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Abstract: In order to find the effect of thermal loading on dynamic characteristics, a three dimensional 

steady state thermal analysis of thin rectangular plate subjected to heat flux extending over a specific 

region with convection boundary conditions was conducted. Analytical solution was suggested with the 

intention of assuring the result, which was used to study the variation of dynamic characteristics. The 

derivation of a closed form analytical solution of the heat equation for specific boundary condition and 

heat flux model was necessary to describe the three dimensional spatial temperature distributions which 

in turn were used to derive the required equation for the plate dynamics. Different plate dimensions were 

studied with heater location and shape was fixed, while its dimensions vary according to plate dimension 

under consideration. The numerical and experimental results were found to be comparable.  
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 الحل التحليلي المقترح لتأثير الأحمال الحرارية على الخواص الديناميكية للصفائح
  

تم إيجاد الحل التحليلي بالأبعاد الثلاثة الواصف لتغير الخواص الديناميكية لصفيحة متعرضة لحمل حراري على جزء منها   الخلاصة:

 Closed)بواسطة الحمل الحراري . بهدف إيجاد وصف تحليلي لتأثير الحمل الحراري على أبعاد الصفيحة بصيغة مغلقة وتفقد الحرارة 

Form) مختلفة حيث تم تثبيت شكل المسخن وموقعه وتم تغيير عرضه وبما يتناسب وأبعاد الصفيحة . تم مقارنة .تم دراسة صفائح بأبعاد

  النتائج التحليلية مع النتائج العددية و العملية ووجد أنها متقاربة. 

   
1. Introduction 

 

Danilovskay [1] investigated the dynamical thermoelasticity with a quick 

heating has been carried out. In his work, the strain deformation state of a half 

space with its surface heating has been observed. Manson [2] studied of a brief 
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review of the classical continuum approach to thermoelasticity problems are given. It is 

shown that an analogous technique can be used to reduce the study of thermally induced 

vibrations by finite element techniques to that of a forced response analysis of the 

idealized structure excited by time dependent equivalent mechanical loads. Xiaogeng 

Tian [3] used the principle of virtual work, to derive the finite element equations 

corresponding to the generalized thermoelasticity with two relaxation times. In order to 

improve the accuracy of integral transform method, especially in two/three-dimension, 

the equations were solved directly in time-domain. As numerical examples, the 

developed method was used to investigate the generalized thermo elastic behavior of a 

slim strip and a semi-infinite plate subjected to thermal shock loading. Kulik [4] 

presented the temperature field during one source heating. If there is a system of heat 

energy sources, a solution to the transfer equations can’t be obtained yet in the 

analytical form. In the sum of other works, the temperature fields and the stress strain 

states of plates and shells are characterized by a sudden increase of temperature and 

deflection. Also by a sudden jump of stresses in the place of the heat source. All of the 

mentioned components decrease rapidly in the neighborhood of the heat source. Due to 

the mathematical difficulties of finding an exact analytical solution to the three 

dimensional problems many researchers assume that the temperature changes linearly 

along a thickness.  

     Wael Rasheed [5] studied the theoretical approach on the theory of bending of 

isotropic thermo elastic thin plates to obtain the governing differential equation. By 

using the governing differential equation and the Rayleigh Ritz method of minimizing 

the total potential energy of a thermo elastic structural system, thermal buckling 

equations were established for rectangular plate with different fixing edge conditions 

and with different aspect ratio. The strain energy stored in a plate element due to 

bending, mid-plane thermal force and thermal bending was obtained. Expressions of the 

frequency equations for rectangular plate model with and without the thermo elastic 

effect for the cases (all edges are simply supported, all edges are clamped, and two 

opposite edges are clamped while others are simply supported) were obtained through 

direct method for simply supported ends and using Hamilton's principle with 

minimizing of Ritz method to total energy (strain and kinetic) for the rest of boundary 

conditions, also the plate thickness was taken as a design variable. 

      Al-Huniti [6] the resulting heat conduction equation was solved using semi 

analytically employing the Laplace transformation and the Riemann sum approximation 

to calculate the temperature distribution within the plate. The equation of motion of the 

plate was solved numerically using the finite difference technique to calculate the 

transient variations in deflections. Jeon [7] studied the experimental analysis on the free 

vibration characteristics of the rectangular aluminum plate under rapid thermal loading. 

