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Abstract: A new equation has been derived using energy technique (dummy load method) to describe 

the buckling behavior of intermediate and long columns under dynamic buckling loads compression load 

and under dynamic combined load with consider of the initial imperfections of the columns and the 

effect of eccentricity. The results of this equation are compared with the experimentally results of 40 

specimens of AISI 303 stainless steel intermediate and long columns tested under dynamic compression 

loading (compression and torsion) and under dynamic combined loading (compression, bending, and 

torsion) by using a rotating buckling test machine, and it be found that the derived equation may be used 

to predict of the theoretical critical buckling load (𝑃𝑐𝑟) under both dynamic compression and combined 

load with maximum percentage error is 19.3% and 16.8%, respectively. 
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 للاعمدة الحرج الانبعاج حمل لحساب الطاقة تقنية باستخدام مشتقة معادلة صحة اثبات

 الطويلة و الطول المتوسطة
 

 حمل تأثير تحت والطويلة الطول المتوسطة للاعمدة الديناميكي الانبعاج سلوك لوصف معادلة اشتقاق البحث هذا في تم  الخلاصة:

 للعمود الاولي الانحراف من كل تأثير الاعتبار بنظر الاخذ مع الطاقة تقنية بأستخدام المركب الديناميكي والحمل الديناميكي الانضغاط

 لحمل العملية النتائج مع مقارنتها تم المعادلة هذه من الحرج الانبعاج لحمل النظرية النتائج. الانضغاط حمل تسليط في اللامحورية وتأثير

 وتحت الطول المتوسطةو الطويلة AISI 303 للصدأ المقاوم الصلب اعمدة من عينة 40 بفحص عليها الحصول تم والتي الحرج الانبعاج

 وحمل محوري ضغط حمل) المركب الديناميكي والحمل( التواء حمل زائد محوري ضغط حمل) الديناميكي الانضغاط حمل من تأثيركل

 حمل تأثير تحت للاعمدة النظري الانبعاج حمل بمقدار للتنبؤ تستخدم ان يمكن المشتقة المعادلة ان وجد حيث ،(التواء حمل زائد انحناء

 .التوالي على%  16.8 و%  19.3 للخطأ مئوية نسبة وبأعلى المركب الديناميكي والحمل الديناميكي الانضغاط

 
1. Introduction 

 A columns are generally categorized into two groups: long and intermediate; 

sometimes the short compression block is considered to be a third group. The 

distinction between the three is determined by their behavior. Long columns fail by 
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 buckling or excessive lateral bending; intermediate columns, by a combination of 

crushing and buckling; and short compression blocks, by crushing [1]. The 

phenomenon of buckling is not limited to columns. Buckling can occur in beams, 

plates, shells, and other structural members under a variety of loading conditions [2, 3]. 

Above the elastic limit of a material the modulus of elasticity becomes a function of 

the stress. In other word, one should know the operating level of the stress before one 

can find out the modulus. This makes the analysis in the inelastic region complicated 

[4]. In case of columns with intermediate slenderness, i.e., columns which are stable 

for stresses higher than the proportionality limit, the failure of intermediate columns 

occurs subsequent to the onset of inelastic behavior [5]. The main causes of bending in 

the columns are lack of straightness in member, i.e., initial curvature in the member, 

eccentricity of the load and non-homogeneity in the material of the column. Every 

column will have at least small degree of eccentricity [6]. Many aircraft structural 

component, structural connections between of boosters for space vehicles, certain 

members in bridge trusses, and structural frameworks of buildings are common 

examples of columns. Linkage in oscillating or reciprocating machines may also fail by 

buckling [7, 8]. Quite often the buckling of a column can lead to a sudden and 

catastrophic failure of a structure or mechanism, and has a result, special attention must 

be given to the design of columns so that they can safely support their intended 

loadings without buckling [9]. The buckling of solid and hollow CK35 and CK45 alloy 

steel columns under dynamic compression, bending, and combined loading of them has 

been studied theoretically and experimentally. A mathematical model has been derived 

in order to model the column buckling problem and determine the number of cycles to 

failure for short, intermediate, and long columns subjected to single and combined 

loads [10]. A series of experimentally tests on cold formed austenitic stainless steel 

square, rectangular, and circular hollow section members to examine the buckling 

behavior of columns and beams under effect of gradually increased single and 

combined loads (compression, bending, and compression-bending) with two types of 

ends conditions pin-ends and fixed-ends [11]. A formula has been suggested for beam-

column interaction using second order in-plane elastic theory analysis. This theoretical 

formula was derived to cover, with maximum continuities, the beam column cross-

section classes, stability resistance, and pure elastic and pure plastic behavior [12]. The 

elastic buckling behavior of a cantilever straight I-column subjected to various loads 

was described by using derived differential equations that based on Yang and Kuos 

nonlinear virtual work equation for a 3D straight solid beam. The total potential energy 

and virtual work were expressed and then utilized the variation principle to derive the 

buckling differential equations for an I-column element [13]. A unified formula for 

solid and hollow columns has been derived, on the basis of the theory of elasticity, to 

predict the behavior of circular concrete-filled steel tube under axial compression load. 

Analytical solution was used to develop unified formula and linear superposition 

method was used to deal with the problem of the elastic stability of the composite 

columns [14]. The buckling behavior of columns, including the combined effects of 

shear force and bending deformations and semi-rigid connections on the elastic critical 

buckling loads, has been studied by using three different approaches Engesser, 
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Haringx, and Euler. Classic column cases (i.e. hinged-hinged column, clamped-

clamped column, clamped-free column, and clamped-hinged column) were 

investigated using a “simplifies form” of derived equations depending on boundary 

conditions of column ends [15]. 

This paper would like to validate a new derived equation, on the basis of the energy 

technique, to describe the dynamic buckling behavior and to predict the critical 

buckling load of intermediate and long columns, including the effects of initial 

imperfections and eccentricity, by comparing the results, from this derived equation 

with experimental results of series of stainless steel (AISI 303) circular cross-section 

columns, of different slenderness ratios, subjected to dynamic compression loading 

(compression-torsion) and dynamic combined loading (compression-bending-torsion).  

 
2. Theory and Mathematical Model  
 

2.1. Energy Technique in Deflection analysis 
 

Many practical engineering problem involve the combination of a large system of 

simple elements in a complex and often highly statically indeterminate structure [16]. 

