yournal of Engineering and Development

www.jead.org
Vol. 20, No.02, Marcl2016
ISSN 1813-7822

MIPS CPU DESIGN AND IMPLEMENTATIONBASED CYCLONE
I FPGA BOARD

Dr. Ibtesam R. K.Al-Saedi*

Assist Prof.Communicatio Engineering Department, University of TechnolpBrghdad, Irai

(Received: 23/4/2015; Accepted: 16/09/2015)

Abstract: The aim of thiswork is to desig andimplement a simple MIPS CPU by using Cyclon
FPGA without complex control un MIPS- Processor has been studied and realized to designlate
and implement its components by using VHDL and FPB»ard under Quartus version “8.1 softw
packagesThis design in a modern FPGA environment has doideused to finally realize the tdware
components (RF, PC, ALU, RAM, ROM and Multiplexef)so, the design has used a module princ
to implement the components of the Microproce which provides high flexibility in expanding ti
hardware and software units of its components wthere is a need to change the structure of the de
without acomplex central control unit. This method of desjgovides high flexibility especially fc
embedded systems which are planted in a varietgppfications. The success of the design has
tested through the work of the processor as an iatedrin all components under its instruct with
simple control unit.

Keywords: MIPS, Computer Architecture, VHDL, Simulation

-,

205185k £ 53 Aa sall) 52l) 48 ghina (Guud Ao Lidia (usa gellas £ly g araca

@l yisua) RISC g 58 (Rl 3 Sla) ¢ 5le)MIPS 4882 Ciladlaall (e & 55 elins ananal dasll 138 (e ChagllzduadIal)
e g sl 13a el g BSlas caranad ol 33 o3 Cyclone || FPGA Boarghaivl saisae 3 jhas saa g o (Lie <l layl il
B\Slaall duaia aladinly 430 Jlay) el sllaall U sSa gaead s VHDL dpabal) il oKl 3lSlae clims s aladinly 4a8al) cilallaall
o g Bl melipu s FPGA J s s (Gl e pea 8.1QuAIUS Aaaal) (e g sl 136d A8 paall Fana il
e olsils (Multiplexer s RF, PC, ALU, RAM, RONisball! llaall s o Gpalall il s€all ol o5 &gl
e gl asanalll Ay maus s gl ek i Ale Lg ye Gy G clill 5 apaaill 8 crediul Sl (Module) A il cilas)
b A&kl oda | Bafaa 43S ja B plans a5 ATl (5509 Ay slhaall aleall Crun arllaall U Sl duna) g Apalal) las gl a8
Embedded Systemis s, <l sl 5 sedaall AalaiBl Auulio Lelead 520ms alga g st (B Alle 435 50 b 65 DA (1 g apanadl
BM\BJ;);Q‘JEA“Y‘ @Aﬁﬁﬁh)&@m%&ﬁhﬁéh&\d‘«: d);we:\méﬂ\ CIAJJL\.\A‘@J@}.&AQM}

Al

1. Introduction
One of thamportant abstractions that a programmer usesiisstauction se

* drkarhiy@yahoo.com

39

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

architecture (ISA). MIPS microprocessor (Milliorstruction Per Second) measures of
microprocessor speed that uses 32 bit wide registed data paths. The MIPS CPU is
one of the RISC(Reduced Instruction Set Comput&€§; born out of a particularly
fertile period of academic research and developmbintgeneral, RISC processors
typically support fewer and much simpler instruntd1, 2].

Today, most of the MIPS parts that are shippedngo some sort of embedded
application. MIPS Technologies is a provider of thgsizable, licensable 32-bit
processor cores offered with a range of features capabilities that address diverse
market segments including home entertainment @Iy and set-top boxes), home
networking (e.g.xDSL and WiFi), personal entertaeémin (e.g. digital cameras and
portable media players) and microcontrollers (MCUW48)PS also licenses its 32- and
64-bit architectures to system-on-chip (SoC) dgwets [3].

The efficient of design always is how to make th®cpss less complexity
especially when there is a need for a specific.tAskingle purpose processor is this
type of processor that can be designed to exexatetlg one program. An embedded
designer creates a single-purpose processor bymiegi a custom digital circuit,
advantages and disadvantages are more or lesspgusite of the general-purpose
processor and they are used for in a wide varieapplications for the same task [4].