The configuration of the plate was 100 x 100 x 2mm. Halogen lamps were used for the 

rapid thermal loading. The thermal loading was controlled by electric control system, and 

the test data was scanned by the laser scanning vibro-meter. The rate of thermal load on 

the plate was 2, 10, 30, 45, 60 and 70 °C/sec. The rectangular plate was hung using a 

bungee cord with a 7 mm dia. and steel cables were used to make a free-free boundary 

condition. One side of the rectangular plate was heated by Halogen lamps and electric 
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power. The experimental results showed that the fundamental natural frequency of the 

rectangular aluminum plate under rapid thermal loading (70 °C/sec) decreases about 8 % 

to that when under no thermal loading. In this work, the fundamental equations for the 

small- deflection of thermo-elastic bending of thin   plates will be derived to obtain the 

thermal stresses that result from thermo-elastic effect and its effect on the natural 

frequencies and mode shapes. The analytical solution is divided into two parts. First part 

is concerned with thermal problem while the second part is focused on dynamic 

characteristics. The results compared with experimental published in Ph.D. thesis [8]. 

  
2-Solution of Thermal Problem 

 

     When the boundaries of a multi-dimensional conduction problem correspond to the 

coordinate surfaces in a system of orthogonal coordinates, such as Cartesian, an exact 

solution by analytical methods becomes possible. One common method is based on 

the separation of variables, another on the Laplace transforms or the operational 

calculus. 

     Consider the steady-state three dimensional homogenous conduction with no heat 

generation rectangular coordinate system [9]. 

 

𝜕2𝜃

𝜕𝑥2
+

𝜕2𝜃

𝜕𝑦2
+

𝜕2𝜃

𝜕𝑧2
= 0 

(1) 

Let 𝜃∞ temperature increasing and  

 

                                                            𝜃∞ 
(𝑥,𝑦,𝑧) = 𝑇(𝑥,𝑦,𝑧) − 𝑇∞                                                 (2) 

 

Where 𝑇∞Temperature constant, then 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1: Thermal boundary condition zones of upper plate surface showing 

conduction, convection, and heat flux zones 
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Applied boundary condition for wall 6 (upper surface) at Z=0     

Energy method concepts were used to derive the governing equation of this boundary 

condition. Hence, for the upper surface the energy balance requires that showing in Fig. 

1, and Table1. Figs.1 And 3 show the heater location and thermal boundary conditions. 
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Table1:Zones of convection and heat flux boundary conditions 

Wall zone x-range y-range z-range Thermal Boundary Condition 

W6 

S2 

0≤x≤a 

0≤y≤b1 

z=0 

Convection only 

S1 b1≤y≤b2 Heat Flux 

S2 b2≤y≤b Convection only 

Fig.3: Description of thermal 

boundary conditions on various 

plate walls 

 

Fig.2: Heater location on the upper 

plate surface. 
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Equation (1) could be solved by separation of variables [6]. 

Since 
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



                (5)   

Where 

       )sin()(

  xx , )sin()(


  yy , )2(

,

,

,
,,)(

tz

mn

mnz

mn
mnmn e

k
h

k
h

ez











  

Where 

                       )(tan 1

n
h

k




         and        )(tan 1

m
h

k




  

                          

3

0

20

1

















I

z
z

zmn
KIzmnh

Ioq
mn

)(,
)(,

,
                       (6) 

                 

∴     𝜃(𝑥,𝑦,𝑧) = ∑ ∑ 𝜃𝑛𝑚

∞

𝑚=0

(sin(𝛼𝑛𝑥) +
𝐾

ℎ
𝛼𝑛 cos(𝛼𝑛𝑥))

∞

𝑛=0

 

                   (sin ( 𝛽𝑚𝑦) +
𝑘

ℎ
𝛽𝑚 cos(𝛽𝑚𝑦). [𝑒−𝜆 𝑧 +

(𝜆−
ℎ

𝑘
)

(𝜆+
ℎ

𝑘
)

𝑒𝜆(𝑍−2 𝑡)]                    (7) 

  Which is applicable for 0 ≤ 𝑥 ≤ 𝑎 , 0 ≤ 𝑦 ≤ 𝑏 , 𝑎𝑛𝑑 0 ≤ 𝑧 ≤ 𝑡 

 

