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Abstract: In this work, a nonlinear integral controller is proposed for a Direct Current (DC) motor model 

in the presence of a variable and unknown external load and for a constant and variable reference 

velocity. The nonlinear integral term is designed simply by replacing the integral of the error function by 

the integral of a saturation error function to the error. By adjusting the saturation function parameters the 

proposed controller will have a robust properties against the uncertainty and the variation of unknown 

external torque. The numerical simulations explore the ability of the proposed controller in controlling the 

DC motor speed to a desired value for the constant and variable load and also for sinusoidal desired 

speed. In addition the results also compared with the classical integral controller to clarify the feature of 

the present controller. 
  

Keywords: DC motor, Speed control, Nonlinear integral control, Variable external torque, Constant and 
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على سرعة محرك تيار مستمر بوجود حمل  مسيطر تكاملي غير خطي لغرض السيطرةتصميم 

 خارجي متغير و غير معلوم القيمة
  

في هذا البحث تم اقتراح مسيطر تكاملي غير خطي لغرض السيطرة على سرعة محرك تيار مستمر بوجود حمل خارجي متغير  الخلاصة:

حمل و غير معلوم القيمة. تم تصميم الميسطر باستبدال تكامل دالة الخطأ بدالة اشباع لتكامل دالة الخطأ. ان قابلية المسيطر على مقاومة ال

يها من خلال اختيار القيم الصحيحة لمعاملات دالة الاشباع. تم اجراء محاكاة باستخدام الحاسوب لفحص قابلية الخارجي يمكن الحصول عل

الميسطر المقترح على السيطرة على سرعة المحرك الكهربائي و جعله يدور حسب السرعة المطلوبة سواء كانت ثابتة او متغيرة. 

 لمقترح مع نتائج مسيطر تكاملي خطي لايضاح خصائص المسيطر المقترح.بالاضافة الى ذلك تم مقارنة نتائج المسيطر ا
 
1.  Introduction 
 

     D.C. motors are the most popular devices used to convert electrical energy to 

rotational motion, or, with some gearing, to deliver a translational motion. In many 

applications it is  desired to keep the D.C. motor running at a specified angular 

velocity. However, this is not always an easy task for some reasons. One of the facing 
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the D.C. motor speed control is the parameter identification. Mainly the D.C. motor 

model involves four parameters: armature resistance, armature inductance, armature 

moment of inertia and viscous friction. Obtaining these values is not as easy job and 

often requires a specialized measurement devices, and will not be such accurate as the 

real values. 

     Another major problem in the D.C. motor speed control is the unknown external load 

applied to the motor. If the load value is constant and known then it is possible to preset 

the power delivered to the motor to obtain the desired speed, but when the load value is 

unknown or variable then it is not possible to control the D.C. motor speed without 

referring to feedback control schemes.  

      The Proportional-Integral (PI) controller is one of the conventional controllers and it 

has been widely used for the speed control of dc motor drives. The major feature of the 

PI controller is its ability to maintain a zero steady-state error to a step change as 

reference input. However, the problem of tuning the PI controller emerges. Although 

many tuning methods were proposed in order to find the appropriate values for the PI 

controller gains such as Ziegler-Nichols tuning process, Cohen–Coon tuning process, 

etc., the tuning methods results could be inaccurate and the tuned PI controller gains 

might be far from the ones which give a satisfying performance. In addition, different 

operating speeds require different gains in order to avoid overshoots and oscillations 

[1]. 

       Robust control schemes are widely applied to the D.C. motor speed control since 

they are developed to overcome uncertainties in plant model and external loads. 

Adaptive control methods are widely used since it’s not necessary to know the exact 

model. 

        Kassem and Yousef [2] were scheduling adaptive controller to overcome changes 

in external load. The controller gains are designed in order to keep the motor running at 

the desired speed.  

       Butler et al [3] assigned an adaptive model reference control where the real time 

motor output is compared with a pre-assigned model and the difference between them 

was fed to the controller in order to make the real time model follows the assigned 

model. 

       Another famous robust control scheme is the sliding mode control which is widely 

applied to systems where the exact model of the physical plant is unknown or has 

uncertain parameters. The most powerful aspect for the sliding mode controller is its 

high insensitivity to the model parameters variation within certain bounds. 

      Afrasiabi and Yazdi [4] designed a sliding mode controller (SMC) for the D.C. 

motor speed control and compared with the performance of both a conventional PID 

controller and fuzzy controller and the results showed that the sliding mode controller 

gave the most satisfactory performance especially dealing with overshoot damping. 

