
Journal of Engineering and Development Vol. 20

MIPS CPU DESIGN AND IMPLEMENTATIONBASED CYCLONE

Assist Prof., Communication

(Received:

Abstract: The aim of this work is to design
FPGA without complex control unit.
and implement its components by using VHDL and FPGA Board under Quartus version “8.1 software
packages. This design in a modern FPGA environment has done and used to finally realize the har
components (RF, PC, ALU, RAM, ROM and Multiplexer). Also, the design has used a module principle
to implement the components of the Microprocessor
hardware and software units of its components when the
without a complex central control unit. This method of design provides high flexibility especially for
embedded systems which are planted in a variety of applications. The success of the design has been
tested through the work of the processor as an integrated in all components under its instructions
simple control unit.

Keywords: MIPS, Computer Architecture,

�2
ن�
ع ������� ���
�� ا��
ا��ت ا�������

ا���������ات (��RISCع) ����ن ا
��ز
	 ا������
��ع �* ھ)ا ا��" درا%�، �$#�"، � ���ة و���ء

و�2#�1 �����ت ا�#���0 و���ء ا
��زا�/ ��%.-,ام ��$� ا�# ���ة
 3� ��
,4 �5�� 	
و������0 ا�# ���ة ا�)ي
	 7FPGA#" ����0 ا�6�#
RF, PC, ALU, RAM, ROM وMultiplexer(ام ��,أ,-.%��

ا�.	 ا%.-,�=
	 ا�.$#�" و ا����ء �4> و
�ت ��و�� :���� :�, �;��� او ��1�% ���� ا�.$#�" او :�,

	 .دون ا%.-,ام و4,ة %�@�ة ���?
� ��<,ة �>
ھ)ه ا�@�

 �E� 1�%��Embedded Systemsم � ,دة �C�D� ��%��� �E��2#� ا�#@#�رة او وا�#?رو:�

��زات ��4,ة ا��F@�ة G1 ا�#H = � /������ 1�#2��" اJ.��ر ��2ح ا�.$#�" �* DJل :#3 ا�#���0 ��4,ة �.�����

1. Introduction
One of the important abstractions that a programmer uses is to instruction set

* drkarhiy@yahoo.com

20, No. 02, march. 2016 www.jead.org (

39

MIPS CPU DESIGN AND IMPLEMENTATIONBASED CYCLONE

II FPGA BOARD

Dr. Ibtesam R. K.Al-Saedi*

Communication Engineering Department, University of Technology, Baghdad, Iraq.

(Received:23/4/2015; Accepted: 16/09/2015)

work is to design and implement a simple MIPS CPU by using Cyclone II

ithout complex control unit. MIPS- Processor has been studied and realized to design, simulate
and implement its components by using VHDL and FPGA Board under Quartus version “8.1 software

This design in a modern FPGA environment has done and used to finally realize the har
components (RF, PC, ALU, RAM, ROM and Multiplexer). Also, the design has used a module principle
to implement the components of the Microprocessor which provides high flexibility in expanding the
hardware and software units of its components when there is a need to change the structure of the design

complex central control unit. This method of design provides high flexibility especially for
embedded systems which are planted in a variety of applications. The success of the design has been

sted through the work of the processor as an integrated in all components under its instructions

Architecture, VHDL, Simulation

 ����� ��� �
�� ا��
ا��ت ا������� %�$#���" و���ء ������� ���

 �>�L,ء ��ع �* ا�#����2ت ا��������ن ا
��ز
	 ا������MIPS)ا�E,ف �* ھ(ا ا��#3 �$#�" و
�,ون و4,ة %�@�ة ��<,ة ��%.-,امCyclone II FPGA Board . ء����" درا%�، �$#�"، � ���ة و

 �
��%.-,ام �����2ت � ���ة ا�#����ت ا�#�دVHDL ة��ام ��$� ا�# �,-.%��و�2#�1 �����ت ا�#���0 و���ء ا
��زا�/

�� �8.1Quartus. 3ا������2 ا�#��و
� �E)ا ا���ع �* ا�����2 ,�5 4�� 	
7#" ����0 ا�6�#

.� �" إدراك ا�#����ت ا�#�د�E���%�%P4,ات ا�#���0 ا�� �
)RF, PC, ALU, RAM, ROM
(Module) ,�: ا�.$#�" او ����ا�.	 ا%.-,�=
	 ا�.$#�" و ا����ء �4> و
�ت ��و�� :���� :�, �;��� او ��1�%