Nowadays hardware is more and more like softwarean easily be programmed
and integrated with other components by using aulasddesign. This means that
hardware components are designed as separateapartsan be put together in one
device. In this way the device is only programmadtiie control and communication of
the different components. Also, this way has madyaatages like components can
easily be replaced when broken and adding newitume{upgrading) is very simple.
However, there are some kind of a pioneer toolstandardization to reach for low
design cost and fast product development like VHBardware description language)
and FPGA (field programmable gate array).

A FPGA has many more components than it should kavia that way it can be
programmed for various applications. It can alsoused as an interface for the
communication of several hardware components [5, 6]

2. Cyclone Il FPGA Starter Board

Although microprocessors can be implemented in BGA design, it is great
choice to use some tools can offer many facilisesh as density logic inside a single
chip and reprogrammable of the design.

In reprogramming feature, the design can be chaafjed the hardware has been
manufactured and the high level design softwardnopeéd the usage of limited
resources.

In this work, the Cyclone Il FPGA Starter DevelopmBoard (Fig. 1) has chosen
to provide integrated features that enable usedetelop and test designs, range from
simple circuits to various multimedia projects, alithout the need to implement
complex application programming interfaces (API$jpst control software, or
SRAM/SDRAM/flash memory controllers..

40

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

To implement the design with Cyclone Il FPGA, ihiscessary to understand be
design steps about Quartus board by using schemditicr and HDL, compiling th
design, pin assignment, and downloading the destgrthe FPGA boal [7, 8].

USE Mic LUne Line VGA Video RS-232
Blaster In In Port Serial Port

Pismpem T 11t b b

. gl 1] !

24-br Audio
oo 2 = Wiy - IR b P52 Port
Powaer k! B »
(::\:lch Expansion Header 2 (JP2)
{with Resistor Protection)
2TMHz Oscilator
50MHz Oscilator Expansion Header 1 (JP1)
Pr
24MHz Oscilator (with Resistor Protection)

ARera USB Blaster
Controliar Chipaet

Ahera EPCS4

Altera 90nm Cyclone I
Configuration Device

" FPGA with 20K LEs

RUN/PROG Swatch
tor JTAGUAS Modes

«-SD Card Socket

B o B
10 Red LEDs 5 | 5 3 g B E - : ..o e0-

d -
T SMA Edemal Clock

10 Toggle Switches 4 Push-button switches

EMByte SORAM 512KBjte SRAM 4MByta Flash Mamory

Figure 1. Cyclone Il FPGA Starter Development Board[7]

3. Design Architecture

The Architecture for MIPS CPU design is a simpRI&C processor. The design
implemented with the concepts of the modules whegresent here five compone
(Memory, Register File (RF), Arithmetic Logic UnfALU), Programming Counte
(PC) and Multipexes). The advantage of this design is abilityrecognize botl
hardware and software in simple way of constructiofhhe block diagram itFig.2
describes the architecture for designed C

41

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

oD

RS
RT

Instr. Mernory

Addrf Data RD Eegisters

Mata Wemon:

Ciatg Addrd Data
—]

u
X

u
i

Figure 2: Architecture Block Diagram [9]

The standard design flow has applied for each neodslwell as for the final CPU
which includes: Design entry (Schematic entry andhHevel language), Synthesis
(Translating design into logic elements), Simulat{®alidate design logic) and Fitting
(Implementing logic using FPGA resources). The gleshas implemented under
platform Quartus version “8.1 "software packagd.[10

2.1 Component Descriptions for CPU Designed
Memory: This memory is divided into two parts:
1) ROM holds the instructions. It has 2 inputs addi@&%®] &clk and 1 output g
[31..0].
2) RAM holds data. It has 4 input [address[8..0] , d&ta[31..0] and Wren }and 1
output.

Register File (RF): This structure contains all of the registers nurabefO- #31. 32bit
register used to store the output of the memostriictions and Data). It has 8 inputs [
clk, rst, opcode, rsAdd, rtAdd, rdAddr, dataln asmtal.oad] and 2 outputs with the
ability to see the contents of any register. Tdeing of this register file is controlled
directly by the program.

ALU: The core of the MIPS CPU has 7 inputs [clk. oficode, funct, rs, rt and imm
Value] and 7 outputs [aluOut, WE,Zero, Carry, eq@kater Than and Less Than]. A
zero flag is set if the value of the result [3Xhianother output, is all zeros. The ALU
can perform a number of arithmetic operationshsas add and subtract, and some of
logical operations, such as AND, OR and XOR. Theode selects the operation
directly.

