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Abstract

Triaxial accelerometers are used in various applications, such as inertial navigation
systems (INSs) and inclinometers. Such accelerometers must be calibrated as accurately as
possible because accelerometers with even small biases could result in a very fast position
drift when they are used for INS applications and could result in inaccurate tilt angle
measurements. Since the calibration parameters of a triaxial accelerometer vary under
different environmental conditions, including temperature change, the gain factors and biases
change whenever the sensor is switched on. Thus, an accelerometer must be calibrated before
use or when the temperature is significantly changed. This paper presents a triaxial
accelerometer calibration method using a mathematical model of nine calibration
parameters: three gain factors, three biases and three non orthogonality factors. The
fundamental principle of the proposed calibration method is that the sum of the triaxial
accelerometer outputs is equal to the gravity vector when the accelerometer is stationary. The
proposed method requires the triaxial accelerometer to be placed in forty eight tilt angles to
estimate the nine calibration parameters. Since the mathematical model of the calibration
parameters is nonlinear, an iterative method is used Levenberg-marquardt algorithm (LMA).
The results are verified by comparing the estimated data and corrected data with how far or
close from surface of sphere that have radius 1g and center (0,0,0) by calculating the
standard deviation.
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1 INTRODUCTION:

An accelerometer is a device that measures proper acceleration (g-force). Proper
acceleration is not the same as coordinate acceleration (rate of change of velocity). For
example, an accelerometer at rest on the surface of the Earth will measure an acceleration g=
9.81 m/s? straight upwards. By contrast, accelerometers in free fall orbiting and accelerating
due to the gravity of Earth will measure zero.

Accelerometers have multiple applications in industry and science. Highly sensitive
accelerometers are components of inertial navigation systems for aircraft, missiles, UAV’s
and robots [1]. Accelerometers are used to detect and monitor vibration in rotating machinery.
Accelerometers are used in tablet computers and digital cameras so that images on screens are
always displayed upright [2]. Accelerometers are used in drones for flight stabilisation. Pairs
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of accelerometers extended over a region of space can be used to detect differences
(gradients) in the proper accelerations of frames of references associated with those points.
These devices are called gravity gradiometers, as they measure gradients in the gravitational
field. Such pairs of accelerometers in theory may also be able to detect gravitational waves [3]

Single and multi-axis models of accelerometer are available to detect magnitude and
direction of the proper acceleration (or g-force), as a vector quantity, and can be used to sense
orientation (because direction of weight changes), coordinate acceleration (so long as it
produces g-force or a change in g-force), vibration, shock, and falling in a resistive medium (a
case where the proper acceleration changes [4], since it starts at zero, then
increases). Micromachined accelerometers are increasingly present in portable electronic
devices and video game controllers, to detect the position of the device or provide for game
input [4].

Triaxial accelerometers supplied for the consumer market are typically calibrated by
using a six-element linear model(ellipsoid formula with arbitrary center ) comprising a gain
and offset or a nine-element nonlinear model comprising a gain, non-orthogonally and offset
each of the three axes [5]. This factory calibration will change slightly as a result of the
thermal stresses during soldering of the accelerometer to the circuit board. Additional small
errors, external to the accelerometer, including rotation of the accelerometer package relative
to the circuit board and misalignment of the circuit board to the final product, will also be
introduced during the soldering and final assembly process, therefore we looking to obtain
improved accuracy [6].

The accelerometer provides information about acceleration, speed and position of the
Vehicle, by using statistical filtering. The development of such a system requires the
calibration of sensor, which is a challenging task [7] , [8], [9], because, the data output
depends on:

1. Local acceleration.
2. The sensor attitude.
3. The real gain and bias parameters.

In a 3D sensor each axis i have a different gain noted as o; and a bias noted as fi.
Figure 1 represents a 3D sensor with offset g = (B,.B,.B8,)" , gains a,,a,,a, and orthogonality

errors  S,,,S,,,S,, for accelerometer; the model of the sensor output is given by [4] see
Figure 2.
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Figure 1 Sensor behavior

where ¢ is a residual error or noise, S represents the orthogonality errors between
sensor axes(cosine of angles between axes of sensor x-y,y-z ,z-x where Syy= Syx , Sy,= Sy, and
Six= Sxz). The matrix o is considered symmetrical [4].