دون ا%.-,ام و4,ة %�@�ة ���?
� ��<,ة ��%�1 ا��4,ات ا�#�د
� وا������2 �#����ت ا�#���QF4 0 ا�#�Eم ا�#@���� و
 	
���E� 1�%م � ,دة �C�D� ��%��� �E��2#� ا�#@#�رة او وا�#?رو:� ا�.$#�" و�* DJل ��
�� ��و�� :����

��زات ��4,ة ا��F@�ة G1 ا�#H = � /������ 1�#2��" اJ.��ر ��2ح ا�.$#�" �* DJل :#3 ا�#���0 ��4,ة �.�����

important abstractions that a programmer uses is to instruction set

www.jead.org
Vol. 20, No.02, March 2016

ISSN 1813-7822

www.jead.org (ISSN 1813-7822)

;

MIPS CPU DESIGN AND IMPLEMENTATIONBASED CYCLONE

, Baghdad, Iraq.

implement a simple MIPS CPU by using Cyclone II
Processor has been studied and realized to design, simulate

and implement its components by using VHDL and FPGA Board under Quartus version “8.1 software
This design in a modern FPGA environment has done and used to finally realize the hardware

components (RF, PC, ALU, RAM, ROM and Multiplexer). Also, the design has used a module principle
hich provides high flexibility in expanding the
re is a need to change the structure of the design

complex central control unit. This method of design provides high flexibility especially for
embedded systems which are planted in a variety of applications. The success of the design has been

sted through the work of the processor as an integrated in all components under its instructions with

 ����� ��� �#���" و���ء ����

ا�E,ف �* ھ)ا ا��#3 �$#�" و���ء ��ع �* ا�#����2ت ا�,�L<� :ا�)'&�
�,ون و4,ة %�@�ة ��<,ة ��%.-,ام) ذات ا
��زات �<���
 �>�L,ا�#����2ت ا� �
��%.-,ام �����2ت � ���ة ا�#����ت ا�#�د

ا������2 ا�#��و
� �E)ا ا���ع �* ا�����2

.� �" إدراك ا�#����ت ا�#�د�E�

 (Module)ا��4,ات ا�.������
��%�1 ا��4,ات ا�#�د
� وا������2 �#����ت ا�#���QF4 0 ا�#�Eم ا�#@���� و

 	
ا�.$#�" و�* DJل ��
�� ��و�� :����

��زات ��4,ة ا��F@�ة . و �.@��<�ت �.��:� G1 ا�#H = � /������ 1�#2��" اJ.��ر ��2ح ا�.$#�" �* DJل :#3 ا�#���0 ��4,ة �.�����

�@�Fا��.

important abstractions that a programmer uses is to instruction set

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

40

architecture (ISA). MIPS microprocessor (Million Instruction Per Second) measures of
microprocessor speed that uses 32 bit wide registers and data paths. The MIPS CPU is
one of the RISC(Reduced Instruction Set Computer) CPUs, born out of a particularly
fertile period of academic research and development. In general, RISC processors
typically support fewer and much simpler instructions [1, 2].

Today, most of the MIPS parts that are shipped go into some sort of embedded
application. MIPS Technologies is a provider of synthesizable, licensable 32-bit
processor cores offered with a range of features and capabilities that address diverse
market segments including home entertainment (e.g. DTV and set-top boxes), home
networking (e.g.xDSL and WiFi), personal entertainment (e.g. digital cameras and
portable media players) and microcontrollers (MCUs). MIPS also licenses its 32- and
64-bit architectures to system-on-chip (SoC) developers [3].

The efficient of design always is how to make the process less complexity
especially when there is a need for a specific task. A single purpose processor is this
type of processor that can be designed to execute exactly one program. An embedded
designer creates a single-purpose processor by designing a custom digital circuit,
advantages and disadvantages are more or less the opposite of the general-purpose
processor and they are used for in a wide variety of applications for the same task [4].

Nowadays hardware is more and more like software. It can easily be programmed
and integrated with other components by using a modular design. This means that
hardware components are designed as separate parts and can be put together in one
device. In this way the device is only programmed for the control and communication of
the different components. Also, this way has many advantages like components can
easily be replaced when broken and adding new functions (upgrading) is very simple.
However, there are some kind of a pioneer tools or standardization to reach for low
design cost and fast product development like VHDL (hardware description language)
and FPGA (field programmable gate array).