PC Counter: Usually the program is executed in the straighé¢ lfashion; the next
instruction to be executed is the one that follaWws previous one currently being

42

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

executed. But sometimeis is needed to conditionally or unconditiongllynp to some
other part of the progran(e.g., functions, loops, etc.) by the program car
instructions. This module has 10 inputs [opcodaradmmaddr, zero, carry, E(
GT,LT, clk, reset and 1 output PCc

Multiplexes: This module connects the data pathway to checlotiteut on the sarr
nodes output. This module has been created to chezkoutput for each cycl
depending on the current instructi

The components RF, PC, ALU, RAM, ROM and Multiplexge programmed by usit
VHDL and FPGA Boardunder Quartt version “8.1.[10].ALU was more complex
programing part in whole design because it repitsséne core of process that nee
special attentionAppendiy).

2.2 MIPS Instruction Set Descriptions with the CPU Designed [11]
There areseveral distinct “classes” of instructions whiclsdgbes its instructiorsets:

a. Arithmetic/logical/shift/comparisc
b. Load/store

c. Branch

d. Jump

Also, there are three instruction formats (encodingM&PS

a. R-type (6bit opcode, -bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, léit function code
b.

| 3126 | 2521 | o20-16 | 1311 | 106 | 5-0
| apcade | re | rt | rd | shamt | finction

c. I-type (6-bit opcode, bit rs, 5-bit rt, 16-bit immediate)
d.

| 31-26 | 2521 | 20-16 | 15-0 ‘

| opcade | rs | "t | i

e. J-type (6bit opcode, 2-bit pseudo direct address)

—h

3126 T 250 ‘

| apcade | pesudadirect jump address

In this work, the instructions groups of the CPlattadopted in this design a
explained in Table 1.

43

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

Table 1.Describtionof the instructions groups [9]

poods RS RT RD = Funct

Nams Descripticon o e R - I .
= F & bits 3 bits 3 bits bits 3 bits & bits

&n

CF 010111 Src Src Drc 000000
AND 01011 Src Src Drc 000001
XOR 01011 Src Src Drc 000010
XNOR 01011 Src Src Drc 000011

Arithmetic Instructions Reglister-Ty

SEL Shift left 010000 Src Src Drc
SHE Shift right 010001 Src Src Drc
RBOL Rotate left 0ioo1io Src Src Drc
ROR Rotate right 010011 Src Src Drc
SUB Subtract 010100 Src Src Drc
ADD Addition 010101 Src Src Drc

Lrithmetic Instructicons Immediate-Type

SHLI Shift left 011000 Src Drc i

SHRI Shift right 011001 Src Drc i

ROLI Rotate left 011010 Src Drc i

EORI Eoctate right 011011 Src Drc i

SUBI Subtract 011100 Src Drc i

ADDI Addition 011101 Src Drc i
Branch Instructions

Jump 100000 address

BEQ Branch sgqual 100010

4
0
[#}]
r
0
¥

5
BNEQ Branch not egqual 100011 Src Src i
BT Branch greater than 100100 Src Src i
BLT Branch less than 100101 Src Src i
BC Branch on carry 100110 i
BZ Branch zero 100111 Src i

il

Memory Instructions Register-Typ

LDD 111000 Src Drc i
STO 111001 Src Src i
Other Instructions

HOP 200000

Notes: Src is a source register, Drc is the destination register, "i” is a 16 bit constant, “address™ is a 24 bit constant.

2.3 Cycle description for CPU Designed
Each of the three cycles must perform certain tasksce completed, the results of the
cycle’s calculations are stored in registers amgmory depended on the program. The
basic duty of each cycle is as follows:

1. Instruction Fetch — This cycle is the same for all instructions, simptpgram
counter (PC) sends the address to the memory (RONBtch the instruction,
put it in the Register File (RF) and increment @&t

2. Instruction Decode and Register Fetch F0 minimize the time of instruction
decode, it is more efficient to perform tasks bytipgation between ALU and

44

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

RF. Therefore, to decoding the instruction, thgisters rs and rt are read and
stored send to ALU. These measures reduce themmaxinumber of clock
cycles. This operation is the same for all ingtauns too.