3

ax

Figure 2 Acceleration vector a measured as &’

2 CALIBRATION PROCEDURE

2.1 Acquisition of a set of points

A simple test rig (see Figure 3) consisting of an adjustable platform, a cube mounted
with a triaxial accelerometer and a V-block was built to perform these forty eight positions
[6]. Set of measurements with various attitudes are needed, so the parameters in equation (1)
can be estimated. In the case of an accelerometer, the magnitude of the local force (or
acceleration) must be precisely known; it equals the magnitude of the Earth gravity force
(19). 72



The calibration procedure stops when the measurements cover most of the surface of
equation (1) [10]. The minimum procedure is to rotate the sensor in the reference XYZ
coordinate system to measure a set of points which describes a closed solid.

2.2 2D projection of measurements

The calibration can be facilitated by a display of measured acceleration magnitude in
spherical coordinates r(t) ,¢(t) and 6(t) (see Figure 4). This transformation requires an
estimation of parameters that is obtained from the first measured points [11]:

03 10 2014

Figure 3 Experiment platform setup
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2.3 Estimation of parameters

To estimate the matrix a and the vector g in equation (1), we can minimize the
following error function [12]:

E(p)=.(ep®)?, (5)
with: t
ep® = -@®O A" (@ H2@E®) - F) (6)
where
a]” = ax®)? +a, ®)2 +a,®)2 =1g ™

p = [ax1ay’az7sxy’ SXZ’Syz1ﬂxlﬂy’ﬂz]T
LMA (Levenberg—Marquardt Algorithm)

, the parameters vector to be estimated using

Figure 4 Sphere coordinates

2.4 The levenberg-marquardt method for nonlinear least squares

The Levenberg-Marquardt method is a standard technique used to solve nonlinear
least squares problems. Least squares problems arise when fitting a parameterized function to
a set of measured data points by minimizing the sum of the squares of the errors between the
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data points and the function. Nonlinear least squares problems arise when the function
IS not linear in the parameters. Nonlinear least squares methods involve an iterative
improvement to parameter values in order to reduce the sum of the squares of the errors
between the function and the measured data points. The Levenberg-Marquardt curve-fitting
method is actually a combination of two minimization methods: the gradient descent method
and the Gauss-Newton method. In the gradient descent method, the sum of the squared errors
is reduced by updating the parameters in the direction of the greatest reduction of the least
squares objective. In the Gauss-Newton method, the sum of the squared errors is reduced by
assuming the least squares function is locally quadratic, and finding the minimum of the
quadratic. The Levenberg-Marquardt method acts more like a gradient-descent method when
the parameters are far from their optimal value, and act more like the Gauss-Newton method
when the parameters are close to their optimal value.

2D Projection Data
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Figure 5 Measurement data of acceleration in 2d projection

In fitting a function y(t; p) of an independent variable t and a vector of n parameters p
to a set of m data points(t,y,), it is customary and convenient to minimize the sum of the
weighted squares of the errors (or weighted residuals) between the measured data y(t,) and
the curve-fit function y(t;; p). This scalar-valued goodness-of-fit measure is called the chi-
squared error criterion [10].
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i—1 Wi
22(p) = (y = 9(P) W (y - J(p)). 9)
2%(p) =y Wy —2y"Wg + §Twy (10)

The value w, is a measure of the error in measurement y(t,). The weighting matrix W

is diagonal with W;; = 1/w;. If the function ¥ is nonlinear in the model parameters p, then the
minimization of »* with respect to the parameters must be carried out iteratively. The goal of
each iteration is to find a perturbation h to the parameters p that reduces y°.