As an alternative to the methods based on differential equations, the analysis of stress 

and deformation can be accomplished through the use of energy methods. The latter 

are predicated on the fact that the equations governing a given stress or strain 

configuration are derivable from consideration of the minimization of energy 

associated with deformation, stress, or deformation and stress. Application of energy 

techniques are quite powerful in situations involving a variety of shapes and variable 

cross sections and a complex problems involving elastic stability and multielement 

structures [5]. Castigliano’s second theorem (Castigliano’s method) provides a simple 

and straightforward approach to the deflection analysis of a complex collection of 

many engineering problems involve linear load-deflection relations where the forms of 

the strain energy are known. This theorem state that: when an elastic body subjected to 

applied forces and reactions, the partial derivative of the strain energy with respect to 

an applied force 𝑁𝑖(𝑖 = 1, 2, 3, … , 𝑛) is equal to the component of displacement at the 

point of the force that is in the direction of the force (𝛿𝑖).Thus 

 

𝛿𝑖 =
𝜕𝑈

𝜕𝑁𝑖
                                                                                                          (1) 

 

In applying Castigliano’s theorem, the strain energy (U) must be expressed as a 

function of the load [5]. When it is necessary to determine the deflection at a point at 

which no load acts, a dummy load is introduced at the required point in the direction of 

the desired displacement. The displacement is then found by Castigliano’s theorem, 

equating the dummy load to zero in the final result [5, 17].  

The expression for the strain energy (U) in a straight or curved slender bar subjected to 

a number of common loads (axial force P, bending moment Mz, shearing force V, and 

torque 𝑀𝑡) is given by [5] 
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𝑈 = ∫
𝑃2𝑑𝑥

2𝐸𝐴
+ ∫

𝑀𝑧
2𝑑𝑥

2𝐸𝐼𝑧
+ ∫

𝛼𝑉2𝑑𝑥

2𝐴𝐺
+ ∫

𝑀𝑡
2𝑑𝑥

2𝐽𝐺
                                                          (2) 

 

The displacement at any point in the bar then radially be found by applying 

Castigliano’s theorem. Inasmuch as the force 𝑃𝑖  is not a function of  𝑥 , the 

differentiation of 𝑈 with respect to 𝑃𝑖under the integral. In so doing, the displacement 

is obtained in the following convenient form: 

 

𝛿𝑖 = ∫
1

𝐸𝐴
𝑃

𝜕𝑃

𝜕𝑁𝑖
𝑑𝑥 + ∫

1

𝐸𝐼𝑧
𝑀𝑧

𝜕𝑀𝑧

𝜕𝑁𝑖
𝑑𝑥 + ∫

𝛼

𝐴𝐺
𝑉

𝜕𝑉

𝜕𝑁𝑖
𝑑𝑥 + ∫

1

𝐽𝐺
𝑀𝑡

𝜕𝑀𝑡

𝜕𝑁𝑖
𝑑𝑥            (3) 

 

In which the integration are carried out over the length of the bar. 

 
2.2. Mathematical model for dynamic buckling 
 

Fig. 1 represents a schematic diagram of a horizontal slender column with fixed-

pinned ends and constant cross section subjected to a compression axial load (P), a 

bending load (F), and a torsional twisting moment (𝑀𝑡) with constant rotating speed. 

This schematic diagram represents one of the real cases of loading used in the present 

research to examine the dynamic buckling behavior under combined loading 

conditions. 

 

 

 
 

Figure 1. A slender column with fixed-pinned ends conditions under effect of combined loading (a 
gradually increased axial compression load P, a gradually increased bending load F, and a constant 

torsional twisting moment Mt. 
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The mathematical model is based on the assumption that: 

1. The material of the column is homogeneous and isotropic. 

2. The dimensions of the cross section of the column are exact and the cross section is 

constant. 

3. The applied loads and/or support connections are perfectly positioned 

geometrically. 

4. The axial load and bending load are applied gradually with constant speed of 

rotation (constant torque). 

5. Plane surfaces remain plane after bending. 

6. No initial stresses exist from manufacturing assembly operation or residual stresses 

due to material forming.  

7. The contribution of the shear force (V) to the displacement is negligible.     

Equation (3) will be abbreviated to  

 

𝛿𝑖 =
1

𝐸𝐴
∫ 𝑃

𝜕𝑃

𝜕𝑁𝑖
𝑑𝑥

𝐿

0

+
1

𝐸𝐼𝑧
∫ 𝑀𝑧

𝜕𝑀𝑧

𝜕𝑁𝑖
𝑑𝑥

𝐿

0

+
1

𝐽𝐺
∫ 𝑀𝑡

𝜕𝑀𝑡

𝜕𝑁𝑖
𝑑𝑥

𝐿

0

                           (4) 

 

To determine the deflection at a distance 0.35L from point B, a dummy load Q is 

introduced at point C. 

 

∴  𝛿𝑖 = 𝛿𝑄 , 𝑁𝑖 = 𝑄, 
𝜕𝑃

𝜕𝑁𝑖
=

𝜕𝑃

𝜕𝑄
= 0, and 

𝜕𝑀𝑡

𝜕𝑁𝑖
=

𝜕𝑀𝑡

𝜕𝑄
= 0,  

 

Equation (4) will be abbreviated to 
 

 𝛿𝑄 =
1

𝐸𝐼𝑧
∫ 𝑀𝑧

𝜕𝑀𝑧

𝜕𝑄
𝑑𝑥

𝐿

0
                                                                                                (5) 

 

∴ Bending moment at any section x from the right-hand side is given by 
 

𝑀𝑧 = {

−𝑃𝑣 − 𝑅𝐵𝑥 − 𝑀𝑒 + 𝑀𝑡𝑣′                                                               (0 ≤ 𝑥 ≤ 0.35𝐿)

−𝑃𝑣 − 𝑅𝐵𝑥 − 𝑀𝑒 + 𝑀𝑡𝑣′ + 𝑄(𝑥 − 0.35𝐿)                              (0.35 ≤ 𝑥 ≤ 0.5𝐿)

−𝑃𝑣 − 𝑅𝐵𝑥 − 𝑀𝑒 + 𝑀𝑡𝑣′ + 𝑄(𝑥 − 0.35𝐿) + 𝐹(𝑥 − 0.5𝐿)           (0.5 ≤ 𝑥 ≤ 𝐿)

     (6)  

 

Were 𝑀𝑡𝑣′ represent the contribution of the torsional loading or twisting moment (𝑀𝑡) 

in the bending moment about z-axis (𝑀𝑧 ) and this based on the deriving of Greenhill 

relation [17]. 

