquardt’s original equations Equation (11) with the diagonal matrix consisting 
of the diagonal elements of JT

(12)
WJ (the Hessian matrix), resulting in the Levenberg-Marquardt 

algorithm, Equation  which then includes an estimation of the local curvature information 
and uses this to move further in the directions in which the gradient is smaller. 

2.5  Numerical implementation 

This work including the enhancement of a rank-1 Jacobian update. In iteration i, the 
step h is evaluated by comparing 𝜒𝜒2(𝑝𝑝)𝑡𝑡𝑡𝑡 𝜒𝜒2(𝑝𝑝 + ℎ). the step is accepted if the metric ρRi [10] 

Ris greater than a user-specified value, ϵR4R, 
  

 

)))(ˆ((2
)()()(

22

pyyWJh
hpphi T

i
T −+

+−
=

λ
χχρ , (13) 

If in an iteration ρi(h) > ϵ4 then p + h is sufficiently better than p, p is replaced by p + 
h, and λ is reduced by a factor. Otherwise λ is increased by a factor, and the algorithm 
proceeds to the next iteration 

 
2.5.1. Initialization and update of the L-M parameter, λ, and the parameters p 

[10] 
1. 𝜆𝜆0  =  𝜆𝜆0;  𝜆𝜆0 is user-specified . 

[ 𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽 +  𝜆𝜆𝑖𝑖 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽]]ℎ =  𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 −  𝑦𝑦�(𝑝𝑝)); 
 𝑖𝑖𝑖𝑖 𝜌𝜌𝑖𝑖(ℎ) >  𝜖𝜖4: 𝑝𝑝 ← 𝑝𝑝 +  ℎ; 𝜆𝜆𝑖𝑖+1  =  𝑚𝑚𝑑𝑑𝑚𝑚[𝜆𝜆𝑖𝑖 /𝐿𝐿↓, 10−7]; 
 otherwise: 𝜆𝜆𝑖𝑖+1  =  𝑚𝑚𝑖𝑖𝑚𝑚[𝜆𝜆𝑖𝑖  /𝐿𝐿↑, 107];]; 
 

2. 𝜆𝜆0  =  𝜆𝜆0 max�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽]� ℎ;  𝜆𝜆0 is user-specified . 
[ 𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽 +  𝜆𝜆𝑖𝑖 𝐼𝐼]]ℎ =  𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 −  𝑦𝑦�(𝑝𝑝)); 

= ��𝐽𝐽𝑇𝑇𝑊𝑊�𝑦𝑦 −  𝑦𝑦�(𝑝𝑝)��
𝑇𝑇
ℎ�/ ��𝜆𝜆2(𝑝𝑝+ ℎ)− 𝜆𝜆2(𝑝𝑝)�/2 +/ �𝐽𝐽𝑇𝑇𝑊𝑊�𝑦𝑦 −  𝑦𝑦�(𝑝𝑝)��

𝑇𝑇
ℎ� 
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𝑖𝑖𝑖𝑖 𝜌𝜌𝑖𝑖(ℎ) >  𝜖𝜖4: 𝑝𝑝 ← 𝑝𝑝 + 𝛼𝛼ℎ;𝜆𝜆𝑖𝑖+1  =  𝑚𝑚𝑑𝑑𝑚𝑚[𝜆𝜆𝑖𝑖  /(1 + 𝛼𝛼), 10−7]; 
otherwise:   𝜆𝜆𝑖𝑖+1  =  𝜆𝜆𝑖𝑖 + |𝜆𝜆2(𝑝𝑝+ 𝛼𝛼ℎ) − 𝜆𝜆2(𝑝𝑝)|/(2𝛼𝛼);]; 
 

3. 𝜆𝜆0  =  𝜆𝜆0 max�𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽]� ℎ;  𝜆𝜆0 is user-specified . 
[ 𝐽𝐽𝑇𝑇𝑊𝑊𝐽𝐽 +  𝜆𝜆𝑖𝑖 𝐼𝐼]]ℎ =  𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 −  𝑦𝑦�(𝑝𝑝)); 
 𝑖𝑖𝑖𝑖 𝜌𝜌𝑖𝑖(ℎ) >  𝜖𝜖4: 𝑝𝑝 ← 𝑝𝑝 + 𝛼𝛼ℎ; 𝜆𝜆𝑖𝑖+1  = 𝜆𝜆𝑖𝑖  𝑚𝑚𝑑𝑑𝑚𝑚[1/3 ,1 − (2𝜌𝜌𝑖𝑖 − 1)3 ]; 
otherwise:   𝜆𝜆𝑖𝑖+1  =  𝜆𝜆𝑖𝑖 + |𝜆𝜆2(𝑝𝑝+ 𝛼𝛼ℎ) − 𝜆𝜆2(𝑝𝑝)|/(2𝛼𝛼);]; 
 

where  𝜖𝜖4  
 

is determines acceptance of a L-M step 

2.5.2. Computation and rank-1 update of the Jacobian, [𝝏𝝏𝝏𝝏/𝝏𝝏𝝏𝝏] 

In the first iteration, in every 2n iterations, and in iterations where 𝜒𝜒2(𝑝𝑝 + ℎ) >
𝜒𝜒2(𝑝𝑝), the Jacobian (𝑱𝑱 ∈  ℝ𝒎𝒎×𝒏𝒏) is numerically approximated using forward differences, 
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or central differences (default) 
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where the j-th element of δpi