The Levenberg-Marquardt algorithm adaptively varies the parameter updates between
the gradient descent update and the Gauss-Newton update [10],

la™Wa a1 jh=3Tw(y-9) (11)

where m x n Jacobian matrix ] = 0y/dp and small values of the algorithmic
parameter A result in a Gauss-Newton update and large values of A result in a gradient descent
update. The parameter A is initialized to be large. If iteration happens to result in a worse
approximation, A is increased. As the solution approaches the minimum, A is decreased, the
Levenberg-Marquardt method approaches the Gauss-Newton method, and the solution
typically converges rapidly to the local minimum [6]. Marquardt’s suggested update
relationship [10],

l3TWa + A diag(3TWI) |h = 3TW (y - 9) (12)

The alg aith madjusts A acco d ng to whether * is increasing or decreasing as
follows:

Given an initial guess for the set of fitted parameters p

Compute Xz(p)

Choose a value for A, for instance A = 0:001

Calculate h and evaluate 4 (p+h)

If y*(p+h) > »*(p) increase 4 by a factor and go to (3) and try an update again.

If Xz(p+h) < Xz(p) decrease A by a factor, accept the updated trial solution p < p+h and go
to (3) and try an update again.

SAEIE A

The reasoning of the method is that if the error is increasing, the quadratic
approximation in the Gauss-Newton method is not working well and we are likely not near a
minimum, so A should be increased in order to blend more towards steepest descent.
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On the other hand,

if the error is decreasing, the approximation is working well, and we expect that we
are getting closer to a minimum so A is decreased to blend more towards Gauss-Newton.
Levenberg-Marquardt’s algorithm has the disadvantage that if the value of damping factor, A,
is large, inverting (J"WJ + A I) is not used at all. Marquardt [12] realized that each component
of the gradient can be scaled according to the curvature so that there is larger movement along
the directions where the gradient is smaller. Thereby avoiding slow convergence in the
direction of small gradient. Marquardt utilized this by replacing the identity matrix, | in
Levenberg-Marquardt’s original equations Equation (11) with the diagonal matrix consisting
of the diagonal elements of J'WJ (the Hessian matrix), resulting in the Levenberg-Marquardt
algorithm, Equation (12) which then includes an estimation of the local curvature information
and uses this to move further in the directions in which the gradient is smaller.

2.5 Numerical implementation

This work including the enhancement of a rank-1 Jacobian update. In iteration i, the
step h is evaluated by comparing y?(p)to x?(p + h). the step is accepted if the metric p; [10]
is greater than a user-specified value, ¢4,

2P~ 2% (p+h)
,0'( )_ T T ~ y
2h" (4 + I3 "W (y—¥(p)))
If in an iteration pi(h) > €4 then p + h is sufficiently better than p, p is replaced by p +
h, and A is reduced by a factor. Otherwise A is increased by a factor, and the algorithm
proceeds to the next iteration

(13)

2.5.1. Initialization and update of the L-M parameter, A, and the parameters p
[10]

1. Ao = Ag; Ao is user-specified .
[J'W] + Aidiag[J"W]]]h = JTW(y — 9(p));
if pi(h) > €4:p < p + h Ay = max[A; /L, 1077];
otherwise: A;,, = min[A; /L, 107];];
2. Ao = Ay max|diag[J"WJ]]| h; A, is user-specified .
[J'W] + Aillh = ]TTW(}’ - y(); .
= ("Wl - 52) 1) /(@20 +m - 2@)/2+/ (TW(y ~ 50))) 1)
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if pi(h)> ey:p<p +ah;l;y; = max[A; /(1 + a),1077];
otherwise: 1,41 = 4; + [2%2(p + ah) — 22(p)|/2a);];

3. Ao = Ay max|diag[J"W]]]| h; A, is user-specified .
[J'W] + Ak = J"W( - 9());
if pi(h) > ex:pe—=p +ah; Ay =24 max[1/3,1—2p; — 13 ];
otherwise: A1 = A; + [22(p + ah) — 22(p)|/(Ra);];

where €, is determines acceptance of a L-M step

2.5.2. Computation and rank-1 update of the Jacobian, [dy/dp]

In the first iteration, in every 2n iterations, and in iterations where y%(p + h) >
x?(p), the Jacobian (J € R™ ™) is numerically approximated using forward differences,

oy Y(iip+op;)— V(i p)
Pj |05 |
or central differences (default)
3. % _ y(ti; p+pj)—Y(ti; p—pj)
. P 2|0p; H |

where the j-th element of dp; is the only non-zero element and is set to 4; (1 + |pj )-n

all other iterations, the Jacobian is updated using the Broyden rank-1 update formula,
5 Coln T
3-3.0m+h) ¥(p) Jh)h | (16)
h' h