3- Strain Energy of Plates 
 

      The energy method can be very advantageous, to deriving expression, assuming that 

the in-plane stress resultants are entirely due to external edge loading in the plane of the 

plate, in which case they are unchanged during bending. Strain energy of the plate 

middle surface can be obtained from the general expression of the potential energy of an 

elastic body it is simplified and has the following form for the above mentioned 

increment of the middle surface. The Lagrangian (L) of the plate can be written as: (7) 
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The free vibration solution may be assumed as: 
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Comparing (10) with the Eigen value problem     FAMK  2 
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Equation (11) is the general frequency equation. 
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For Stress free vibration (i.e. Nx=Ny=0) 
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The last term could be designated as: 
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4- Incorporating Temperature Distribution 
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Where I's are given in Table2. 
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5- Shape Functions were used [10] 

 

   Four fully clamped (CCCC) edges (i.e. at x=0 and x=a)  

Even Modes are given by 

                           

0)
2

tanh()
2

tan(

...6,4,2

))
2

1
(cosh(

)
2

sinh(

)
2

sin(

))
2

1
(cos()(







ii

i

i

i

i

and

mwhere

a

x

a

x
xX










                               (24) 

While odd Modes are given by 

                                  

0)
2

tanh()
2
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))
2

1
(sinh(

)
2

sinh(

)
2

sin(

))
2

1
(sin()(







ii

i

i

i

i

and

mwhere

a

x

a

x
xX










                                (25) 

The function Y(y) are similarly chosen by the conditions at y=0 and y=b by replacing X 

by Y, a by b, and m by n in (24) and (25). 

 

5.1. Four edges fully clamped (CCCC) (stress free) 

 

     To calculate the natural frequency without heating load (stress free) for boundary 

condition (four edge fully clamped) CCCC, (13) was used for stress free. Mode shape 

functions (24) and (25) were substituted in (13).The integration solutions as shown in 

Table 2 were substituted in (20) and then solved by MATLAB program to obtain final 

results of natural frequency (stress free). 

 
5.2. Four edges fully clamped (CCCC) (under thermal stress) 

 

     To calculate the natural frequency due to heating load effect for boundary conditions 

(four edge fully clamped) CCCC, (15) was used to find natural frequency under thermal 

stress, (19) was used for thermal force (Nt).Mode shape functions (24)and (25) were 

substituted in (15).The integration solutions as shown in Table 2 were substituted in 

(23) and then solved by MATLAB program to obtain final results of natural frequencies 

(thermally stress). 

 
6-Results and discussions 

 

    The three dimensional steady-state heat transfer problem of a rectangular plate made 

from aluminum alloy 7075 T6, was analyzed by using three methods which are 
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analytical, numerical, and experimental [8]. The results then compared and found 

comparable. Solution of (1) analytically takes another form when it is applied to the 

thermal boundary conditions and will gives the temperature in a three-dimensional body 

as a function of the three independent space coordinates x, y and z.  

Thermal Distribution for Plate dimensions (150*300* 2) mm , (200*300*2) mm, 

(250*300*2) mm and (300*300*2) mm and boundary conditions (CCCC) as shown in 

Table 3, Table 4 , Table 5 ,and Table 6 listed the variation of temperature distribution 

produced by the effect of applying different values of heating load up to Vanishing 

Heating Load (VHL) along y-axis  at x=a/2 (CCCC).In order to reach VHL that which 

causes vanish natural frequency till to reach zero value, the following conclusions can 

be obtained for the same aspect ratio: 

 
 

1-Smaller plates need more heat flux (q). 

2- An increase in aspect ratio (b/a) at constant (b) led to heat flux (q) increasing. 

3-CCCC needs less heat flux (q) than CSCS [8]. 

4-CSCS needs less heat flux (q) than CSSS [8]. 

5-CSSS needs less heat flux (q) than SSSS [8]. 
 

     That mean as more restricting boundary condition is used then less values of heating 

load will be needed to reach VHL. This is because CCCC is restricted in plane 

displacements hence increasing in plane stresses. Tables 7 to Table 10 show the 

relationship between heating load and it is effect on natural frequency for boundary 

condition (CCCC) and for different plate dimensions (Analytically).The results were 

obtained by solving the analytical solutions by MATLAB. Fig.4 to Fig.7 show the effect 

of heating load on dynamic characteristic for different plate dimensions. 