        Rhif [5] proposed the sliding mode controller for disturbance rejection (i.e. 

external loads and torques) acting on the D.C. motor which mostly affects the steady 

state performance. The simulations showed that the load was almost ineffective but 

within certain bounds. However, two problems are limiting the applicability of the 

sliding mode controller to the DC motor speed control. The first is the chattering in 
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system response which it is the well-known drawback of the sliding mode control and 

the matching condition. The DC motor model does not satisfy the matching condition 

since the external load not acting in the same control input channel which it is (the 

matching property) the required property for the robustness of the SMC.  

     In the present work a nonlinear integral controller for the permanent magnet DC 

motor speed control is proposed in the presence of unknown and variable external load 

and for constant and variable desired speed. The nonlinear PI controller is simply 

constructed from a linear PI controller but with integral term using the saturation 

function rather than a linear relation with the state.   

 
2. Mathematical Model and Problem Statement 

 
      

 

 

 

 

 

 

 

 
Figure (1): Basic sketch for permanent magnet DC motor. 

 

     The state space model of the permanent magnet D.C. motor in figure (1) above is 

represented as below [4]. 

 

�̇� = 𝐴𝑥 + 𝐵𝑢 + 𝐻𝑑                                                                          (1) 

 

Where 

 

𝑥 = [𝑥1   𝑥2]
𝑇 = [𝜔    𝑖𝑎]
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     In this model 𝜔 is the angular velocity (rad/sec), 𝑖𝑎 is the armature current (Amp). 𝐾𝑡 

and 𝐾𝑏 are the motor torque and back emf constants respectively. 𝐽, 𝑏, 𝐿𝑎 and 𝑅𝑎 are the 

armature moment of inertia (𝑘𝑔 · 𝑚2 ), rotational friction coefficient (N·m·sec/rad), 

armature inductance (𝐻𝑒𝑛𝑟𝑦) and armature resistance (𝑂ℎ𝑚 ) respectively,  𝑑  is the 

disturbance torque acting on the motor (𝑁 · 𝑚) and 𝑢 is the control action (𝑉𝑜𝑙𝑡𝑠). 

     The disturbance 𝑑 can be expressed as below: 
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𝑑 = 𝑡𝐿 + ∆                                                                                     (2) 

 

where 𝑡𝐿 is the external load torque and  ∆ is the un-modeled torques that may acting on 

the motor like the coulomb friction. 

        In order to design a suitable controller for the D.C. motor speed it is often preferred 

to determine the above motor parameters. However, as mentioned earlier in section (1), 

determining the values of motor parameters is not a straight forward task especially 

when they are not supported by the manufacturer and requires specialized measuring 

equipment and the estimation might be approximate but not accurate. Besides, some of 

the parameters may change during the motor operation such as load friction, load 

moment of inertia and armature resistance. In addition, the electrical motors; including 

the D.C. motors, are subjected to a wide range of external loads depending on the 

application the motors are used for and may vary even for the same application which 

adds another challenge for the work. For this reason its necessary do develop a 

controller which can overcome the variation in the D.C. motor model and the external 

load torque which supposed to be varying with time. 

 
3. Steady State Conditions and the Nonlinear PI Controller Design 
 

              In this section the steady state condition is derived for the DC motor model and 

then the nonlinear PI controller is designed for it.  

       First, let the error vector be defined as follows: 𝑒 = [𝑒1     𝑒2]
𝑇 = [(𝑥1 −

𝜔𝑑)     𝑖𝑎]
𝑇  where 𝜔𝑑  is the desired angular velocity (rad/sec), then the system 

represented in Eq. (1) is rewritten as below: 

 

              �̇� = [
�̇�1
�̇�2
] = [

�̇�1 − �̇�𝑑
�̇�2

] = �̇� + [
−1
0
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−1
0
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Add and subtract 𝜔𝑑 from 𝑥1 in the above equation then we get 
 

       �̇� = 𝐴 [
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Note that 
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               �̇� = 𝐴𝑒 + 𝐴2𝜔𝑑 + 𝐵𝑢 + 𝐻𝑑 + [
−1
0
] �̇�𝑑 

 

Let 
 

          𝐴2𝜔𝑑 + [
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0
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and 𝛿 is the perturbation term which it is given by 

 

𝛿 = [

𝜔𝑑
�̇�𝑑
𝑑
] 

 

Finally the system of Eq. (1) can be written in error dynamics as equation below 

 

�̇� = 𝐴𝑒 + 𝐵𝑢 + 𝐷𝛿                                                                                        (3) 

 

     Note that 𝛿 consists of the desired reference and its derivative, and the unknown but 

bounded disturbance (𝑑 = 𝑡𝐿 + ∆). 