For fixed-pinned ends conditions, and by using superposition method one can write 

𝑅𝐵 = (0.4964375)𝑄 + (
5

16
) 𝐹 −

𝑀𝑒

𝐿
                                                                           (7) 

Substitute (7) in (6) and by taking a partial differentiate of 𝑀𝑧 with respect to the 

dummy load Q and then equating the dummy load to zero(put 𝑄 = 0) , one can write 

 

𝜕𝑀𝑧

𝜕𝑄
= {

−0.496375 𝑥                                     (0 ≤ 𝑥 ≤ 0.35𝐿)

−0.496375 𝑥 + (𝑥 − 0.35𝐿)      (0.35 ≤ 𝑥 ≤ 0.5𝐿)

−0.496375 𝑥 + (𝑥 − 0.35𝐿)              (0.5 ≤ 𝑥 ≤ 𝐿)
                                        (8) 
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Substitute (6), (7) and (8) in (5) and equating the dummy load to zero, (5) will be as 

follows:   

 

𝛿𝑄 =
1

𝐸𝐼𝑧
[∫ (−𝑃𝑣 − ((

5

16
) 𝐹 −

𝑀𝑒

𝐿
) 𝑥 − 𝑀𝑒 + 𝑀𝑡𝑣′ ) ∗ (−0.496375 𝑥)𝑑𝑥

0.35𝐿

0
+

                    ∫ (−𝑃𝑣 − ((
5

16
) 𝐹 −

𝑀𝑒

𝐿
) 𝑥 − 𝑀𝑒 + 𝑀𝑡𝑣′) ∗ (−0.496375 𝑥 + (𝑥 −

0.5𝐿

0.35𝐿

0.35𝐿))𝑑𝑥 + ∫ (−𝑃𝑣 − ((
5

16
) 𝐹 −

𝑀𝑒

𝐿
) 𝑥 − 𝑀𝑒 + 𝑀𝑡𝑣′ + 𝐹(𝑥 − 0.5𝐿))       ∗ (

𝐿

0.5
−

0.496375 𝑥 + (𝑥 − 0.35𝐿))𝑑𝑥]                                                                                      (9) 

 

The deflection curve of a column with fixed-pinned ends conditions loaded by an axial 

load can be represented by the following relation [16] 

 

𝑣 = 0.715𝛿𝑚𝑎𝑥 (1 − cos( 𝑎
𝑥′

𝐿
) +

1

𝑎
sin( 𝑎

𝑥′

𝐿
) −

𝑥′

𝐿
)                                                       (10) 

 

Were 𝑎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 4.493 and 𝛿𝑚𝑎𝑥 =maximum deflection. 

For the present research and to simplify the integration, the deflection curve 𝑣 to be 

calculated from the right hand of the column as follow: 

 

𝑣 = −0.715𝛿𝑚𝑎𝑥 (1 − cos( 𝑎
(𝐿−𝑥)

𝐿
) +

1

𝑎
sin( 𝑎

(𝐿−𝑥)

𝐿
) −

(𝐿−𝑥)

𝐿
)                                         (11) 

 

∴ The slope will be,    𝑣′ =
0.715𝛿𝑚𝑎𝑥

𝐿
(𝑎 sin( 𝑎

(𝐿−𝑥)

𝐿
+ cos( 𝑎

(𝐿−𝑥)

𝐿
) − 1)                         (12) 

 

It should be noted, for the present research, the point of applying a dummy load 

(point C) as shown in Fig. 1, has been selected for two reason: first, for a column with 

fixed-pinned ends support it known that the an equivalent unsupported length can be 

calculated by using effective-length factor K= 0.7 which give a value of equivalent 

unsupported length=0.7L measured from point B (Fig. 1). Therefore, the maximum 

deflection of the column will be at a distance (0.7/2)L=0.35L.Second, from the 

equation of the deflection curve of a column with fixed-pinned ends conditions (10) or 

(11), it can be find that the point of maximum deflection  𝑣 = 0.999738 𝛿𝑚𝑎𝑥 is locate 

at distance 0.4L from point B, and at this point the slope 𝑣′ = 0 and this will give 

trivial solution. So, in order to satisfy the two conditions mentioned above, the location 

of a point C is selected to be 0.35L from point B and this location will give 𝑣 =

0.983 𝛿𝑚𝑎𝑥.          

The moment (𝑀𝑒) represented an eccentricity moment due to eccentricity distance 

(e). This moment is given by 

𝑀𝑒 = 𝑃𝑒 = 𝑃𝓵 tan 𝜃, and for small value of 𝜃, tan 𝜃 ≅ 𝜃 thus, 

 

𝑀𝑒 = 𝑃𝓵𝜃 = 𝑃𝓵 ∗ (𝑣′)𝒙=𝟎                                                                                                 (13) 
  

Where,  𝜃 =slope=(𝑣′)𝒙=𝟎  
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From (12) and for 𝑥 = 0, (𝑣′)𝒙=𝟎 =
0.715𝛿𝑚𝑎𝑥

𝐿
∗ (−5.602938819) and by substituting 

this value into (13) one can write 

 

𝑀𝑒 =
0.715𝛿𝑚𝑎𝑥

𝐿
𝑃𝓵 ∗ (−5.602938819)                                                                    (14) 

 

By Substituting (11), (12), and (14) into (9) and integration yields 
 

𝛿𝑄 =
𝐿

𝐸𝐼𝑧

[(0.715𝛿𝑚𝑎𝑥 𝑃(−0.06805589 𝐿 − 0.2071336 𝓵 ))

+ (0.715𝛿𝑚𝑎𝑥 𝑀𝑡(0.1018409)) − (8.704427 ∗ 10−3𝐹𝐿2)]                  (15) 

Now (15) can be arranged to determine the axial compression load P (critical buckling 

load) as follows: 

∴Critical buckling load    

𝑃𝑐𝑟 =
𝛿𝑄𝐸𝐼

0.715𝛿𝑚𝑎𝑥 𝐻𝐿
−

0.1018𝑀𝑡

𝐻
+

8.704427 ∗ 10−3𝐹𝐿2

0.715𝛿𝑚𝑎𝑥 𝐻
                               (16) 

 

Where, 𝐻 is a variable and given by  𝐻 = −(0.068054 𝐿 + 0.2071336 𝓵) 

In order to make (16) more accurate, an initial deformation of the column (𝛿𝑜) must 

be considered and to do this, the initial deformation of the column must be subtracted 

from the displacement at reference point (0.35L from point B) or the displacement 

under the dummy load ( 𝛿𝑄 ) and this means that the strain energy due to real 

displacement is considered. Thus, one can write (see Fig. 1) 

 

𝛿𝑄
∗ = 𝛿𝑄 − 𝛿𝑜 

                                                                                                                            (17)    
𝛿𝑚𝑎𝑥

∗ = 𝛿𝑚𝑎𝑥 + |𝛿𝑜| 

 

Where, 𝛿𝑄 = 𝛿𝑐𝑟 (critical deflection of the column). 

