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Abstract

A new mathematical finite element model suitable for the general bending analysis of
annular plate structure is developed in polar coordinates system depending on the strain
based approach has been derived. The element is smple and contains only the essential
degrees of freedom. The element has 15 degrees of freedom, three at each node and
satisfies the exact representation of the rigid body modes of displacement. The results
obtained by using the proposed element in several numerical problems have shown that a
rapid convergence to exact solution can be obtained with acceptable degree of accuracy
when only few element are used. The element has the advantage over the other available
annular plate elements. The improvement obtained is due to the fact that all the
displacement fields of the present element satisfy the exact representation of rigid body
modes of displacements then the shape function error due to rigid body modes becomes
zero. Also, the present element satisfies the full geometry of the annular plate due to this
point discretization error becomes zero. Finally the error due to strain mode becomes very
small because the present element satisfies the compatibility equations of strains and the
12th coefficients of strain mode derived exactly from partial differential equations of
strains.

The numerical solution of several problems by using the present element proved to be
powerful in the structural bending analysis of circular annular plates. Its results are better
than the solution of other elements and packages with respect to analytical.

Keywords. annular sector plate, Strain based approach element
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Notation:

r,© Polar coordinates

D Bending rigidity.

E Modulus of elasticity.

M;, Mg The bending moments in the directions of r and © axes, respectively.

Mo, Mgr  The twisting moments.

P Point load

q The uniformly distributed load acting on the plate.

Q The out of plane shearing stress resultant in the r-direction of general
plate theory

Qe Theout of plane shearing stress resultant in the ©-direction of genera
plate theory

w Out of plane displacement in Z-direction for cartesian coordinate, and in
normal direction for polar coordinates.

W, The middle surface normal displacements of the annular plate element
dueto the rigid body part.

Ws The middle surface normal displacements of the annular plate element

due to the strain part.
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{a} is the vector of constant terms of the displacement function {d}

[A] The transformation matrix.

[B] The strain matrix.

[D] Therigidity matrix.

[f] IS the matrix containing the coordinate variables

[K] The stiffness matrix of the finite element.

Pl The vector containing the nodal loads acting on the finite element.
| The vector containing the degrees of freedom of the finite element.
€] The vector containing the strain (and curvatures) of the finite element.
IS| The vector containing the stresses in the finite element.

O Rotation in the r-direction of general plate theory

oo Rotation in the ©-direction of general plate theory

1. Introduction

For the general bending analysis of annular plates based on the classical theory of thin
plates. In general, the following three numerical methods have been used for the anaysis of
annular plates™:

1. Thefinite difference method (FDM).
2. Thefinite strip method (FSM).
3. Thefinite element method (FEM).

The experimental work about this subject were extremely limited for simple cases such as
point loads and simple support ?. The finite element method of structural analysis is now
firmly established as a powerful technique for handling different problems in solid mechanics
(3 The simplest element shapes for annular plate problems are obviously a triangle element
with three nodes as in work of Cheung et a ), and rectangular element with four nodes as in
the work of Rao . Olson and Lindberg !, developed an annular segment plate bending
element with four corner nodes each having three external nodal degrees of freedom.
However, using these elements for curved boundary problems means, that the curved
boundary is being approximated by series of straight — line segments. Hence, there appears to
need to develop a new element by using the polar coordinates system to get a better
representation of the curved boundaries. The present element have an advantageous over the
available annular plate elements. The final properties of the present element are as follows:

The element satisfies the full geometry of annular plate segment, and due to this point the

discritization errors that appear in the curved boundary becomes zero.

The element satisfies the exact rigid body modes of annular plate segment, and due to this

point the shape function error of rigid body mode part becomes zero.
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The strain mode of element is obtained from integrating of assumed strain functions
satisfying the compatibility equation of annular plate segment; due to this point the shape
function error of strain mode part becomes very small.

The explicit integration is used to derive this element; due to this point the error in
numerical integration becomes zero.

According to the central node of element the real value of stresses in the centre of
element are found, not approximate stresses due to the mean of four corner nodes as in
the other available annular plate e ements.