3. Execution — In this operation of the CPU is determined by thaatipular
instruction that is being executed. This operatib@en performance by
participation between ALU, RF and Memory accorditgy the following
possibility:

* Arithmetic-logical instruction — ALUOut<=rs op rt.

e Branch or a Jump - if (Zero, Carry , Equal, Grdtean , Less Than), PC <=
ALUOut.

« Memory Events (read or write) — Depend on therlicsion which can be in
two state : if the instruction is a load, a datadvis retrieved from memory
directly and written into DataMemOut of IR. Ortlfe instruction is a store,
the ALUOut put in Dataln of RF.

3. VHDL Coding for CPU Designed

According to the Modules listed above, VHDL codeswaritten to perform the
combined functions in as simplistic form as possildlach module has been as a stand
alone component. The Source VHDL Coding of the nesl®C, RF and ALU were
written according to the function description faich one.

This design used Quartus8.1 Software under windasva platform to write the
VHDL programs for the modules PC, RF and ALU. Byingsthe facilities like
MegaWizard plug In_Managr which is available in Qus8.1; it was easy to build the
RAM. ROM and Multiplexer Modules. The designs hdeen tacked account all the
possible states to avoid the overlapping during dkeision of the instructions and
minimize the hardware.

4. Simulating the designed CPU

Before implementing the design Module in the FPG#¥pmn the DE board, it is
deserve to simulate it to ascertain its correctne§aiartus8.1 software includes a
simulator which can be used to simulate the bel@vend performance of units
designed for implementation in Altera’s programnedblgic devices.

The simulator allows the user to apply test vectssnputs to the designed circuit
and to observe the outputs generated in respomsaddition to being able to observe
the simulated values on the I/O pins of the uniis ialso possible to probe the internal
nodes in the circuit. The simulator makes use ef\Waveform Editor which makes it
easy to represent the desired signals as wavefdimswork presents the use of VHDL
to simulate of simple RSIC microprocessor in theelesynthesis system.

This work is depended on the principle of modulsigie that makes design more
flexible when they need any extension for somelifees later. After design and
simulating for each unite RF, ALU, PC, RAM, ROM arMultiplexer, It was
implemented the Block diagram for the component€BiJ. Fig. 3 shows the details
connection for the design according the facilitn¢sch are available in Quartus 8.1.

45

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

ﬁﬂle Edit View Project Assignments Processing Tooks ‘Window Help o B
DEHE & &+ B8 oo m AH GG T Inh k&8 4 e
. HiFrodOneblek b | 18 oMol i | £ CHwFoPobd | 18 CoMvPiotwavctomtest oo | BB CHwFrofBlocku bk | {8 C:w/ProiPiol b
e B =
i i T 58 i
k [l ; DUULL netrfai. e Pcnmpmiiiiu
Al i A o1 e e 0 O L L =
P : AT .0l
i : J
w2 i 0
00 : bk B v N B
1| : o s B ap g
i & L
. LR
i fid ; u - a
ﬁ i ik wren
e ; i =
i e GR R G izt
.-l S R e instl i
1| e ; R e S
L
B I S T sew i i
#l I e e
= T i 1
o s ks S (N vsibl s G A il " e
i T R e B | AN TH
Tt 26] il o Tamy
| e SRR - e pesde.] g T
B S ; Leamn % bt IS s
B T oy (2 B Bl gearia TessThan ..
] B B TG i B O a1 IS e N
AT e o0 X X 15.0] e
B T 14 L 1 s e
m m Addrd. 0] Rip.0] —-mm]—x
T) RIBLY X - -
- Yo datalnf3t. o] Fi3.0) . K-
% - B0l :
Linstd
oo Lo o 2
= T | ‘;1.01 TR C———)
% E— P i
Vs 1.0] MRG0
o T AR, k A A
43 b
= i} el : e
2 B
= AT P10l AR
e T b4l ; e
% mEE 00 | Dlhssseesdild
npibdiaion(t.] aRL)
= 1] Gl
v = I
T ! i i s s i i i i i ! :
v RS RS R =
¢ :

Figure 3: Block Diagram for final CPU designed which implemented and programed its components
under Quartus 8.1.

5. Results of Simulation

After succeed of the coding operation for the bladsigned is processed by
several Quartus Il tools that analyze the codethggize the design circuit and generate
an implementation of it. These tools were performogdompiler operation. The report
of compilation operations showed in table 2.