For problems with many parameters, a finite differences Jacobian is computationally

expensive. Convergence can be achieved with fewer function evaluations if the Jacobian is re-

computed using finite differences only occasionally. The rank-1 Jacobian updates equation
(16) requires no additional function evaluations.

Jij (14)

(15)

2.5.3. Convergence criteria

Convergence is achieved when one of the following three criteria is satisfied,
1. Convergence in the gradient, max|J"W(y — )| < e;
2. Convergence in parameters, max |hi/pi| < €,;or
3. Convergence iny?, x?/(m — n + 1) < €.
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where €4, €, and €5 are convergence tolerance for gradient, parameters and Chi-square
respectively.

Otherwise, iterations terminate when the iteration count exceeds a pre-specified limit

To get data from sensor and solve equation (1) numerically for estimate nine
parameters, Figure 6 illustrates the graphical user interface of the developed calibration
software, interfaced with a Matlab

3 RESULTS AND DISCUSSION

This section gives some calibration results for a 3D accelerometer specifications in
[13] The calibration procedure has been performed three times successively, according to
section (I1). Each time, 4800 data points are used for the estimation of parameters. The
obtained gains, bias and orthogonality are then compared in the following tables. The
estimation algorithm LMA fit performs the alpha, beta and S;; computation instantly, with
about less than 100 iterations [4].
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Figure 6 Matlab Gui program to Estimate Calibration Parameters

In Table 1 the calibration results for a 3D accelerometer sensor. The sensor must only
measure the static acceleration of gravity, for which the norm is constant. We need to exclude
measurements where the sensor is not static, for which dynamic acceleration is present,
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by observing the temporal variance of the data signal. In static position the
accelerometer has a low variance.

Figure 7 shows that the estimated parameters define a sphere according to the
model equation (2) that fits the measurement [3]. The calibration results in Table 1 shows that
the gains, bias and the orthogonality of sensors gives very good stability. In some applications
the orthogonality errors cannot be taken into account because of the low impact on the
measurements [3].

Table 1 Measured Parameters

Parameter Name

Test 1

Test 2

Test 3

B -0.0103 -0.0099 -0,00101
B, 0.0010 -0.0008525 -0.0094
B, -0.0186 -0.0186 -0.0186
o 0.9936 0.9930 0.9938
o 10105 1.0098 1.0102
o 0.9914 0.9917 0.9920
Sey -0.0067 0.0011 0.00118
S 20.000096 0.000766 0.000806
Su2 0.0072 0.000528 0.00055
standard deviation for 0.001419 0.000956 0.0015438
S e " 0.00156 0.00194 0.00167
standard deviation for 0.00115 0.00123 0.00145

4 CONCLUSIONS

The numerical calibration of 3D accelerometers sensors is not an expensive solution
and can be implemented with no mechanical means. The calibration procedure can be
performed after the integration phase of electronics to take into account the drift and
uncertainty of the component itself, all the gains, bias and geometry. The calibration
parameters of accelerometers are accurate at 1%.

This method of calibration has been successfully used for the preparation of
MicroElectroMechanical Systems (MEMS) inertial units, in a pedestrian tracking system,
robot and UAVSs. It is worth noting the possibility of using this method in calibration of
magnetometer.

80



Journal of Engineering and Development, VVol.19, No.4. July. 2015, ISSN
1813- 7822

I a1 i vl and comscted scalles 6y K

* Real Data
* Corrected Data

s
BGEEN
LT
AN

i l:l":':':n
T

AT TIT 7T
I
i

Figure 7 Sphere of 3D accelerometer sensor
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