 Fig.8 to Fig.11 show the charts of heating load effect on the natural frequencies and 

how to vanish mode shape one after the other for the first five natural frequencies ,with 

plate dimensions (150*300*2) mm, (200*300*2) mm ,(250*300*2) mm , (300*300*2) 

mm ,and boundary condition (CCCC).It was concluded from the obvious results the 

drift in mode number and vanishing natural frequency by the effect of increasing 

heating load, and any increasing in heating load (at the same boundary condition) will 

make a decreasing in the natural frequency, physically, applying heating load on plate 

will cause a decrease in stiffness of the plate’s material, dynamically when stiffness of 

material decreases the natural frequency was decreased to.  

As more restricting (clamped) boundary conditions is used, natural frequency will 

increase. Vic versa, as more unrestricting (simple support) boundary conditions is used, 

natural frequency will decrease. At the same time it can be seen that any increasing in 

plate dimensions will decreases the natural frequency, that means natural frequency is 

increased with aspect ratio increasing, this is because of a smaller plate which needs less 

heating load and still it has a higher stiffness. 
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Table 3: Variation of temperature distribution along y-axis at x=a/2 for plate dimension (150*300*2) mm 

and boundary condition CCCC (Numerical, Analytical and Experimental) 

 

T.C5 (C
o
) 

265mm 

 

T.C4(C
o
) 

230mm 

 

T.C3(C
o
) 

195mm 

 

T.C2(C
o
) 

160mm 

T.C1 (C
o
) 

125mm 

 Heat 

Flux 

W/m
2
 

42.195 39.241 37.522 36.545 46.522 Num. 1800 

42.31287 39.91218 38.76772 37.98706 46.71954 Ana.  

40.5 38 37 36 45 Exp.  

42.761 39.644 37.828 36.798 47.329 Num. 1900 

42.88581 40.35175 39.1437 38.31967 47.53729 Ana.  

43 39.5 38.3 37 46 Exp.  

47.292 42.862 40.282 38.818 53.783 Num. 2700 

47.46931 43.86827 42.15158 40.98059 54.07931 Ana.  

46.8 42 40.9 38.4 52.9 Exp.  

51.823 46.08 42.737 40.838 60.237 Num. 3500 

52.05281 47.3848 45.15945 43.6415 60.62132 Ana.  

51 46 42 40 58 Exp.  

52.956 46.885 43.35 41.343 61.851 Num. 3700 

53.19868 48.26393 45.91142 44.30673 62.25683 Ana.  

51 45.8 42 40.2 60.2 Exp.  

 

 

  

Table 4: Variation of temperature distribution along y-axis at x=a/2 for plate dimension (200*300*2) mm 

and boundary condition CCCC (Numerical, Analytical and experimental) 

 

T.C5 (C
o
) 

265mm 

 

T.C4(C
o
) 

230mm 

 

T.C3(C
o
) 

195mm 

 

T.C2(C
o
) 

160mm 

T.C1 (C
o
) 

125mm 

 Heat 

Flux 

W/m
2
 

42.027 39.02 36.969 35.779 35.105 Num. 1200 

41.82449 38.88515 37.28185 36.5162 35.99445 Ana.  

40 37 35 34.9 33.9 Exp.  

42.863 39.605 37.383 36.094 35.364 Num. 1300 

42.6432 39.45892 37.722 36.89255 36.32732 Ana.  

40.9 38 36 35.6 34.4 Exp.  

47.876 43.115 39.868 37.984 36.917 Num. 1900 

47.55545 42.90149 40.36293 39.15065 38.32454 Ana.  

45.7 41 36.7 35.6 35 Exp.  

50.383 44.87 41.11 38.929 37.693 Num. 2200 

50.01157 44.62278 41.68339 40.2797 39.32315 Ana.  

48.8 43.7 40 38 36.9 Exp.  

54.561 47.795 43.181 40.503 38.987 Num. 2700 
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T.C5 (C
o
) 

265mm 

 

T.C4(C
o
) 

230mm 

 

T.C3(C
o
) 

195mm 

 

T.C2(C
o
) 

160mm 

T.C1 (C
o
) 

125mm 

 Heat 

Flux 

W/m
2
 

38.829 36.776 35.374 34.561 34.101 Num

. 