46

Journal of Engineering and Development Vol. 20, No. 02, march. 2016

www.jead.org (ISSN 1813-7822)

Table 2.The report of compilation operation

Flow Satus Successful - Fri Nov 14 14:50:17 2008
Quartus Il Version 8.0 Build 215 05/29/2008 SJ Vigtition
Revision Name Pro
Top-level Entity Name Prol
Family Cyclone Il
Device EP2C20F484C6
Timing Models Final
Met timing requirements N/A
Total logic elements 2,529
Total combinational functions 2,529
Dedicated logic registers 1,063
Total registers 1063
Total pins 269
Total virtual pins 0
Total memory bits 32,768
Embedded Multiplier 9-bit elements 0
Total PLLs 0

6. Simulation and Waveform

The design can be simulated in two ways. The typway is a functional
simulation which is used to verify the function @mtness of the circuit as it is being
designed. This operation tasks much less time,usecthhe simulation can be performed
simply by using the logic expression. But timingnglation is more complicated
because it takes all propagation delays into adcdilis necessary to create the required
enlist before running the function simulation. F#y.illustrates the result of timing
simulation for the CPU.

47

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

&, Quartus Il - C:/HW/Pro/Pro - Pro - [C:/HW/Pro/Pro.vwi] (= {8 X]
i File Edit View Project Assignments Processing Tools Window Help E=ES

DeLda & <3 e |[Pro g oBCE | @ v |BD |k B 8@
Project Navigator i C/HW/Prod Dneblok belf | 1) C-/HwW/Pro/Pro vwt | 8] CHwProsProbdt | 1) CrHwePratavelomlest vl |
o ramovhd A = T =
;E,; —— L5 Masta Tine B Ops «| +| Painter 56867 ns Interval BBAE7 ne Start Endt
s
i ‘;""::'d s s S00ns 1000ns 1500ns Z000ns 2500ns 3000ns 3500ns 4000ne 6600ns SO00ns 500ns GO00ns 6a0fns 7000ns 7500ns BOOGng
e 10 b lops
- Wavelomtest virf A L
~[B C:AHWAPro\Pro.vwf % [
-2 Fiol.bel g 21 o T 1 T 1]] I 1L
CwPdbFrosmen || s | g
testl.cvnd =F RO 0000000 0000007
> -
& BlockyP bof ' EEd Rl 0000000 0000002
um‘wan;adq\p N =TT A2 TG00 0000007 0000000
S [muitehd 47
L g“t;hd’ R Te [} 07 ©]
= E'SHW\P N @i PC 00000000 0000007 00000000 0000007 0000002 Y 0000003 TO0G000% 0000005y 00000005
: rehPro.c
B o ebiiid @i Ins {00000000 SCO00002 SC210002 SCO00002 SC210002 SCAZI0z TAGG0007 TAZI000Z 54017800
o ~l o e Al 0000000 0000007 0000002 0000003
g — = @210 Me [I0000000 FOOTETITR
&lBld]
Status lax
Module | Progress Z [Time &
o,
Be:
2
$ £l 3 2
*| Type [Message i
B B
)
5
E@’ System [Processing J, Ealiio)\ Info)\ Waming Jy_Criieal Werming _J, Enor J, Suppressed J, Flag 7 §
8 o
8 Messaqe | #|[teca = = 5[

Ready o @ " Idie

Figure 4.The result of timing simulation waveform shows the behaviour of the design under normal
conditions.

The result of simulation illustrated that the desgrformed the factions (execute the
test program) which is written as following below:

Memory.mif:

WIDTH=32;

DEPTH=512;
ADDRESS_RADIX=HEX;
DATA_RADIX=HEX;

CONTENT BEGIN

000 : 5C000002; XOR R1,R1,R1
001 : 5C210002; XOR R2,R2,R2
002 : 5C421002; XOR R3,R3,R3
003 : 74000007; Addi R1,R1,7

004 : 74210002; Addi R2,R2,2

48

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

005 : 54011800; Add R3,R1, R2
006 : E4010000; STO R1,R2,0

007 :00000000;

008 :00000000;

009 :00000000;

00A :00000000;

00B :00000000;

00C :00000000

01A : 00000000;

256: 00000000;

END;

7. Conclusions

The architecture for this CPU here is very straiginvard and easy to implement.
This relatively simple design was chosen to recogitine principle of RISC processer
based FPGA . Given more applications for this desiguld be easier extended the
design without changing the architecture and witteoneed for complex Control Unit.
However, the VHDL coding of such a design would, fele, take more time than what
we think if there is not idea about the programmifig/HDL under modern platform
software package. The more important advantagdséothis design that it will be not
a need a complex control unit and easy to extenapplications especially with specific
applications for embedded systems.