And from (11) and by substituting  𝑣 = 𝛿𝑄 and 𝑥 = 0.35𝐿 this will give 

 

𝛿𝑚𝑎𝑥 =
−𝛿𝑄

0.98274
                                                                                                             (18) 

 

So, the final form of (16) will be 

∴Critical buckling load 

 

𝑃𝑐𝑟 =
(𝛿𝑄

∗)𝐸𝐼

0.715(𝛿𝑚𝑎𝑥
∗)𝐻𝐿

−
0.1018𝑀𝑡

𝐻
+

8.704427 × 10−3𝐹𝐿2

0.715(𝛿𝑚𝑎𝑥
∗) 𝐻

                                     (19) 

 

Equation (19) will be used to determine the theoretical critical buckling load 

throughout the present research. For dynamic compression loading, (19) may be used 

by setting the bending load equal to zero (F=0).  It must be noted that when the column 

type is intermediate, the Young modulus must be replaced by Tangential modulus (𝐸𝑡) 

that calculated from the experimental results of the tensile test of AISI 303 stainless 
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steel tensile specimens. In order to determine where as the column long or 

intermediate, effective and critical slenderness ratios are used. The value of the 

effective slenderness ratio (𝜆𝑒) is calculated by using the relation [9]: 

 

𝜆𝑒 =
𝐾𝐿

𝑟
=

𝐿𝑒

𝑟
                                                                                                                     (20) 

 

The value of slenderness ratio above which column’s type is long and under this 

intermediate is obtained using the following relation [18]: 

 

𝜆𝑐 = 𝜆𝑒 = 𝜋. √
𝐸

𝜎𝑝𝑙
                                                                                                              (21) 

 

and by substitution the value of E, 𝜎𝑝𝑙 from Table 2, and the value of K=0.7 (for fixed-

pinned ends) in (21), the value of critical slenderness ratio is found as 𝜆𝑐 = 86.5. 

In (16) and (19), the effect of a bending load (F) and a twisting load (𝑀𝑡) on the 

value of critical buckling load (𝑃𝑐𝑟 ) has been insulated in two clear mathematical 

expressions by using energy technique. So, the correct value of theoretical critical 

buckling load can be predicted. Also, if the position of the point of applying dummy 

load (Q) has been change, then the limits of integration will be change in (9) and this 

will give, as a result, different values of critical buckling loads from (19) and only the 

minimum value of them represents the real value of the critical buckling load of the 

column. 

It should be noted that the direction of applied of the twisting moment 𝑀𝑡  (i.e. 

clockwise or anti-clockwise) will change (15) and/or (19). For example, if one has used 

an anti-clockwise twisting moment instead of clockwise twisting moment, then the 

ahead sign of  the part that represents the effect of the twisting moment will be 

changing from positive sign (+) into negative sign (-), and this will led to decrease the 

value of the critical buckling load (𝑃𝑐𝑟). 

 

3. Experimental Work 
 

3.1. Material used and buckling test machine 
 

AISI 303 stainless steel intermediate and long columns of circular cross-section 

𝐷 = 8 mm, 𝐼 =  201.1 mm4, 𝑟 = 2 mm, and different slenderness ratios were tested 

by using a rotating column buckling test machine which is capable to apply dynamic 

compression loading (compression-torsion), dynamic bending loading (bending-

torsion), and dynamic combined loading (compression-bending and torsion), with 

column ends support of fixed- pinned and rotating speeds of 17 and 34 r.p.m. In this 

research, low speed (17 r.p.m) was used in all dynamic buckling experiments (i.e. in 

both dynamic compression loading and dynamic combined loading). It should be noted 

that the low speed (17 r.p.m) is chosen in order to give a maximum twisting load 

because the twisting torque as known is inversely proportional to the rotating speed.  

Torsion load (twisting moment) has a constant value of 𝑀𝑡 = 280861.7 N. mm which 

is corresponding to 0.5 KW of motor power.  The photograph of the rotating buckling 
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test machine is shown in Fig. 2. More details of buckling test machine, used in this 

research, are in [10]. The detail of the chemical composition of stainless steel is shown 

in Table 1 and the significant mechanical properties are given in Table 2. Based on the 

experimental results of the tensile test of 303 AISI stainless steel, the values of 

tangential modulus (𝐸𝑡) are calculated for intermediate columns and the results are 

given in Table 3, and for more details about the method used to determine the values of 

tangential modulus (𝐸𝑡) see Appendix A. The geometrical dimensions and buckling 

parameters of buckling specimens are shown in Table 4. 

  
3.2. Failure criterion of buckling 
 

When the maximum deflection of the column reaches the critical value of deflection 

(𝛿𝑐𝑟) of the column length, then the load measured (by pressure gauge, see Appendix 

B) is the critical buckling load of the column. In the present work, the value of the 

critical deflection of the column is taken as (𝛿𝑐𝑟(𝑚𝑚) = (𝐿 ∗ 1%) + 𝛿𝑜) [17, 20, and 

21]. The initial deflection of the column (𝛿𝑜) is measured by using a dial gauge, see 

Fig. 3. And with a column rotating effect then, the measured value is divided by two 

(i.e. 𝛿𝑜= (measured value by dial gauge)/2) to determine the correct value of (𝛿𝑜). 

Because of the rotating effect on the reading of the column deflection using a dial 

gauge, a laser cell circuit tool was fabricated, with whistle sound, fixed on electronic 

vernier (with a reading accuracy of 0.01 mm), Fig. 3, to make the reading of critical 

deflection (𝛿𝑐𝑟) more strict. 

The steps of using a laser cell circuit as a tool for buckling failure criterion can be 

summarized as follows: 

1. Calculation of the magnitude of the lateral critical deflection of the column length 

in millimeters. 

2. Operate the laser-ray circuit and Laser-ray are initially keep tangentially to the 

surface of the column at the required position (for the present paper: 0.35 of the 

column length from pinned-end support). This position represents a reference level 

for the lateral deflection measurement.  

3. Input the value of the critical lateral deflection (𝛿𝑐𝑟) in the digital vernier, this is 

represented by movement of vernier head and as a resultant changing the level of 

the laser-ray into a new one that represent the required failure criterion. 

4. After exerting of the loads on the column, the column begins to deflect laterally 

with spiral (deflect) shape, and when the column deflection reaches the critical 

value (𝛿𝑐𝑟) then it cross the laser-ray and a whistle warning sound is break out 

which signify the end of the experiment.   

Fig. 4 shows some of buckling specimens before and after buckling test. 
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Figure 2. The rotating buckling test machine and types of loading used in the present research: 
 (A) dynamic axial compression load, (C) dynamic combined load. 