800 

38.54688 36.58895 35.52016 35.00921 34.66121 Ana.  

38 36 35 34.2 33.7 Exp.  

39.683 37.373 35.795 34.881 34.363 Num

. 

900 

39.36524 37.16257 35.96018 35.38536 34.99386 Ana.  

38.8 37 35.4 34.7 34 Exp.  

44.805 40.955 38.326 36.801 35.939 Num

. 

1500 

44.27539 40.60429 38.60029 37.64227 36.98977 Ana.  

43.5 39.7 38 35.9 35 Exp.  

45.658 41.552 38.747 37.121 36.201 Num

. 

1600 

45.09375 41.17791 39.04031 38.01842 37.32242 Ana.  

44.2 40.4 38.5 36.4 36 Exp.  

52.061 46.03 41.91 39.522 38.17 Num

. 

2350 

51.23145 45.48005 42.34046 40.83956 39.81731 Ana.  

50.6 45 40. 

9 

39 37.7 Exp.  

 

T.C5 (C
o
) 

265mm 

 

T.C4(C
o
) 

230mm 

 

T.C3(C
o
) 

195mm 

 

T.C2(C
o
) 

160mm 

T.C1 (C
o
) 

125mm 

 Heat 

Flux 

W/m
2
 

38.062 36.239 34.991 34.267 33.857 Num. 700 

37.72135 36.01078 35.07655 34.62962 34.32532 Ana.  

36.7 35 34 33.5 33 Exp.  

38.495 36.542 35.204 34.429 33.99 Num. 750 

38.13002 36.29727 35.29631 34.81745 34.49141 Ana.  

37 35.3 34.3 33.8 33.3 Exp.  

42.391 39.267 37.127 35.886 35.184 Num. 1200 

41.80803 38.87563 37.27409 36.50793 35.98626 Ana.  

41 38 36 35 34.5 Exp.  

43.257 39.872 37.554 36.209 35.449 Num. 1300 

42.62536 39.4486 37.7136 36.88359 36.31845 Ana.  

54.10511 47.4916 43.88416 42.16145 40.9875 Ana.  

53 45.8 42 39 37.9 Exp.  

Table 5: Variation of temperature distribution along y-axis at x=a/2 for plate dimension (250*300*2) mm 

and boundary condition CCCC (Numerical, Analytical and experimental) 

Table 6: Variation of temperature distribution along y-axis at x=a/2 for plate dimension (300*300*2)mm 

and boundary condition CCCC(Numerical , Analytical and Experimental) 
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41.8 38.7 36.5 35.5 35 Exp.  

48.237 43.354 40.011 38.071 36.974 Num. 1875 

47.32504 42.74317 40.24077 39.04363 38.22853 Ana.  

47 42 39 37 36 Exp.  

 

Table 7: CCCC, a=150 mm Effect of heating load on natural frequency (Hz) analytically 

 

Table 8: CCCC, a=200 mm Effect of heating load on natural frequency (Hz) analytically 

 

Table 9: CCCC, a=250 mm Effect of heating load on natural frequency (Hz) analytically 

 

 

 

Mode No. 
0 

W/m
2

 

1037.001 

W/m
2

 

2074.003 

W/m
2

 

2440.685 

W/m
2

 

3042.213 

W/m
2

 

4322.892 

W/m
2

 

5089.862 

W/m
2

 
i j 

1 1 538.6451 380.8796 0 0 0 0 0 

1 2 698.4748 529.6994 270.7322 0 0 0 0 

1 3 982.8129 797.9142 554.4481 437.0227 0 0 0 

2 1 1402.388 1222.665 1011.498 925.3682 763.3101 0 0 

2 2 1560.889 1392.835 1201.502 1126.093 990.0259 605.9099 0 

Mode No 0 

W/m
2

 

617.9274 

W/m
2

 

1235.855 

W/m
2

 

1704.841 

W/m
2

 

2473.023 

W/m
2

 

2494.011 

W/m
2

 

3116.307 

W/m
2

 i j 

1 1 333.0307 235.4882 0 0 0 0 0 

1 2 515.0379 411.2395 270.1328 0 0 0 0 

1 3 821.8194 711.7795 581.2684 458.0305 0 0 0 

2 1 815.9529 707.6882 579.5396 458.9878 74.8509 0 0 

2 2 986.462 883.2618 766.2869 663.889 448.1894 440.8175 0 

Mode No 

0 

W/m
2

 