A FPGA has many more components than it should have so in that way it can be
programmed for various applications. It can also be used as an interface for the
communication of several hardware components [5, 6].

2. Cyclone II FPGA Starter Board

Although microprocessors can be implemented in an FPGA design, it is great
choice to use some tools can offer many facilities such as density logic inside a single
chip and reprogrammable of the design.

In reprogramming feature, the design can be changed after the hardware has been
manufactured and the high level design software optimized the usage of limited
resources.

In this work, the Cyclone II FPGA Starter Development Board (Fig. 1) has chosen
to provide integrated features that enable users to develop and test designs, range from
simple circuits to various multimedia projects, all without the need to implement
complex application programming interfaces (APIs), host control software, or
SRAM/SDRAM/flash memory controllers..

Journal of Engineering and Development Vol. 20

To implement the design with Cyclone II FPGA, it is necessary to understand basic
design steps about Quartus board by using schematic editor and HDL, compiling the
design, pin assignment, and downloading the design into the FPGA board

Figure 1. Cyclone II FPGA Starter Development Board[7]

3. Design Architecture
The Architecture for MIPS CPU design is a simple a RISC processor. The design is

implemented with the concepts of the modules which represent here five components
(Memory, Register File (RF), Arithmetic Logic Unit (ALU), Programming Counter
(PC) and Multiplexes). The advantage of this design is ability to recognize both
hardware and software in simple way of construction. The block diagram in
describes the architecture for designed CPU.

20, No. 02, march. 2016 www.jead.org (

41

To implement the design with Cyclone II FPGA, it is necessary to understand basic
design steps about Quartus board by using schematic editor and HDL, compiling the
design, pin assignment, and downloading the design into the FPGA board

1. Cyclone II FPGA Starter Development Board[7]

The Architecture for MIPS CPU design is a simple a RISC processor. The design is
implemented with the concepts of the modules which represent here five components
(Memory, Register File (RF), Arithmetic Logic Unit (ALU), Programming Counter

lexes). The advantage of this design is ability to recognize both
hardware and software in simple way of construction. The block diagram in
describes the architecture for designed CPU.

www.jead.org (ISSN 1813-7822)

To implement the design with Cyclone II FPGA, it is necessary to understand basic
design steps about Quartus board by using schematic editor and HDL, compiling the
design, pin assignment, and downloading the design into the FPGA board [7, 8].

The Architecture for MIPS CPU design is a simple a RISC processor. The design is
implemented with the concepts of the modules which represent here five components
(Memory, Register File (RF), Arithmetic Logic Unit (ALU), Programming Counter

lexes). The advantage of this design is ability to recognize both
hardware and software in simple way of construction. The block diagram in Fig.2

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

42

Figure 2: Architecture Block Diagram [9]

The standard design flow has applied for each module as well as for the final CPU

which includes: Design entry (Schematic entry and High level language), Synthesis
(Translating design into logic elements), Simulation (Validate design logic) and Fitting
(Implementing logic using FPGA resources). The design has implemented under
platform Quartus version “8.1 "software package [10].

2.1 Component Descriptions for CPU Designed
Memory: This memory is divided into two parts:

1) ROM holds the instructions. It has 2 inputs address [8..0] &clk and 1 output q
[31..0].

2) RAM holds data. It has 4 input [address[8..0] , clk, data[31..0] and Wren }and 1
output.

Register File (RF): This structure contains all of the registers numbered #0- #31. 32bit
register used to store the output of the memory (instructions and Data). It has 8 inputs [
clk, rst, opcode, rsAdd, rtAdd, rdAddr, dataIn and dataLoad] and 2 outputs with the
ability to see the contents of any register. The loading of this register file is controlled
directly by the program.

ALU: The core of the MIPS CPU has 7 inputs [clk. rst, opcode, funct, rs, rt and imm
Value] and 7 outputs [aluOut, WE,Zero, Carry, equal. Greater Than and Less Than]. A
zero flag is set if the value of the result [32 bits], another output, is all zeros. The ALU
can perform a number of arithmetic operations, such as add and subtract, and some of
logical operations, such as AND, OR and XOR. The opcode selects the operation
directly.