Let the PI controller be given by [6]; 

 

𝑢 = −𝑘1𝑒1 − 𝑘2𝑒2 − 𝑘3 ∫ 𝑓(𝑒1)
𝑡

0
𝑑𝑡                                                           (4) 

 

     Where 𝑓(𝑒1) is continuous function of 𝑒1. Now define 𝑒3 = ∫ 𝑓(𝑒1)
𝑡

0
𝑑𝑡, then Eqs. 

(3) and (4) become; 
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�̇�3 = 𝑓(𝑒1)                                                                                   }
 

 

                 (5) 

 

𝑢 = −𝑘1𝑒1 − 𝑘2𝑒2 − 𝑘3𝑒3                                                                          (6) 

Where 𝑘1, 𝑘2 and 𝑘3 are the controller gains associated with the PI controller and can be 

assigned using any possible tuning method which could be trial and error, Ziegler-

Nichols or Cohen–Coon tuning process, etc.  

For linear PI (LPI) controller  𝑓(𝑒1) = 𝑒1, and hence Eq. (5) becomes; 
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     If the poles of the error dynamics are selected with negative real values then the 

steady state conditions for the DC motor system dynamics, when 𝛿 is constant (i.e., 𝜔𝑑 

and 𝑑 = 𝑡𝐿 are constant values), is calculated as follows;  

     At the steady state condition �̇� = 0, then we have  

 

�̇� = 0 = 𝐴𝑒 + 𝐵𝑢 + 𝐷𝛿 = (𝐴 − 𝐵𝐾)𝑒 + 𝐷𝛿 

 

⇒ 𝑒𝑠𝑠 = [

𝑒1𝑠𝑠
𝑒2𝑠𝑠
𝑒3𝑠𝑠

] = −(𝐴 − 𝐵𝐾)−1𝐷𝛿                                                                  (8) 

 

The most interesting result of Eq. (8) is the solution for   �̇�3 = 0. It is solved as; 

 

𝑒1𝑠𝑠 = 0 = 𝑥1 − 𝜔𝑑 

 

⇒ 𝑥1 = 𝜔 = 𝜔𝑑                                                                                                (9) 

 

       Equation (9) represents the control system objective which it also a consequent of 

using the integral term in the control formula. Note that the steady state conditions (Eq. 

(8)) for LPI controller is the equilibrium point.  

       For the general case where the perturbation term is variable the linear PI controller 

is no longer able to force the angular velocity to track the desired value. According to 

Khalil [7] when the perturbation term is not constant but bounded (i.e., |𝛿| < 𝛿   ∀𝑡) 

then the linear PI controller will be able only to bring the error state 𝑒 to a region 

neighborhood to the  𝑒1 = 0 i.e., the steady state is regulated to a region around the 

system equilibrium point. In this case a steady state error exists (𝑒1𝑠𝑠 ≠ 0) and the 

angular velocity of the D.C. motor will equal the reference value with steady state 

error 𝑒1𝑠𝑠. This region is known as the area or region of attraction [Khalil 2002]. The 

following nonlinear PI (NPI) controller is used for the case of variable perturbation term 

and the goal is to minimize the steady state error 𝑒1𝑠𝑠. The nonlinear PI control law that 

proposed in this work is:  

 

𝑢 = −𝑘1𝑒1 − 𝑘2𝑒2 − 𝑘3 ∫ 𝑆𝑎𝑡𝜖,𝛾(𝑒1)
𝑡

0
𝑑𝑡                                                 (10) 

 

where 𝑓(𝑒1) = 𝑆𝑎𝑡𝜖,𝛾(𝑒1)  is the saturation function given by 

𝑆𝑎𝑡𝜖,𝛾(𝑒1) = {
         

𝛾

𝜖
∗ 𝑒1             𝑓𝑜𝑟 |𝑒1| ≤ 𝜖

   𝛾 ∗ 𝑠𝑖𝑔𝑛(𝑒1)     𝑓𝑜𝑟 |𝑒1| > 𝜖
                                            (11) 
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Where 𝜖 specifies the sensitivity of the saturation function and 𝛾(𝜖, 𝛾) a is function to 

the design parameters 𝜖 and 𝛾 and specifies the bound on the steady state error. 