 

 is the only non-zero element and is set to 𝛥𝛥𝑗𝑗�1 + �𝑝𝑝𝑗𝑗 ��.n 
all other iterations, the Jacobian is updated using the Broyden rank-1 update formula, 

hh
hJhpyhpyJJ T

T))(ˆ)(ˆ( −−+
+= , (16) 

For problems with many parameters, a finite differences Jacobian is computationally 
expensive. Convergence can be achieved with fewer function evaluations if the Jacobian is re-
computed using finite differences only occasionally. The rank-1 Jacobian updates equation 
(16) requires no additional function evaluations. 

 
2.5.3. Convergence criteria 

Convergence is achieved when one of the following three criteria is satisfied, 

1. Convergence in the gradient, 𝑚𝑚𝑑𝑑𝑚𝑚|𝐽𝐽𝑇𝑇𝑊𝑊(𝑦𝑦 −  𝑦𝑦�)| < 𝜖𝜖1; 

2. Convergence in parameters, 𝑚𝑚𝑑𝑑𝑚𝑚 |ℎ𝑖𝑖/𝑝𝑝𝑖𝑖|  < 𝜖𝜖2; or 

3. Convergence in𝜒𝜒2, 𝜒𝜒2/(𝑚𝑚 −  𝑚𝑚 +  1)  <  𝜖𝜖3. 
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where ϵ1, ϵ2 and ϵ3 are convergence tolerance for gradient, parameters and Chi-square 
respectively. 

Otherwise, iterations terminate when the iteration count exceeds a pre-specified limit 

To get data from sensor and solve equation (1) numerically for estimate nine 
parameters, Figure 6 illustrates the graphical user interface of the developed calibration 
software, interfaced with a Matlab 

 

3 RESULTS AND DISCUSSION 

This section gives some calibration results for a 3D accelerometer specifications in 
[13] The calibration procedure has been performed three times successively, according to 
section ( II). Each time, 4800 data points are used for the estimation of parameters. The 
obtained gains, bias and orthogonality are then compared in the following tables. The 
estimation algorithm LMA fit performs the alpha, beta and SRijR computation instantly, with 
about less than 100 iterations [4]. 

 

 

Figure 6 Matlab Gui program to Estimate Calibration Parameters 

In Table 1 the calibration results for a 3D accelerometer sensor. The sensor must only 
measure the static acceleration of gravity, for which the norm is constant. We need to exclude 
measurements where the sensor is not static, for which dynamic acceleration is present, 
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 by observing the temporal variance of the data signal. In static position the 
accelerometer has a low variance.  

  Figure 7 shows that the estimated parameters define a sphere according to the 
model equation (2) that fits the measurement [3]. The calibration results in Table 1 shows that 
the gains, bias and the orthogonality of sensors gives very good stability. In some applications 
the orthogonality errors cannot be taken into account because of the low impact on the 
measurements [3]. 

Table 1 Measured Parameters 
Parameter Name Test 1 Test 2 Test 3 

βx -0.0103 -0.0099 -0.00101 
βy 0.0010 -0.0008525 -0.0094 
βz -0.0186 -0.0186 -0.0186 
αx 0.9936 0.9930 0.9938 
αy 1.0105 1.0098 1.0102 
αz 0.9914 0.9917 0.9920 
sxy -0.0067 0.0011 0.00118 
sxz -0.000096 0.000766 0.000806 
Syz 0.0072 0.000528 0.00055 

standard deviation for 
 x axis 0.001419 0.000956 0.0015438 

standard deviation for 
 y axis 0.00156 0.00194 0.00167 

standard deviation for 
 z axis 0.00115 0.00123 0.00145 

4 CONCLUSIONS 

The numerical calibration of 3D accelerometers sensors is not an expensive solution 
and can be implemented with no mechanical means. The calibration procedure can be 
performed after the integration phase of electronics to take into account the drift and 
uncertainty of the component itself, all the gains, bias and geometry. The calibration 
parameters of accelerometers are accurate at 1%. 

  This method of calibration has been successfully used for the preparation of 
MicroElectroMechanical Systems (MEMS) inertial units, in a pedestrian tracking system, 
robot and UAVs. It is worth noting the possibility of using this method in calibration of 
magnetometer.  
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Figure 7 Sphere of 3D accelerometer sensor 
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