PC Counter: Usually the program is executed in the straight line fashion; the next
instruction to be executed is the one that follows the previous one currently being

Journal of Engineering and Development Vol. 20

executed. But sometimes, it is needed to conditionally or unconditionally jump to some
other part of the program
instructions. This module has 10 inputs [opcode, addr, immaddr, zero, carry, EQ,
GT,LT, clk, reset and 1 output PCout.

Multiplexes: This module connects the data pathway to check the output on the same
nodes output. This module has been created to check the output for each cycle,
depending on the current instruction.
The components RF, PC, ALU, RAM, ROM and Multiplexer are programmed by using
VHDL and FPGA Board under Quartus
programing part in whole design because it represents the core of process that need a
special attention (Appendix

2.2 MIPS Instruction Set Descriptions
There are several distinct “classes” of instructions which describes its instructions
a. Arithmetic/logical/shift/comparison
b. Load/store
c. Branch
d. Jump

Also, there are three instruction formats (encoding) for MIPS

a. R-type (6-bit opcode, 5
b.

c. I-type (6-bit opcode, 5-
d.

e. J-type (6-bit opcode, 26
f.

In this work, the instructions groups of the CPU that
explained in Table 1.

20, No. 02, march. 2016 www.jead.org (

43

, it is needed to conditionally or unconditionally jump to some
other part of the program (e.g., functions, loops, etc.) by the program control
instructions. This module has 10 inputs [opcode, addr, immaddr, zero, carry, EQ,
GT,LT, clk, reset and 1 output PCout.

This module connects the data pathway to check the output on the same
nodes output. This module has been created to check the output for each cycle,
depending on the current instruction.

The components RF, PC, ALU, RAM, ROM and Multiplexer are programmed by using
under Quartus version “8.1.[10]. ALU was

programing part in whole design because it represents the core of process that need a
Appendix).

MIPS Instruction Set Descriptions with the CPU Designed [11]
several distinct “classes” of instructions which describes its instructions

Arithmetic/logical/shift/comparison

there are three instruction formats (encoding) for MIPS

bit opcode, 5-bit rs, 5-bit rt, 5-bit rd, 5-bit shamt, 6-bit function code)

-bit rs, 5-bit rt, 16-bit immediate)

bit opcode, 26-bit pseudo direct address)

In this work, the instructions groups of the CPU that adopted in this design are

www.jead.org (ISSN 1813-7822)

, it is needed to conditionally or unconditionally jump to some
(e.g., functions, loops, etc.) by the program control

instructions. This module has 10 inputs [opcode, addr, immaddr, zero, carry, EQ,

This module connects the data pathway to check the output on the same
nodes output. This module has been created to check the output for each cycle,

The components RF, PC, ALU, RAM, ROM and Multiplexer are programmed by using
ALU was more complex

programing part in whole design because it represents the core of process that need a

several distinct “classes” of instructions which describes its instructions sets:

bit function code)

adopted in this design are

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

44

Table 1.Describtionof the instructions groups [9]

2.3 Cycle description for CPU Designed
Each of the three cycles must perform certain tasks. Once completed, the results of the
cycle’s calculations are stored in registers or in memory depended on the program. The
basic duty of each cycle is as follows:

1. Instruction Fetch – This cycle is the same for all instructions, simply program
counter (PC) sends the address to the memory (ROM) to fetch the instruction,
put it in the Register File (RF) and increment the PC.

2. Instruction Decode and Register Fetch – To minimize the time of instruction
decode, it is more efficient to perform tasks by participation between ALU and

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

45

RF. Therefore, to decoding the instruction, the registers rs and rt are read and
stored send to ALU. These measures reduce the maximum number of clock
cycles. This operation is the same for all instructions too.

3. Execution – In this operation of the CPU is determined by the particular
instruction that is being executed. This operation been performance by
participation between ALU, RF and Memory according to the following
possibility:
• Arithmetic-logical instruction – ALUOut<= rs op rt.
• Branch or a Jump – if (Zero, Carry , Equal, Grater Than , Less Than), PC <=

ALUOut.
• Memory Events (read or write) – Depend on the Instruction which can be in

two state : if the instruction is a load, a data word is retrieved from memory
directly and written into DataMemOut of IR. Or if the instruction is a store,
the ALUOut put in DataIn of RF.