2. Derivation of Annular Plate Element Using Strain Based
Approach

2.1 Theoretical Consideration

Figure (1) shows an annular plate sector. To idealize this annular plate sector, an element
is chosen as shown in Figure (2). For the general bending analysis of annular plate sector
under arbitrary loading, the strains (direct strains and changes in curvature) of the middie
surface are derived from several theories of annular plate sector ™

The lateral deflection (w) is a function of (r) and (©), then the laplacian operator
becomes™¥:

T, 2w, 1 Tw (®)

Nw=——+=— e
s rfr r’9q

Then the deflection surface of alaterally loaded plate transforms is becomes:

WS PER T il TS TR TR @
T v iUt or M 299’

i

Due to load is symmetrically distributed with respect to the center of the plate, the lateral
deflection (w) isindependent of () and the above equation becomes2:

NRw=| T 10@fw 1wd_q
b e r'nrﬁ D

Where g isthe applied load and it is given as afunction of (r) and (q),
Et®

D isthe flexura rigidity, and equals p =
12(1-n?)
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The out of plane components of the strains curvatures are follows:

T°w
S e s 4a
c, =13 (4a)
_Iwi W (4b)
q ﬂl’l’ r2 ﬂqZ
1w W (4c)

where: (r) isthe radial coordinate measured from the apex of the annular plate sector, and
(q) isthe angular coordinate measured around the circumference.

The equation of radial, angular and twisting moments, M,, Mg, and Mo respectively
becomes:

M, =-D{c, +uc,} et e . (58)
M, =-D{c, +uc,} eireeie eeeeen .. (BD)
M, =-(-n)Ddfc,} ceereeie +eeeen s (BC)

and the vertical shearing forces Q;, and Qe respectively becomes:

Q :-D%[NW] e e . (60)
Q :-D?l%[mw] e+ e . (6D)

The above three components of strains cannot be considered independent as they are in
terms of the lateral displacement (w) and hence, the strains must satisfy additional equations
called the compatibility equations. These equations are obtained by eliminating the lateral
displacement (w) from equations (4). The final results of compatibility equations are as
follows:

ﬂ(I‘Zer)_ rﬂcr =0 N € £-))
1Ir p[[o]

Treg) Mew) o 2o (7b)
To Tq '
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2.2 Displacement Functions:

The proposed element is allowed to have only the essential externa degrees of freedom
(w, f;, and fg) a each node. Proceeding as with the usual strain-based approach, the first
major component of the displacement function is due to (strain-free) rigid body modes of
displacement and can be obtained by equating all the components of strains (8] equations (4),
to zero and integrating the resulting partial differential equations becomes:

Wy =a, +a,rcosq+a,rsing e, 8

In this equation wr are the rigid body component of the displacement field w, and is
expressed in terms of the three independent constants(ai,- - ag) The second magjor
component of the displacement function is due to straining of the element. If the element isto
have fifteen degrees of freedom (three at each node) then the strains of the element must be
associated with twelve additional constants(a, - - ,a,; ). Assuming strain polynomial functions

of (a, - - a,) constants.

C = o7 = Ar+Ag+Arg+Arg?+Ar’g® (9a)
1 1
Cq ::TT_\;V?-Fr_Eq_W Ar+AQ+AIrg+AQ°+ArM® s (9b)
10w AW priag e, 9
er r ﬂrﬂq r2 Al4r +A15q ( C)

Checking the above polynomials of strain for compatibility equations of annular plate
sector (7a, and 7b). Finally, the assumed strain functions of annular plate sector element
which satisfy the requirement of compatibility equations are the same of equations 9a, and 9b
except equation 9¢ become:

2 242

co =d2A - Aa+ (Ao A)L-+(aA, - A) T+ (2A, - A)
© u
AL+ AL

The above three equations 9a, 9b, and 10 are integrated in the same procedure that was
used to derive the rigid body modes of annular plate sector element, then the final polynomial
function of strain mode becomes:

W =a0 +agr’+ag’ +a,riq+arq’ +ar’+aq’+a,riy
2,10° +ayr " +a,q°r " +a,ry’
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The complete displacement field functions for the proposed element is becomes.