One of the important reason actually in the sudaes$final this work is the way
of ALU architecture has been programmed and coedect

8. References

1. John P. Hayes,(1998) ‘Computer architecture andafsgtion’, Tata McGraw-
Hill, Third edition,.

2. Dominic Sweetman,(2006)“See MIPS ruff® ZEdition ,ISBN-9780120884216,
Printbook ,Release Date:.

3. MIPS TECHNOLOGY , ‘An Introduction to the MIPS32®@114Kc™ Processor
Core MD00689’, Revision 01.00 October 2009 MIR&Anologies, Inc.955 East
Arques Avenue Sunnyvale, CA 94085 (408) 530-5000 2609 MIPS
Technologies, MIPS by imaginationhttps://www.mips.com/products/product-
materials/whitepapers/

49

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

4. Embedded Control Systems Design/ Processors,
http://en.wikibooks.org/wiki/Embedded_Control_Syste Design/Processors#sing
le_purpose_processor

5. Peter J. Ashenden,(1990)” The VHDL CookBook”, 18&itien , Dept. Computer
Scince, University of Adelaide, July,.

6. VHDL, Verilog, and the Altera environment Tutorial,
http://www.ece.tufts.edu/~hchang/ee129-f06/propoiect2/Tutorial.pdf

7. Cyclone Il FPGA Starter Development Board Refereméanual, ALTERA,
document version1.0, document data October 20@6.//www.altera.com

8. Tutorial of ALTERA Cyclone Il FPGA Starter Board
htt://web.cecs.pdx.edu/~greenwd/Tutorial-alteralaye-board. pdf

9. .Prof Dr. Bernd Becker & Prof Dr. Paul Molitor,@8)"“ Technische Informatik”,
Eine einflihrede Darstellung, Oldenbourg Verlag bhiean Wien, Deuchland,.

10. Quartus Il Simulation with VHDL Designs

ftp://ftp.altera.com/up/pub/Tutorials/DE2/Digitalogic/tut_simulation_vhdl.pdf

11. Chapter 3: MIPS Instruction Set Reviewwww.cs.gmu.edu/~setia/cs365-

S02/lec3.pdf

Appendix (ALU code)
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL,

-- Definition of my 32 bit alu
entity alu32 is port(
-- Inputs
clk, rst : in std_logic;
opcode : in std_logic_vector(5 downto 0);
funct : in std_logic_vector(5 downto 0);
rs, rt: in std_logic_vector(31 downto 0);
immValue: in std_logic_vector(15 downto 0);
-- Outputs
aluOut : out std_logic_vector(31 downto 0);

zero, carry, equal, greaterThan, lessThan : outait;

50

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

wE : out std_logic);
end alu32;

architecture Behavioral of alu32 is

-- Signal Declorations for Logic and Arithmatic
signaliRT : std_logic_vector(31 downto 0)
signalinternalXORRT : std_logic_vector(31 downt 0)
signal subtract32 : std_logic_vector(31 downrjto O
signalimmValueExt : std_logic_vector(31 downto 0)
signalaluResult : std_logic_vector(32 downtp 0)
signallogicResult : std_logic_vector(31 downto 0)
signalzeroVec : std_logic_vector(31 downtp 0)

signalsumOut : std_logic_vector(32 downto 0);

-- Signal Declorations for Rotating
signal rotateL16, rotateL8, rotateL4, rotateL2atet 1 : std_logic_vector(31 downto 0);

signal rotateR16, rotateR8, rotateR4, rotateR2ate®1 : std_logic_vector(31 downto 0);

-- Signal Declorations for Shifting
signal shiftL16, shiftL8, shiftL4, shiftL2, shiftL1std logic_vector(31 downto 0);
signal shiftR16, shiftR8, shiftR4, shiftR2, shiftR&td_logic_vector(31 downto 0);

begin

-- Decide what results really is with the opcode

with opcode(2 downto 0) select aluResult(31 dov)te=
shiftt1 ~ when "000",

shiftR1 when "001",

rotateL1 when "010",

rotateR1 when "011",

51

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

logicResult when "111",

sumOut(31 downto 0) when others;