3. VHDL Coding for CPU Designed

According to the Modules listed above, VHDL code was written to perform the
combined functions in as simplistic form as possible. Each module has been as a stand
alone component. The Source VHDL Coding of the modules PC, RF and ALU were
written according to the function description for each one.

This design used Quartus8.1 Software under windows as a platform to write the
VHDL programs for the modules PC, RF and ALU. By using the facilities like
MegaWizard plug In_Managr which is available in Quartus8.1; it was easy to build the
RAM. ROM and Multiplexer Modules. The designs have been tacked account all the
possible states to avoid the overlapping during the excision of the instructions and
minimize the hardware.

4. Simulating the designed CPU

Before implementing the design Module in the FPGA chip on the DE board, it is
deserve to simulate it to ascertain its correctness. Quartus8.1 software includes a
simulator which can be used to simulate the behaviour and performance of units
designed for implementation in Altera’s programmable logic devices.

The simulator allows the user to apply test vectors as inputs to the designed circuit
and to observe the outputs generated in response. In addition to being able to observe
the simulated values on the I/O pins of the unit, it is also possible to probe the internal
nodes in the circuit. The simulator makes use of the Waveform Editor which makes it
easy to represent the desired signals as waveforms. This work presents the use of VHDL
to simulate of simple RSIC microprocessor in the level synthesis system.

This work is depended on the principle of module design that makes design more
flexible when they need any extension for some facilities later. After design and
simulating for each unite RF, ALU, PC, RAM, ROM and Multiplexer, It was
implemented the Block diagram for the components of CPU. Fig. 3 shows the details
connection for the design according the facilities which are available in Quartus 8.1.

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

46

Figure 3: Block Diagram for final CPU designed which implemented and programed its components

under Quartus 8.1.

5. Results of Simulation

After succeed of the coding operation for the block designed is processed by
several Quartus II tools that analyze the code, synthesize the design circuit and generate
an implementation of it. These tools were performed by compiler operation. The report
of compilation operations showed in table 2.

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

47

Table 2.The report of compilation operation

Flow Status Successful - Fri Nov 14 14:50:17 2008

Quartus II Version 8.0 Build 215 05/29/2008 SJ Web Edition

Revision Name Pro

Top-level Entity Name Pro1

Family Cyclone II

Device EP2C20F484C6

Timing Models Final

Met timing requirements N/A

Total logic elements 2,529

Total combinational functions 2,529

Dedicated logic registers 1,063

Total registers 1063

Total pins 269

Total virtual pins 0

Total memory bits 32,768

Embedded Multiplier 9-bit elements 0

Total PLLs 0

6. Simulation and Waveform

The design can be simulated in two ways. The typical way is a functional
simulation which is used to verify the function correctness of the circuit as it is being
designed. This operation tasks much less time, because the simulation can be performed
simply by using the logic expression. But timing simulation is more complicated
because it takes all propagation delays into account. It is necessary to create the required
enlist before running the function simulation. Fig. 4 illustrates the result of timing
simulation for the CPU.

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

48

Figure 4.The result of timing simulation waveform shows the behaviour of the design under normal

conditions.

The result of simulation illustrated that the design performed the factions (execute the
test program) which is written as following below:

Memory.mif:

WIDTH=32;

DEPTH=512;

ADDRESS_RADIX=HEX;

DATA_RADIX=HEX;

CONTENT BEGIN

000 : 5C000002; XOR R1,R1,R1

001 : 5C210002; XOR R2,R2,R2

002 : 5C421002; XOR R3,R3,R3

003 : 74000007; Addi R1,R1,7

004 : 74210002; Addi R2,R2,2

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

49

 005 : 54011800; Add R3, R1, R2

 006 : E4010000; STO R1,R2,0

007 :00000000;

008 :00000000;

009 :00000000;

00A :00000000;

00B :00000000;

00C :00000000

01A : 00000000;

 .

 .

 256: 00000000;

END;

7. Conclusions
The architecture for this CPU here is very straight forward and easy to implement.

This relatively simple design was chosen to recognize the principle of RISC processer
based FPGA . Given more applications for this design would be easier extended the
design without changing the architecture and without a need for complex Control Unit.
However, the VHDL coding of such a design would, we felt, take more time than what
we think if there is not idea about the programming of VHDL under modern platform
software package. The more important advantages for like this design that it will be not
a need a complex control unit and easy to extend its applications especially with specific
applications for embedded systems.