W =W, + Ws
w=a +a,r cosq +a,r sing +aq +a5r2+aeq2+a7r2q +38qu
+ar® +a,g° +a,rig +a,rq’ +a,r’g’ +a,0%r? +arq’

Therotation f and f 4 are aso given below:

fiw . 2 2

f =—=a,cosq +a,sing +2a.r +2a.rq + +3a,r
T OO TASNAT AT T AT T Al B (13)

+3a,rq +a,0° +3a,r g’ +2a,0°r +2a,rq°

= ﬂT -3,SiNq +a, cosq + > + a6q+a7r+2a8q

2
+3817°q+aﬂr2 +3a,2 + 28, % +2a,,1q +33,1q°

2.3 The Element Stiffness Matrix

Figure (1) shows that the origin of the redia coordinate of the element (r) is located at
the apex of the annular plate sector. Consequently, the origin of the angular coordinate (0) is
located at the center of the element. Since, the calculation of the stiffness matrix is carried out
explicitly; this choice of the origin will smplify the task of integration, thus:

br2

[ke]= [A] (I‘jB] [D][B]rdrqu[A] ........................ (15)

b n

where [A], [B] and [D] are the transformation, strain and rigidity matrices of the element,
respectively. The (15X15) element stiffness matrix [k®], can now be calculated using the
displacement functions (12) and the strain displacement relationships (4).

On the other hand, to keep the storage memory small the stiffness matrix is condensated
from (15x15) to (12x12) by removing the influence of the central point (node 5) to the four
corner points (nodes 1, 2, 3, and 4) asfollows:

lK lelZJ{d lel} {P 12x1} ........................ (16)

where:

Kz = [ e] - [ s s] i s
A"z} ={d 2]

(Pra)={proa)- kool o)
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2.4 Consistent Load Vector

The external applied nodal loads considered in the present finite element analysis are
caculated by using a consistent load vector. The consistent load vector is obtained by
equating the work done by the nodal loads on the noda displacements to the work done by
the external applied load on the assumed displacement function of the element. The annular
plate element shown in Figure (2) is considered. If the element is subjected to several loading
types such as, distributed normal pressure (g), concentrated load (P), uniform distributed
moment (M), and concentrated moment (M;) the load vector becomes'*!:

iP

e 1 x Aratapepal A iR U
{Pesa} = 0 r1dA] [f]% mrv)drdq 0 gA] [+ ], e % Migdrdq ........................ (17)

For the e ement stiffness matrix after condensation, the load vector is taken as follows:

{Pnlle} = {Pelle} - ([K C12x5 ][K e3x3]_ l{PeBXI}) ........................ (18)

Y

Fig .(1) An annular segment element with the coordinates system for plate
bending problems.
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Fig .(2) Displacement and their corresponding forces for annular plate element.

3. An annular plate under a point load

The problem considered is that of an annular plate deforming unsymmetrically as shown
in Figure (3). The plate is clamped along the inner edge (r;=b), and loaded by a concentrated
load at the outer edge (r,=a). An exact solution for this problem is given in Timoshenko and
Woinowsky-Krieger!® for b/a = 1/1.5 and p=0.3. Olson and Lindberg!®¥, Turki” and Al-
khafgji and M ehi'® presented an annular finite element, to analyze this problem. Symmetry
about the diameter containing the load was used, so that, only one half of the plate was to be
modeled. The results for the lateral displacement (w) under the load for different mesh sizes
aregiven in Table (1). When this problem is analyzed with (5x24) mesh using both elements,
the error is about 0.45% for Olson and Lindberg!®, Turkil”, and 0.3% for Al-khafgji and
Mehdi'®, but the error is about 0.1% for the present element and with (8x24) grid for both
elements the error is about 0.7% for Olson and Lindberg™, Turkil”, and 0.089% for Al-
khafaji and Mehdi'®, but the error is about 0.026% for the present element. It is clear in
Figure (3) that the lateral deflections along the inner edge converge rapidly to the exact
solution when the mesh size is refined.