     The e steady state condition is still as given in Eq.’s (8) and (9) but with the aid of 

the design parameters 𝜖 and 𝛾, the area of attraction can be adjusted to become within 

the following interval; 

 

|𝑒1𝑠𝑠| ≤ 𝛾(𝜖, 𝛾) 
 

     Accordingly the DC motor angular velocity will be bounded at steady state by 

 

𝜔𝑑 − 𝛾(𝜖, 𝛾) ≤ 𝜔 ≤ 𝜔𝑑 + 𝛾(𝜖, 𝛾)                                                                   (12) 

 
4. Nonlinear PI Controller Properties 
 

     Some useful properties are mentioned here for the proposed nonlinear PI (NPI) 

controller when compared with the LPI  controller as follows;  

1) Disturbance attenuation property: This property is a direct result of using a 

nonlinear integral term. A proper selection of the extra design parameters 𝜖 and 

𝛾 will attenuate the disturbance effects 𝛿. Note that the NPI controller use the 

same LPI control parameters (𝑘1, 𝑘2  and 𝑘3) and additionally add 𝜖  and 𝛾  to 

attenuate 𝛿. 

2) Lowering control effort: In general the integral term will yield large control 

value due to integration process. Replacing the linear integral function  ∫ 𝑒1
𝑡

0
𝑑𝑡 

by the nonlinear one ∫ 𝑆𝑎𝑡𝜖,𝛾(𝑒1)
𝑡

0
𝑑𝑡 will reduce the integration value especially 

for the time interval where  𝑆𝑎𝑡𝜖,𝛾(𝑒1) < 𝑒1. Note that this property will also 

help to prevent the control wind up and in all cases will not exceed the control 

effort spent by the linear controller but batter performance. 

                  
5. Robustness of the Proposed Controller  
 

     As mentioned above the idea behind the present work is simply replacing the linear 

integral term by a non-linear one using the saturation function for the error instead of 

the linear traditional one. The question is from where the proposed nonlinear integral 

controller will have a stronger robustness property when compared with the linear 

integral one?  The answer is adding two extra design parameters 𝜖 and 𝛾  help, with this 

proper selection, in attenuating the perturbation term effect and forcing the angular 

velocity to follow the desired reference. On the other hand, one can also outline a 

robustness prove of the NPI controller when compared with LPI as follows; 

     When the perturbation term is constant, the LPI will reject its effect and forcing the 

angular velocity to track the desired value. But for a bounded variable perturbation term 

the state will be regulated to a region around the origin (the origin here refer to 𝑒1 =

𝜔 − 𝜔𝑑 = 0 ⇒ 𝜔 = 𝜔𝑑 ) and the size of this region is directly depends on the 

perturbation bound and the LPI control parameters. In all cases (whether in linear or 

nonlinear structures) the perturbation attenuation ability depends mainly on the integral 
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term, since it will integrated and increased with time trying to reject the perturbation. 

Unfortunately the integral term cannot remove variable perturbation term, rather than 

that the state will enters a certain invariant region near the origin and stay there for all 

future time without reaching the origin, because of a non-vanishing  perturbation ([6] 

pp. 346) (where the perturbation term 𝛿 described above dose not vanish at 𝜔 = 𝜔𝑑). 

The size of the invariant region (the region around the reference velocity) can be 

reduced via increasing the integral gain. The idea which is proposed here is to use an 

integral control for the error function with large gain when the state is near the origin 

(
𝛾

𝜖
𝑘3) and with constant value outside it. In this case we preserve the integral control 

activity when the state starts away from the origin and the linear integral control ability 

in maintaining the state near the origin with a desired size. In this context a proper 

selection of the control parameters will enable our controller strongly attenuate to the 

non-vanishing perturbation with the desired steady state error.  

 
6. Simulations and Results 
 

     The controller designed in section (3) is applied to the D.C. motor model in 

simulation performed using MATLAB. In a comparative view, the conventional PI 

controller is also applied to the motor in the simulation to show the difference. The 

desired angular velocity is taken first to be 𝜔𝑑 = 10
𝑟𝑎𝑑

𝑠𝑒𝑐
= (300/𝜋) 𝑟𝑝𝑚. 

     To assign the values of the controller gains 𝑘1, 𝑘2 and 𝑘3, the Ziegler-Nichols first 

method tuning rule is applied giving the following values: 

 

𝑘1 =  0.566, 𝑘2 = 0.566, and    𝑘3 = 0.8466. 