One of the important reason actually in the successful of final this work is the way
of ALU architecture has been programmed and connected.

8. References

1. John P. Hayes,(1998) ‘Computer architecture and Organisation’, Tata McGraw-
Hill, Third edition,.

2. Dominic Sweetman,(2006)“See MIPS run”,2nd Edition ,ISBN-9780120884216,
Printbook ,Release Date:.

3. MIPS TECHNOLOGY , ‘An Introduction to the MIPS32® M14Kc™ Processor
Core MD00689’, Revision 01.00 October 2009 MIPS Technologies, Inc.955 East
Arques Avenue Sunnyvale, CA 94085 (408) 530-5000 © 2009 MIPS
Technologies, MIPS by imagination, https://www.mips.com/products/product-
materials/whitepapers/.

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

50

4. Embedded Control Systems Design/ Processors,
http://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Processors#sing
le_purpose_processor.

5. Peter J. Ashenden,(1990)” The VHDL CookBook”, 1St Edition , Dept. Computer
Scince, University of Adelaide, July,.

6. VHDL, Verilog, and the Altera environment Tutorial,
http://www.ece.tufts.edu/~hchang/ee129-f06/project/project2/Tutorial.pdf

7. Cyclone II FPGA Starter Development Board Reference Manual, ALTERA,
document version1.0, document data October 2006. http://www.altera.com

8. Tutorial of ALTERA Cyclone II FPGA Starter Board
htt://web.cecs.pdx.edu/~greenwd/Tutorial-altera-cyclone-board.pdf

9. .Prof Dr. Bernd Becker & Prof Dr. Paul Molitor,(2008)“ Technische Informatik”,
Eine einführede Darstellung, Oldenbourg Verlag München Wien, Deuchland,.

10. Quartus II Simulation with VHDL Designs
ftp://ftp.altera.com/up/pub/Tutorials/DE2/Digital_Logic/tut_simulation_vhdl.pdf

11. Chapter 3: MIPS Instruction Set Review ,www.cs.gmu.edu/~setia/cs365-
S02/lec3.pdf

Appendix (ALU code)
library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

-- Definition of my 32 bit alu

entity alu32 is port(

 -- Inputs

clk, rst : in std_logic;

opcode : in std_logic_vector(5 downto 0);

funct : in std_logic_vector(5 downto 0);

rs, rt: in std_logic_vector(31 downto 0);

immValue: in std_logic_vector(15 downto 0);

 -- Outputs

aluOut : out std_logic_vector(31 downto 0);

zero, carry, equal, greaterThan, lessThan : out std_logic;

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

51

wE : out std_logic);

end alu32;

architecture Behavioral of alu32 is

-- Signal Declorations for Logic and Arithmatic

signaliRT : std_logic_vector(31 downto 0);

signalinternalXORRT : std_logic_vector(31 downto 0);

signal subtract32 : std_logic_vector(31 downto 0);

signalimmValueExt : std_logic_vector(31 downto 0);

signalaluResult : std_logic_vector(32 downto 0);

signallogicResult : std_logic_vector(31 downto 0);

signalzeroVec : std_logic_vector(31 downto 0);

signalsumOut : std_logic_vector(32 downto 0);

-- Signal Declorations for Rotating

signal rotateL16, rotateL8, rotateL4, rotateL2, rotateL1 : std_logic_vector(31 downto 0);

signal rotateR16, rotateR8, rotateR4, rotateR2, rotateR1 : std_logic_vector(31 downto 0);

-- Signal Declorations for Shifting

signal shiftL16, shiftL8, shiftL4, shiftL2, shiftL1 : std_logic_vector(31 downto 0);

signal shiftR16, shiftR8, shiftR4, shiftR2, shiftR1 : std_logic_vector(31 downto 0);

begin

-- Decide what results really is with the opcode

with opcode(2 downto 0) select aluResult(31 downto 0) <=

shiftL1 when "000",

shiftR1 when "001",

rotateL1 when "010",

rotateR1 when "011",

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

52

logicResult when "111",

sumOut(31 downto 0) when others;

-- All the logical functions here

withfunct(5 downto 0) select logicResult<=

rs OR rt when "000000",

rs AND rt when "000001",

rs XOR rt when "000010",

rs XNOR rt when others;