 
Table 1. Chemical compositions (wt. %) of the used and standard AISI 303 stainless steel 

Alloy C Si Mn P Cr Ni 

Used material 
a 

0.114 0.539 1.14 0.032 18.20 8.19 

Standard 

(ASM) [19]
 

 

Up to 0.15 Up to 1.0 Up to 2.0 Up to 0.2 17-19 8-10 

              a   Source: State Company for Inspection and Engineering Rehabilitation (SIER)/Baghdad. 
                Laboratory and Engineering Inspection Department 
                Minerals Lab. (Spectral analysis of metals) stainless steel rod sample 

 
Table 2. Experimental mechanical properties of AISI 303 stainless steel used in present work 

 (Average of three specimens) 

AISI 303 stainless steel 𝜎𝑢𝑙𝑡 (𝑀𝑝𝑎) 𝜎𝑦
a

 

 (𝑀𝑝𝑎) 

𝐸  
(𝐺𝑝𝑎) 

Elongation
b

 

%  
𝜎𝑝𝑙 

(𝑀𝑝𝑎) 

Experimental properties 880 673 204.2 41.4 269.2 

                a 
  Proof stress at 0.2% of stain;   

b 
 in gauge length 𝐿𝑜 = 25 𝑚𝑚   

 
Table 3. Values of Tangential modulus for intermediate columns 

 

 

 

 

 

 

 

 
Table 4. Geometrical dimensions and buckling parameters of the used specimens 

No. 𝐿  
(𝑚𝑚) 

𝐿𝑒
 
 

(𝑚𝑚) 

𝜆𝑒 

(=
𝐿𝑒

𝑟
) 

𝐸𝑡   
(𝐺𝑃𝑎) 

1 160 112 56 137.131 

2 170 119 59.5 146.248 

3 180 126 63 154.764 

4 190 133 66.5 162.686 

5 200 140 70 170.035 

6 210 147 73.5 176.836 

7 220 154 77 183.123 

8 230 161 80.5 188.928 

9 240 168 84 194.288 

No. Symbol 𝐿  
(𝑚𝑚) 

𝐿𝑒
 
 
a 

(𝑚𝑚) 

𝛿𝑜 

(𝑚𝑚) 

𝛿𝑐𝑟 
b
 

(𝑚𝑚) 
𝜆𝑒 

(
𝐿𝑒

𝑟
) 

Type of loading
 

Type 
c 

of  column 

1 1a 160 112 0.55/2 1.88 56 dynamic comp. 

Intermediate 1b 0.9/2 2.05 combined 

2 2a 170 119 0.6/2 2 59.5 dynamic comp. 



   

Journal of Engineering and Sustainable Development, Vol. 20, No.04, July 2016                                         www.jeasd.org (ISSN 2520-0917) 

                                                 

227 
 

a   𝐿𝑒 = 𝐾𝐿  ;  b   𝛿𝑐𝑟(𝑚𝑚) = (𝐿 ∗ 1%) + 𝛿𝑜 

c   𝜆𝑐 = 𝜋. √
𝐸

𝜎𝑝𝑙
= 86.5 ,   𝑖𝑓 𝜆𝑒 > 𝜆𝑐  → 𝑙𝑜𝑛𝑔 𝑐𝑜𝑙𝑢𝑚𝑛 and 𝑖𝑓 𝜆𝑒 < 𝜆𝑐  → 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒 𝑐𝑜𝑙𝑢𝑚𝑛 

 

2b 1.1/2 2.25 combined 

3 3a 180 126 0.71/2 2.16 63 dynamic comp. 

3b 1.24/2 2.42 combined 

4 4a 190 133 0.96/2 2.38 66.5 dynamic comp. 

4b 1.3/2 2.55 combined 

5 5a 200 140 0.8/2 2.4 70 dynamic comp. 

5b 1.3/2 2.65 combined 

6 6a 210 147 1.22/2 2.71 73.5 dynamic comp. 

6b 1.46/2 2.83 combined 

7 7a 220 154 1.1/2 2.75 77 dynamic comp. 

7b 1.6/2 3 combined 

8 8a 230 161 1.21/2 2.91 80.5 dynamic comp. 

8b 1.4/2 3 combined 

9 9a 240 168 1.2/2 3.0 84 dynamic comp. 

9b 1.5/2 3.15 combined 

10 10a 260 182 1/2 3.1 91 dynamic comp. 

Long 

10b 1.3/2 3.25 combined 

11 11a 280 196 0.95/2 3.28 98 dynamic comp. 

11b 1/2 3.3 combined 

12 12a 300 210 1.15/2 3.58 105 dynamic comp. 

12b 0.95/2 3.48 combined 

13 13a 320 224 1.2/2 3.8 112 dynamic comp. 

13b 0.8/2 3.6 combined 

14 14a 340 238 1.48/2 4.14 119 dynamic comp. 

14b 1.1/2 3.95 combined 

15 15a 360 252 1.3/2 4.25 126 dynamic comp. 

15b 1.15/2 4.18 combined 

16 16a 380 266 1.43/2 4.52 133 dynamic comp. 

16b 1.2/2 4.4 combined 

17 17a 400 280 1.26/2 4.63 140 dynamic comp. 

17b 0.9/2 4.45 combined 

18 18a 420 294 1.45/2 4.93 147 dynamic comp. 

18b 1/2 4.7 combined 

19 19a 440 308 1.58/2 5.19 154 dynamic comp. 

19b 1.3/2 5.05 combined 

20 20a 460 322 1.8/2 5.5 161 dynamic comp. 

20b 2.3/2 5.75 combined 
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Figure 3. System used to control the deflection of columns during buckling test.  

 

Figure 4. Specimens before and after buckling test.  

 

4. Results and Discussion 
 

Table 5 shows the experimental results of dynamic buckling test of 303 AISI 

column specimens. In this table, it can be observed that the critical buckling stress 