443.2568 

W/m
2

 

886.5135 

W/m
2

 

1431.127 

W/m
2

 

1663.957 

W/m
2

 

2261.068 

W/m
2

 

2265.711 

W/m
2

 

i j 

1 1 242.7624 171.659 0 0 0 0 0 

1 2 439.5593 365.198 271.1582 0 0 0 0 

2 1 546.8608 468.3929 373.8008 204.5621 0 0 0 

2 2 728.8611 653.5253 568.2886 441.5822 374.5549 0 0 

1 3 756.236 678.24 590.0222 458.9761 389.7306 34.23314 0 
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Table 10: CCCC, a=300 mm Effect of heating load on natural frequency (Hz) analytically 

 

 

 

 

   

         

 

 

 

 

 

 

 

                                    

 

 

 

 

 

 

 

 
 

Mode No 
0 

W/m
2

 

361.525 

W/m
2

 

723.05 

W/m
2

 

1226.812 

W/m
2

 

1311.2 

W/m
2

 

1834.143 

W/m
2

 

2054.248 

W/m
2

 
i j 

1 1 197.2749 139.4944 0 0 0 0 0 

2 1 402.8532 338.328 258.1491 0 0 0 0 

1 2 402.8532 342.8466 269.809 102.2001 0 0 0 

2 2 594.6867 532.8644 462.857 342.2033 317.5403 0 0 

3 1 723.8035 657.033 582.6604 459.3685 435.314 236.9238 0 

Fig.4:Effect of heating load (w/m
2
) on natural 

frequency (Hz), Analytically, cccc, a=150 

Fig.6: Effect of heating load (w/m
2
) on natural 

frequency (Hz), Analytically, cccc, a=250 

Fig (5): Effect of heating load (w/m
2
) on natural 

frequency (Hz), Analytically, cccc, a=200 

Fig.7: Effect of heating load (w/m
2
) on natural 

frequency (Hz), Analytically, cccc, a=300 
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Fig (9): Effect of heating load on natural frequency 

up to vanishing heating load, CCCC, a=200 mm 

 

Fig (10): Effect of heating load on natural frequency 

up to vanishing heating load, CCCC, a=250 mm 

 

Fig (8): Effect of heating load on natural frequency 

 up to vanishing heating load, CCCC, a=150 mm 
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Symbol list 

 

Symbol Meaning Units 

A Area m
2 

a , b Plate side length m 

D Flexural rigidity of an isotropic plate N.m 

E Modulus of elasticity of an isotropic material N/m
2
 

h Convection heat transfer coefficient W/m
2
.
 

o
C

 

i,j Integer  

K Thermal conductivity W/m.
 

o
C

 

Mt Thermal bending moment N.m 

Mx, My Bending moment in x, y direction N.m 
  Density of material N.m

2
 

m,n Integers representing the number of half-waves of the mode shapes in 

the x and y directions. 

 

Nx, Ny Edge forces per unit length N/m 

Nxy Shearing forces per unit length N/m 

 

Nt Thermal forces per unit length N/m 

q Heat flux W/m
2
 

W Shape function  

Xi , Yj Shape functions in x,y directions  

mn,  Difference of temperature distribution = T  
o
C 

  Poisson ratio 
 

nm  ,  Root Coefficients 

 

 

2
ij   

Final natural frequency  

 

Hz 
 

Fig (11): Effect of heating load on natural frequency 

up to vanishing heating load, CCCC, a=300 mm 
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6. Conclusions 

 

1. A Smaller plate dimensions needs more heat flux to vanish natural frequency than 

larger plate dimensions for the same boundary conditions. 

2. As aspect ratio increases, heat flux (q) increases to reach vanishing heating load for 

the same boundary conditions. 

3. As more restricting boundary conditions are used, the less values of heat flux will be 

needed to reach vanishing heating load for the same plate dimensions, i.e. the more 

restricting boundary conditions, the more sensitive plate to heating load. 

4. The vanishing heating load of natural frequency always appear in sequentially 

manner. 

5. An increase in aspect ratio (b/a) at constant (b) led to natural frequency increasing. 
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