-- Alu result for the carry flag

aluResult(32) <= sumOut(32) when opcode(2 downto 1) = "10" else '0';

-- Define aluOut

aluOut<= aluResult(31 downto 0);

-- These are the flags for branching

zero<= '1' when rs = X"00000000" else '0';

equal<= '1' when rs = rt else '0';

greaterThan<= '1' when rs>rt else '0';

lessThan<= '1' when rs<rt else '0';

-- This is for the carry flag. It is held for one cycle

carryFlag:process(clk)

begin

ifclk'event and clk = '1' then

ifrst = '1' then

carry<= '0';

else

carry<= aluResult(32);

end if;

end if;

end process;

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

53

-- Calculate if we are using rt or the Immediate value

immValueExt(31 downto 16) <= (others => (immValue(15)));

immValueExt(15 downto 0) <= immValue;

iRT<= rt when opcode(3) = '0' else immValueExt;

-- This is for the adder/subtractor

subtract32 <= (others => '1') when opcode(2 downto 0) = "100" else (others => '0');

internalXORRT<= iRT XOR subtract32;

sumOut<= ('0' &rs) + ('0' &internalXORRT) + subtract32(0);

-- The next part here is for the shifting and rotating.

-- A zero vector used for shifting

zeroVec<= (others => '0');

-- Rotating and Shifting

-- Rotate Left

rotateL16 <= (rs(15 downto 0) &rs(31 downto 16)) when iRT(4)='1' else rs;

rotateL8 <= (rotateL16(23 downto 0) & rotateL16(31 downto 24)) when iRT(3)='1' else rotateL16;

rotateL4 <= (rotateL8(27 downto 0) & rotateL8(31 downto 28)) when iRT(2)='1' else rotateL8;

rotateL2 <= (rotateL4(29 downto 0) & rotateL4(31 downto 30)) when iRT(1)='1' else rotateL4;

rotateL1 <= (rotateL2(30 downto 0) & rotateL2(31)) when iRT(0)='1' else rotateL2;

-- Rotate Right

rotateR16 <= (rs(15 downto 0) &rs(31 downto 16)) when iRT(4)='1' else rs;

rotateR8 <= (rotateR16(7 downto 0) & rotateR16(31 downto 8)) when iRT(3)='1' else rotateR16;

rotateR4 <= (rotateR8(3 downto 0) & rotateR8(31 downto 4)) when iRT(2)='1' else rotateR8;

rotateR2 <= (rotateR4(1 downto 0) & rotateR4(31 downto 2)) when iRT(1)='1' else rotateR4;

rotateR1 <= (rotateR2(0) & rotateR2(31 downto 1)) when iRT(0)='1' else rotateR2;

-- Shift Left

shiftL16 <= (rs(15 downto 0) &zeroVec(15 downto 0)) when iRT(4)='1' else rs;

Journal of Engineering and Development Vol. 20, No. 02, march. 2016 www.jead.org (ISSN 1813-7822)

54

shiftL8 <= (shiftL16(23 downto 0) &zeroVec(7 downto 0)) when iRT(3)='1' else shiftL16;

shiftL4 <= (shiftL8(27 downto 0) &zeroVec(3 downto 0)) when iRT(2)='1' else shiftL8;

shiftL2 <= (shiftL4(29 downto 0) &zeroVec(1 downto 0)) when iRT(1)='1' else shiftL4;

shiftL1 <= (shiftL2(30 downto 0) &zeroVec(0)) when iRT(0)='1' else shiftL2;

-- Shift Right

shiftR16 <= (zeroVec(15 downto 0) &rs(31 downto 16)) when iRT(4)='1' else rs;

shiftR8 <= (zeroVec(7 downto 0) & shiftR16(31 downto 8)) when iRT(3)='1' else shiftR16;

shiftR4 <= (zeroVec(3 downto 0) & shiftR8(31 downto 4)) when iRT(2)='1' else shiftR8;

shiftR2 <= (zeroVec(1 downto 0) & shiftR4(31 downto 2)) when iRT(1)='1' else shiftR4;

shiftR1 <= (zeroVec(0) & shiftR2(31 downto 1)) when iRT(0)='1' else shiftR2;

wE<= '1' when opcode = "111001" else '0';

end Behavioral;