 

     Moreover for the nonlinear PI controller, the design parameters 𝜖 and 𝛾 are selected 

as; 

 

𝜖 = 0.5   and   𝛾 = 50 
 

     The motor parameters considered in the simulations are as in table (1) below: 

 
Table (1): Permanent magnet DC motor parameters [8]. 

Parameter Symbol value Units 

Moment of inertia 𝐽 0.0025 𝑘𝑔 · 𝑚2 

Rotational friction coefficient 𝑏 0.136 𝑁 · 𝑚 · 𝑠𝑒𝑐/𝑟𝑎𝑑 

Armature inductance 𝐿𝑎 0.01 𝐻𝑒𝑛𝑟𝑦 

Armature resistance 𝑅𝑎 5 𝑂ℎ𝑚 

Motor torque constant 𝐾𝑡 0.245 𝑁 · 𝑚/𝐴 

Motor back emf 𝐾𝑏 0.245 𝑉 · 𝑠𝑒𝑐/𝑟𝑎𝑑 
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     The simulations are made in three parts, each considering a case for the external load 

as follows: 

      In the first simulation the load torque considered to be constant (i.e. 𝑡𝐿 = 0.5 𝑁.𝑚) 

and was applied after 2 seconds of running the motor. The results of applying the LPI 

controller are plotted in Fig. 2. Then after that the results of applying the NPI controller 

are plotted in Fig.3. As noted from the figures below, initially both the controllers 

succeed in driving the motor to the angular velocity. However, it’s noted that with the 

linear PI controller the motor angular velocity reaches the desired value within about 2 

seconds, while with the nonlinear PI controller the angular velocity reaches the desired 

value within about 1 seconds. In addition the control input voltage attains the same 

maximum or steady state value of NPI and LPI controller.  
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Figure (2): First simulation, load torque constant with the linear PI controller (a) Angular velocity 

(rad/sec), (b)Armature current (Amp), (c) Control voltage (volts). 
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Figure (3): First simulation, load torque constant with the nonlinear PI controller 

(a) Angular velocity (rad/sec), (b) Armature current (Amp), (c) Control voltage (volts). 
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nonlinear PI controllers was plotted together in Fig. 6 to give a more detailed point of 

view for the difference between the two cases. 
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Figure (4): Second simulation, the load torque is varying with linear PI controller (a) Angular velocity 

(rad/sec), (b) Armature current (Amp), (c) Control signal (volts) 

 

 
 

 

 

 

 

 

 
Figure (6): Comparison between linear and nonlinear PI controller. 
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      Another simulation is held but this time with variable desired angular velocity in 

order to show the set point tracking ability for both linear and nonlinear PI controllers. 

The desired angular velocity is taken as 𝑤𝑑 = 10 sin(𝑡) rad/sec. The results for the LPI 

controller are shown in Fig. 7 and for the NPI controller are shown in Fig. 8. The 

nonlinear PI controller shows the ability to track the desired value with a little error 

amount while the linear PI controller is not able to achieve that. In order to make the 

motor track the desired angular velocity the values of  𝜖 and   𝛾 have been changed to 

𝜖 = 0.1 and   𝛾 = 100. 
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Figure (7) Simulation with variable desired angular velocity for linear PI controllers (a) Angular velocity 

(rad/sec), (b) Current (Amp), (c) Control signal (volt). 
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(c) 
Figure (8) Simulation with variable desired angular velocity for nonlinear PI controllers (a) Angular 

velocity (rad/sec), (b) Armature current (Amp), (c) Control signal (volt). 
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(c) 

Figure (9) Simulation for the case of unsuitable choice for 𝜖 and   𝛾 in nonlinear PI controller (a) Angular 

velocity (rad/sec), (b) Armature current (Amp), (c) Control signal (volt). 
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simulation test. Simulations were held to show the motor performance under the 

proposed controller and compared it with linear PI controller to show the difference. 

When the load considered being constant the motor took about 2 seconds to reach the 

desired angular velocity with the linear PI controller while with the nonlinear PI 

controller took less than about  1.2 second to reach the desired angular velocity.  

     Another simulation was made considering variation of external load torque during 

the motor operation. The nonlinear PI controller was able to bring the motor to the 

desired angular velocity while with the linear PI controller the motor will ripple around 

it. In both simulations shows that the nonlinear PI controller have the better 

performance whether it comes to improving the system speed or robustness and 

eliminating steady state error. Finally the performance of the proposed controller is 

tested where the requirement is to make the motor speed to follow a sinusoidal 

reference. The results prove the effectiveness of the NPI controller and it ability in 

forcing the motor speed to follow a variable speed.  
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