(𝜎𝑒𝑥𝑝) decreased with the increase in effective slenderness ratio (𝜆𝑒) for both dynamic 

compression load (compression-torsion load) and dynamic combined load 

(compression-bending-torsion load). In order to make a comparison between the 

experimental results and theoretical results, (19) is used to calculate the theoretical 

critical buckling load (𝑃𝑐𝑟) for the specimens under both dynamic compression load 

and dynamic combined load, and the results are shown in Table 6 for dynamic 

compression load and Table 7 for dynamic combined load. From Table 5 and Table 6, 

it can be observed that there is a good agreement between the experimental critical 

buckling load (𝑃𝑒𝑥𝑝) and the theoretical critical buckling load (𝑃𝑐𝑟) predicts from (19) 

and the maximum percentage error under dynamic compression load and under 

dynamic combined load is 19.3% and 16.8%, respectively. Fig. 5 and Fig. 6 are plotted 

by using the experimental results of Table 5 for specimens under dynamic compression 

load, whereas Table 6 and Table 7 are gave the theoretical results from derived 

equation (19). It can be observed that the derived equation (19) may be used to 

describe the buckling behavior of intermediate and long columns under both dynamic 

compression load and under dynamic combined load. 
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The contribution of the torsional loading (twisting moment) in the required critical 

buckling load is decreased with the increase in the length or slenderness ratios of 

columns , but this contribution is essentially to determine the accurate  theoretical 

critical buckling load (𝑃𝑐𝑟 ) form (19) so, the effect of torsional loading can’t be 

neglected. The lateral loading (bending load) on the rotating columns leads to a fast 

increasing in the lateral deflection of the column under combined loading conditions 

and a signification reduction in the axial compressive load and as a result, it decreases 

the critical buckling load of the columns compared with the case without lateral 

loading (dynamic compression loading) . It is experimentally, noted that the effect of 

the bending loading in decreasing the critical buckling load was much greater than the 

effect of the twisting or torsional loading in increasing of the critical buckling load for 

the same lengths (slenderness ratios) and this fact is provided theoretically by using 

(19). 

 

Table 5. Experimental results of dynamic buckling test 

No. Symbol Type of loading 
𝑃𝑒𝑥𝑝 

(𝑁) 

𝜎𝑒𝑥𝑝 

(𝑀𝑃𝑎) 

𝐹𝑏𝑒𝑛. 

(𝑁) 

𝜎𝑏𝑒𝑛. 

(𝑀𝑃𝑎) 

1 1a dynamic comp. 16257.742 323.4375 --- --- 

 1b combined 7775.442 154.688 489.6 243.507 

2 2a dynamic comp. 14844.025 295.3125 --- --- 

 2b combined 7068.583 140.625 469.2 247.946 

3 3a dynamic comp. 13783.738 274.2188 --- --- 

 3b combined 6361.725 126.563 448.8 251.117 

4 4a dynamic comp. 12370.021 246.0938 --- --- 

 4b combined 6008.296 119.531 428.4 253.019 

5 
5a dynamic comp. 10956.304 217.9688 --- --- 

5b combined 5654.867 112.5 408 253.653 

6 
6a dynamic comp. 10249.446 203.9063 --- --- 

6b combined 5301.434 105.469 387.6 253.019 

7 
7a dynamic comp. 9542.5877 189.8438 --- --- 

7b combined 4948.008 98.438 367.2 251.117 

8 
8a dynamic comp. 9189.1585 182.8125 --- --- 

8b combined 4806.637 95.625 346.8 247.946 

9 
9a dynamic comp. 8482.3002 168.75 --- --- 

9b combined 4665.265 92.813 326.4 243.507 

10 
10a dynamic comp. 7422.0126 147.6563 --- --- 

10b combined 4523.893 90 306 247.312 

11 
11a dynamic comp. 6785.8401 135 --- --- 

11b combined 4241.15 84.375 285.6 248.58 

12 
12a dynamic comp. 6008.296 119.5313 --- --- 

12b combined 3887.721 77.3438 265.2 247.312 

13 
13a dynamic comp. 5301.4376 105.4688 --- --- 

13b combined 3534.292 70.3125 244.8 243.507 

14 
14a dynamic comp. 4948.0084 98.4375 --- --- 

14b combined 3322.234 66.0938 224.4 237.166 

15 15a dynamic comp. 4665.2651 92.8125 --- --- 
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Table 6. Theoretical values of critical buckling load using (19) under dynamic compression load 

 
 

15b combined 3180.863 63.2813 204 228.288 

16 
16a dynamic comp. 4241.1501 84.375 --- --- 

16b combined 3039.491 60.4688 183.6 216.874 

17 
17a dynamic comp. 3887.7209 77.34375 --- --- 

17b combined 2827.433 56.25 163.2 202.923 

18 
18a dynamic comp. 3534.2917 70.3125 --- --- 

18b combined 2686.062 53.4375 142.8 186.435 

19 
19a dynamic comp. 3180.8626 63.28125 --- --- 

19b combined 2474.004 49.2188 122.4 167.411 

20 
20a dynamic comp. 2827.4334 56.25 --- --- 

20b combined 2120.575 42.1875 81.6 116.68 

No. 
𝐿  

(𝑚𝑚) 

ℓ 

(𝑚𝑚) 

𝛿𝑜 

(𝑚𝑚) 

𝛿𝑐𝑟 

(𝑚𝑚) 

𝛿𝑄
∗ 

(𝑚𝑚) 

𝛿𝑚𝑎𝑥
∗ 

(𝑚𝑚) 
𝐻 

𝑃𝑐𝑟  

(𝑁) 

𝑃𝑒𝑥𝑝 

(𝑁) 

Error 

% 

1 160 10 -0.55/2 -1.88 -1.6 2.183 -12.963 15835.931 16257.742 -2.595 

2 170 11 -0.6/2 -2 -1.7 2.335 -13.851 14782.228 14844.025 -0.416 

3 180 10 -0.71/2 -2.16 -1.8 2.548 -14.325 13923.073 13783.738 1.011 

4 190 10 -0.96/2 -2.38 -1.9 2.902 -15.006 12414.393 12370.022 0.359 

5 200 15 -0.8/2 -2.4 -2 2.842 -16.722 11772.94 10956.305 7.454 

6 210 10 -1.22/2 -2.71 -2.1 3.368 -16.367 10771.182 10249.447 5.090 

7 220 16 -1.1/2 -2.75 -2.2 3.349 -18.291 9973.695 9542.588 4.518 

8 230 13 -1.21/2 -2.905 -2.3 3.562 -18.350 9690.538 9189.159 5.456 

9 240 14 -1.2/2 -3 -2.4 3.653 -19.238 9263.168 8482.300 9.206 

10 260 17 -1/2 -3.1 -2.6 3.654 -21.221 8753.701 7422.013 17.942 

11 280 15 -0.95/2 -3.275 -2.8 3.808 -22.168 8094.641 6785.840 19.287 

12 300 17 -1.15/2 -3.575 -3 4.213 -23.944 6888.278 6008.296 14.646 

13 320 17 -1.3/2 -3.85 -3.2 4.568 -25.306 6099.157 5301.438 15.047 

14 340 14 -1.48/2 -4.14 -3.4 4.954 -26.046 5550.473 4948.009 12.176 

15 360 13 -1.3/2 -4.25 -3.6 4.975 -27.200 5296.112 4665.265 13.522 

16 380 13 -1.43/2 -4.515 -3.8 5.309 -28.769 4754.383 4241.150 12.101 

17 400 15 -1.26/2 -4.63 -4 5.341 -30.544 4456.744 3887.721 14.636 

18 420 14 -1.45/2 -4.925 -4.2 5.736 -31.906 4034.401 3534.292 14.150 

19 440 16 -1.58/2 -5.19 -4.4 6.071 -33.268 3703.398 3180.863 16.427 

20 460 18 -1.9/2 -5.55 -4.6 6.597 -35.043 3300.375 2827.433 16.727 

No. 
𝐿  

(mm) 