Olson and Lindberg™® confined the resultsin their published work to deflections only (no
results were given for the moments). Figure (3) shows the distribution of radial bending
moment in a non-dimensiona form of (M,/2P) aong the inner edge for (12x24) mesh. It is
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evident from this figure that the proposed element gives satisfactory results for moments
when compared with the exact solution given by Timoshenko and Woi nowsky-Krieger[6].
Table (2) shows the convergence error of four elements, the result appears that convergence
of the present element is stable as when element mesh is increasing the error of solution is
decreasing continuously, but in the other elements the convergence of solution is unstable
with increasing mesh size as appearing in Table (2). In general, the two types of convergence
are shown in Figure (4). The reason of two types of errors are concluded by the rigid body
mode and strain mode errors, the present element satisfies the rigid body and strain modes as
this element’s result is stable, the error is decreasing when mesh size is increasing, but other
elements do not satisfy the above conditions.

Table .(1) Convergence of the lateral deflection under the applied point load
Deflection * P/ID
Mesh
size
1x6

Olson’sand i )
) Turki’s Element M ehdi's Element Present Element
Lindberg Element

0.050896 0.050859 0.051675 0.050834

0.051372 0.051370 0.051456 0.050817
0.051027 0.051027 0.051256 0.050795

0.050885 0.050885 0.050932 0.050781

0.050956 0.050945 0.050873 0.050773

0.050997 0.051007 0.050824 0.050758

0.051078 0.051050 0.050763 0.050731

0.051032 0.050992 0.0507424 0.050722
0.0507180 (Timoshenko and Woinowsky-Krieger 1981)

Table .(2) Convergence error of several meshes of the lateral deflection under
the applied point load.

M esh Deflection * P/D
size| Olson’sElement || Turki’sElement | Mehdi'sElement || Present Element

1.900% 0.23%

1.500% 0.195%
1.060% 0.152%
0.420% 0.124%
0.300% 0.1%

0.200% 0.0788%
0.089% 0.026%
0.048% 0.0079%
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Unit Point Load

a= 38.205 mm
b= 25.470 mm
t=7.62 mm
m= 0.3
E=27.89Gpa

Fig .(3) An annular plate under a point
load in problem.

o

Convergence curve
of present element

Percentage of error

\Exact solution

Mesh (12x24)

& Exact Solution of (Ms)

A F.E.S. Solution of (Ms)

Redial moment (Mn

N
o
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0.0 30.0 60.0

. 90.0 120.0
Angles (degrees)

150.0 180.(

Fig .(4) Distribution of radial bending
moment (Ms) along the inner edge in
problem.

-

Convergence curve
of other elements

Percentage of error

\Ex,act solution

Mesh size

() Al-khafaji and Mehdi, and Present element
behavior.

Mesh size

(b) Olson’sand Lindberg element and
Turki’s element behavior.

Fig .(5) General types of convergence errors of finite element solution.

4. An annular plate under uniformly distributed load

As an axisymmetric problem, a circular plate with a central circular hole is analyzed.
Four cases are considered as shown in Figure (6), and in each case, one element in the
angular direction is used with an included angle of 4.5°. Inserting zero value the normal
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rotation fq at all nodes along both the radial edges, thus satisfying the circular symmetry
criterion.

Table (3) shows the maximum deflections and moments which, are obtained by using the
proposed element together with those obtained by the exact solution given by Timoshenko
and Woinowsky-K rieger® and Sawko,s element!®..

Table (4) shows the convergence of maximum deflections and moments. Referring to
this table, it is concluded that the difference in the results is very small and in most cases
tends to be stable, specially, for deflections. Generally, satisfactory results can be obtained
with less than 0.1% difference by using 24 degrees of freedom for deflections and 60 degrees
of freedom for moments, in al considered cases.

The accuracy of this approximation is illustrated in Figures (7) for various loading and
boundary conditions. This table also shows the convergence of the maximum deflection for
all considered cases.