-- All the logical functions here

withfunct(5 downto 0) select logicResult<=
rs OR rt when "000000",

rs AND rt when "000001",

rs XOR rt when "000010",

rs XNOR rt when others;

-- Alu result for the carry flag
aluResult(32) <= sumOut(32) when opcode(2 downts '1)0" else '0';
-- Define aluOut

aluOut<= aluResult(31 downto 0);

-- These are the flags for branching
zero<="1" when rs = X"00000000" else '0';
equal<="1"when rs = rt else '0';
greaterThan<="1" when rs>rt else '0';
lessThan<="1" when rs<rt else '0’;

-- This is for the carry flag. It is held for ongote
carryFlag:process(clk)

begin

ifclk'event and clk = '1' then

ifrst = '"1' then
carry<="0"
else

carry<= aluResult(32);
end if;
end if;

end process;

52

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

-- Calculate if we are using rt or the Immediatbuga
immValueExt(31 downto 16) <= (others => (immValug)};
immValueExt(15 downto 0) <= immValue;

iRT<= rt when opcode(3) = '0' else immValueExt;

-- This is for the adder/subtractor
subtract32 <= (others =>'1") when opcode(2 dow) = "100" else (others =>'0");
internalXORRT<=iRT XOR subtract32;

sumOut<= ('0' &rs) + (‘0" &internalXORRT) + subttaz(0);

-- The next part here is for the shifting and riotgt

-- A zero vector used for shifting

zeroVec<= (others =>'0";

-- Rotating and Shifting

-- Rotate Left

rotateL16 <= (rs(15 downto 0) &rs(31 downto 16)) when iRT(4)="1" else rs;

rotateL8 <= (rotateL16(23 downto 0) & rotateL16@dwnto 24)) when iRT(3)="1" else rotateL16;
rotateL4 <= (rotateL8(27 downto 0) & rotateL8(3dwehto 28)) when iRT(2)="1" else rotatelL8;
rotateL2 <= (rotateL4(29 downto 0) & rotateL4(3dwhto 30)) when iRT(1)="1" else rotatel4;

rotateL1 <= (rotateL2(30 downto 0) & rotateL2(31)) when iRT(0)="1" else rotateL2;

-- Rotate Right

rotateR16 <= (rs(15 downto 0) &rs(31 downto 16)) when iRT(4)="1" else rs;

rotateR8 <= (rotateR16(7 downto 0) & rotateR16¢8%nto 8)) when iRT(3)="1" else rotateR16;
rotateR4 <= (rotateR8(3 downto 0) & rotateR8(3wdt 4)) when iRT(2)="1" else rotateR8;
rotateR2 <= (rotateR4(1 downto 0) & rotateR4(3dt 2)) when iRT(1)="1" else rotateR4;
rotateR1 <= (rotateR2(0) & rotateR2(31 downto 1)) when iRT(0)="1' else rotateR2;

-- Shift Left

shiftL16 <= (rs(15 downto 0) &zeroVec(15 downto 0)) when iIRT(4)="1" else rs;

53

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

shiftL8 <= (shiftL16(23 downto 0) &zeroVec(7 dovand)) when iRT(3)="1" else shiftL16;
shiftL4 <= (shiftL8(27 downto 0) &zeroVec(3 downd)) when iRT(2)="1" else shiftL8;
shiftL2 <= (shiftL4(29 downto 0) &zeroVec(1 down®)) when iRT(1)="1" else shiftL4;
shiftL1 <= (shiftL2(30 downto 0) &zeroVec(0)) when iRT(0)="1" else shiftL2;

-- Shift Right

shiftR16 <= (zeroVec(15 downto 0) &rs(31 downto)16)when iRT(4)="1" else rs;
shiftR8 <= (zeroVec(7 downto 0) & shiftR16(31 ddwB)) when iRT(3)="1" else shiftR16;
shiftR4 <= (zeroVec(3 downto 0) & shiftR8(31 dowrt)) when iRT(2)="1" else shiftR8;
shiftR2 <= (zeroVec(1 downto 0) & shiftR4(31 dowrlt)) when iRT(1)='1" else shiftR4;
shiftR1 <= (zeroVec(0) & shiftR2(31 downto 1)) when iRT(0)="1" else shiftR2;
wE<="1"' when opcode = "111001" else '0’;

end Behavioral;

54