𝓵 

(𝑚𝑚) 

𝛿𝑜 

( 𝑚𝑚) 

𝛿𝑐𝑟 

( 𝑚𝑚) 

𝛿𝑄
∗ 

( 𝑚𝑚) 

𝛿𝑚𝑎𝑥
∗ 

( 𝑚𝑚) 
𝐻 

𝑃𝑐𝑟  

(𝑁) 

𝑃𝑒𝑥𝑝 

(𝑁) 

Error 

% 

1 160 15 -0.9/2 -2.05 -1.6 2.536 -13.996 8610.965 7775.442 10.745 

2 170 16 -1.1/2 -2.25 -1.7 2.839 -14.884 7748.431 7068.583 9.618 

3 180 16 -1.35/2 -2.475 -1.8 3.193 -15.565 7033.603 6361.725 10.561 

4 190 16 -1.3/2 -2.55 -1.9 3.245 -16.245 6869.471 6008.296 14.333 

5 200 17 -1.3/2 -2.65 -2 3.347 -17.133 6545.262 5654.867 15.745 

6 210 16 -1.46/2 -2.83 -2.1 3.609 -17.606 6176.227 5301.438 16.501 

Table 7. Theoretical values of critical buckling load using (19) for specimens under dynamic combined load 
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Figure 5. Critical buckling load- length relation for stainless steel 303 AISI columns under dynamic 
compression loads compared with theoretical buckling load (Eq. 19). 

 

 

Figure 6. Critical buckling load- length relation for stainless steel 303 AISI columns under dynamic 
combined loads compared with theoretical buckling load (Eq. 19). 

 

7 220 16 -1.65/2 -3.025 -2.2 3.903 -18.287 5748.798 4948.008 16.184 

8 230 16 -1.6/2 -3.1 -2.3 3.954 -18.968 5614.802 4806.637 16.813 

9 240 17 -1.7/2 -3.25 -2.4 4.157 -19.855 5288.082 4665.265 13.350 

10 260 15 -1.4/2 -3.3 -2.6 4.058 -20.802 5195.487 4523.893 14.845 

11 280 15 -1/2 -3.3 -2.8 3.858 -22.163 4819.482 4241.150 13.636 

12 300 14 -0.95/2 -3.475 -3 4.011 -23.317 4260.695 3887.721 9.594 

13 320 13 -0.8/2 -3.6 -3.2 4.063 -24.471 3875.768 3534.292 9.662 

14 340 11 -1.1/2 -3.95 -3.4 4.569 -25.418 3351.193 3322.234 0.872 

15 360 12 -1/2 -4.1 -3.6 4.672 -26.987 3062.323 3180.863 -3.727 

16 380 12 -0.98/2 -4.29 -3.8 4.855 -28.348 2836.804 3039.491 -6.668 

17 400 10 -0.9/2 -4.45 -4 4.978 -29.295 2734.854 2827.433 -3.274 

18 420 11 -1/2 -4.7 -4.2 5.283 -30.863 2568.558 2686.062 -4.375 

19 440 11 -1.3/2 -5.05 -4.4 5.789 -32.224 2420.029 2474.004 -2.182 

20 460 18 -2.3/2 -5.75 -4.6 7.001 -35.035 2300.938 2120.575 8.505 
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5. Conclusions 
 

1. A new equation has been derived using energy technique (dummy load method) to 

describe the buckling behavior of intermediate and long columns under dynamic 

compression load and under dynamic combined load with consider of the initial 

imperfections of the column and the effect of eccentricity. 

2. The theoretical critical buckling load expression  

𝑃𝑐𝑟 =
(𝛿𝑄

∗)𝐸𝐼

0.715(𝛿𝑚𝑎𝑥
∗)𝐻𝐿

−
0.1018𝑀𝑡

𝐻
+

8.704427×10−3𝐹𝐿2

0.715(𝛿𝑚𝑎𝑥
∗) 𝐻

  may be used to predict of the 

critical buckling load under both dynamic compression and combined load with 

maximum percentage error is 19.3% and 16.8%, respectively. 

3. The derived model (19) is applicable to be applied for other than stainless steel 

materials because it does not depend on special mechanical properties of column 

material, and the present model can be re-derived, by using the same previous 

process, to predict the critical buckling load for other types of column’s end 

conditions. 

4. The contribution of the torsional loading (twisting moment) in the critical buckling 

load is dependent on its direction (i.e.  Clockwise or anit-clockwise). A clockwise 

direction of rotation leads to produce a twisting moment contribute in increasing of 

the critical buckling load of columns and this will appeared clearly from derivation 

of (19).  

5. The contribution of the torsional loading (twisting moment) in the required critical 

buckling load is decreased with the increase in the length and/or eccentricity of 

columns and this contribution is essentially to determine the accurate  theoretical 

critical buckling load (𝑃𝑐𝑟) form (19) so, the effect of torsional loading can’t be 

neglected. 

6. The lateral loading (bending load) on the rotating columns leads to a fast increasing 

in the lateral deflection of the column under combined loading conditions and a 

signification reduction in the axial compressive load (critical buckling load). 

7. Effect of the bending load, in decreasing of the critical buckling load, is increased 

with the increase of the length and/or eccentricity of columns. The average 

decreasing in the values of the critical buckling load is -37.92% compared with the 

values of the critical buckling load without lateral bending load for the same length 

of the column under dynamic combined load.   

 
Abbreviations 
 

Units Definition Nomenclature 

mm2 The cross-sectional area of the column A 

GPa Modulus of elasticity. E 

GPa Tangent modulus.  Et 

mm Eccentricity of the column  e 

N bending load F, Fben. 

GPa Shear modulus G 

mm A variable depending on column’s length and 

overhang distance. 
H 
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Appendices 
 

Appendix – A 
 

Calculation of Tangent Modulus (𝑬𝒕) 

At point B as shown in Fig. (1), the elastic modulus is the  𝐸𝑡 (tangent modulus) if 

the stress is increased but 𝐸 (Young’s modulus) if the stress is decreased [7]. The 

tangent modulus is given by [3, 22]: 

 

                                                      𝐸𝑡 =
𝑑𝜎

𝑑𝜀
                                         (𝐴 − 1) 

 

The critical or Engesser stress may be expressed by means of modification of Euler formula in 

which 𝐸𝑡 replaces 𝐸 : 

 

                                            𝜎𝑇 =
𝑃𝑐𝑟

𝐴
=

𝜋2𝐸𝑡

(𝜆𝑒)2                                     (𝐴 − 2) 

 

 

Figure A-1.  Stress- strain diagram of a material to illustrate the region of tangent modulus application 

[22]. 