Case 1

—

a=406.6mm
b=203.2mm

g=4.5 degree
m=0.3

t=7.62mm Case 4

E=27.89 Gpa

|
|
i r-=a

Fig .(6) Uniformly distributed load annular plates sector.
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Table .(3) Maximum deflections of problem in Figure (6)

nax*qa’/D*10”
Case No.
Sawko's Element Turki’s Element Pr esent Element

Table .(4) Maximum moments of problem in Figure (6)

a‘/D*10
Case No. max
W SawkosEIement Turk| s Element Present Element

60.9 7 5.28
7, 608 / & 5.275
i i
o 607 =)
% %= 5.27
& 606 =
% // 5
E 605 £ 5265
1k—___—./
60.4 : : 536 . : .
1x2 1xd 1x6 1x8 exact 1x2 1xd 1x6 1x8 exact
Aesh Mesh
case 1 case 2
8261 859 ¥
™ BlE A o
-] : X -
T T 858
o g15% =
= =
s = .
£, B1.58 r -
g % 857
E 8257 : f i
A TTA ) -
i i
8256 . : . 8.56 . : :
1x2 1x4 1x6 1x8 exact 1x2 x4 1xE 1x8 exact
Mesh Mesh
case 3 case 4

Fig .(7) Mesh study for convergence of four cases problem in Figure (6) to exact solution
for (Wmax*qa’/D*107)
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5. Uniformly loaded annular plate sector with all edges clamped.

The final problem considered is that of a uniformly loaded annular plate sector with all
edges clamped. The sketch of this annular plate and its properties are given in the following
figure.

This problem was first analysed by Cheung and Chan!*®, using the finite strip method.
Harik!Y developed an analytical solution to represent this problem. The maximum deflection
and the maximum positive moments (radial and angular moments) along the centera rediad
line are calculated by the proposed element for (9*9) mesh, and for different values of the
(b/a) ratio. The results are given in Tables (5a, B, And C), together with those of the other
methods.

Convergence tests were carried out using the proposed element for the deflections and
moments when the annular plate is divided into meshes ranging from (4x4) to (16x16).
Table (6) shows the convergence of maximum deflections and maximum positive moments
along the central radial line and when the (b/@) ratio equals (0.75).

Clamped edges

d=228.6 mm
=60

u=0.3
t=7.62 mm
E=68.95Gpa.

Fig .(8) Uniformly loaded annular plate sector with all edge clamped and its
properties.
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Table .(5a) Maximum deflections of problem in Figure (8)

Wa*ga’/D*10™
| Cheungand Chan (19) | | Hark(Q | W

Table .(5b) Maximum moments of problem in Figure (8)

Mrmax*qa’/D*10°
Cheung and Chan (19) Harik (2) W

10.9973
11.0352
9.6873
2.5698

Table .(5¢c) Maximum moments of problem in Figure (8)

MQmax*qa?/D*10™
ECTEIE MR

Table .(6) Convergence of the maximum deflections and positive moments
along the central redial line in problem in Figure (8) for b/a = 0.75.

- Winax qa4’D*104 M mac* qaZ/D*lo?’ quax qale*lo?’

1.04205
1.01810
1.00609
1.00110
0.98781
0.98456
0.98450
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6. Conclusion:

Annular plate finite element suitable for the general bending analysis of annular
plate sector has been developed. The element is simple and contains only the essential
degrees of freedom. The element has the advantage over the other available annular
plate element. The improvement obtained is due to the fact that al the displacement
fields of the present element satisfy the exact representation of rigid body modes of
displacements. Also, the displacement fields due to straining of the element are based
on independent strains and satisfy the exact compatibility equations of strain modes.

The present element is used to analyze severa types of problem. The numerical
results of the present element are compared with the analytical, and numerical results
of other researchers. The results of the present element showed good and rapid
convergence of displacements and stresses with the use a few elements. The errors of
output results is less than 0.5% of mesh size (1x6) and less than 0.03% of mesh size
(8x24) for static analysis of plate problems.
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