 

From the experimental tensile test results, the stress-strain curve, Fig.2, for 303 AISI 

stainless steel used in this research can be represented by the following relationship: 

 

𝜎 = 2 ∗ 109𝜀3 − 4 ∗ 107𝜀2 + 286278 𝜀 − 31.594                   (𝐴 − 3) 

 

 
 

Figure (2).  Experimental true stress- strain curve of AISI 303 stainless steel used in the present 

research (as received material) 
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Where (𝜀) and (𝜎) are the uniaxial strain and stress, respectively.  

The tangent modulus is given by (A-1): 
 

𝐸𝑡 =
𝑑𝜎

𝑑𝜀
    

 

So, by differentiation of (A-3) with respect to 𝜀, one can write: 
 

𝐸𝑡 =
𝑑𝜎

𝑑𝜀
=  6 ∗ 109𝜀2 − 8 ∗ 107𝜀 + 286278                  (𝐴 − 4) 

 

Now, substituting (A-3) and (A-4) into (A-2) gives  
 

 2 ∗ 109𝜀3 − 4 ∗ 107𝜀2 + 286278 𝜀 − 31.594

=
𝜋2

(𝜆𝑒)2
∗ [6 ∗ 109𝜀2 − 8 ∗ 107𝜀 + 286278]                    (𝐴 − 5) 

 

By rearranging (A-5), one can write: 
  

2 ∗ 109𝜀3 − (4 ∗ 107 + 6 ∗ 109 ∗
𝜋2

(𝜆𝑒)2) 𝜀2 + (286278 + 8 ∗ 107 ∗
𝜋2

(𝜆𝑒)2) 𝜀

− (31.594 + 286278 ∗
𝜋2

(𝜆𝑒)2) = 0                                   (𝐴 − 6) 

 

Equation (A-6) can be solved to determine the correct value (root) of real strain 𝜀 

and then substitute this value in (A-4) to determine the value of the tangent modulus 𝐸𝑡 

[16]. 

The following calculations are made for the buckling specimen 1a, see Table 4. This 

specimens has the following geometrical dimensions: L=160 mm and 𝜆𝑒 = 56. 

 From (A-6) and for slenderness ratio 𝜆𝑒=56 
 

2 ∗ 109𝜀3 − (4 ∗ 107 + 6 ∗ 109 ∗
𝜋2

(56)2) 𝜀2 + (286278 + 8 ∗ 107 ∗
𝜋2

(56)2) 𝜀

− (31.594 + 286278 ∗
𝜋2

(56)2) = 0    

 

The above equation is a quadratic equation of 3
rd

 degree so there will be three roots, 

but one of them will be the true root.  

The true root is, 𝜀 = 2.240986 ∗ 10−3  

By substituting 𝜀 = 2.240986 ∗ 10−3 in (A-4) this will gives 
 

∴ 𝐸𝑡 =  6 ∗ 109 ∗ (2.240986 ∗ 10−3)2 − 8 ∗ 107 ∗ (2.240986 ∗ 10−3) + 286278
= 137131.238  𝑀𝑃𝑎 = 137.131  𝐺𝑃𝑎 

 
Appendix –B 
 

Calculation of Torsion and Compression Loads 

1. Torsion load (twisting moment)  

 

𝑃𝑜𝑤𝑒𝑟 = 𝜔 ∗ 𝑇 =
2𝜋𝑁∗𝑀𝑡

60
                                 (𝐵 − 1) 
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Where, 

Power=driving motor power= 0.5 KW=500 Watt. 

𝜔=angular velocity (rad/sec). 

𝑀𝑡= twisting moment or torque (N.m). 

N=rotational speed (r.p.m)= 17 r.p.m (constant) 

∴ 𝑀𝑡 =
60∗𝑃𝑜𝑤𝑒𝑟

2𝜋∗𝑁
=

60∗500

2𝜋∗17
= 280.8617 𝑁. 𝑚 = 280861.7 𝑁. 𝑚𝑚  

    

2. Axial compression load and compression stress At hydraulic pump 

 

𝑝 =
𝐹

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟
                                       (𝐵 − 2) 

 

or                                         𝐹 = 𝑝 ∗ 𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟                      (𝐵 − 3) 

 

Where, 

 𝑝: is the applied pressure by hydraulic pump.  

 𝐹: is the applied load on column. 

𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟: is the cross sectional area of hydraulic pump rod. 

At a column  

 

𝜎𝑐𝑜𝑚𝑝. =
𝐹

𝐴𝑐𝑜𝑙𝑢𝑚𝑛
                                     (𝐵 − 4) 

 

or                                              𝐹 = 𝜎𝑐𝑜𝑚𝑝𝑟. ∗ 𝐴𝑐𝑜𝑙𝑢𝑚𝑛         (𝐵 − 5) 

 

Now, by equating the forces in hydraulic pump and on a column cross sectional 

area, it can be written 

 

𝜎𝑐𝑜𝑚𝑝𝑟. = 𝑝 ∗
𝐴𝑐𝑦𝑙𝑖𝑛𝑑𝑒𝑟

𝐴𝑐𝑜𝑙𝑢𝑚𝑛
= 𝑝 ∗ (

𝐷

𝑑
)

2

         (𝐵 − 6) 

 

Where, 

D: is the diameter of hydraulic pump delivery rod. 

D=30 mm 

d: is the diameter of column. 

d= 8 mm (constant for all columns) 

∴ 𝜎𝑐𝑜𝑚𝑝𝑟. = 𝑝 ∗ (14.0625) 

For a column 1a, Table 5 

 a recorded pressure  𝑝 = 230 𝑏𝑎𝑟 = 23 𝑀𝑃𝑎, then the compression stress on the 

column is 

𝜎𝑐𝑜𝑚𝑝𝑟. = 𝜎𝑒𝑥𝑝 = 23 ∗ 14.0625 = 323.438 𝑀𝑃𝑎 

And the compression load is 

𝑃𝑒𝑥𝑝. = 𝜎𝑒𝑥𝑝 ∗ 𝐴𝑐𝑜𝑙𝑢𝑚𝑛 = 323.438 ∗ 106 ∗
𝜋

4
(8)2 = 16257.742 𝑁 


