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Abstract: The current study investigated flow boiling heat transfer, pressure drop in a copper multi 

parallel  microchannels heat sink using R134a as a working fluid. The evaporator consisted of 25 micro 

channels with dimensions of 300 µm wide, 700 µm deep and 209 µm separating wall thickness. It was 

made of oxygen free copper by CNC machining and was 20 mm long and 15 mm wide and hydraulic 

diameter of 420 μm. Experimental operating conditions spanned the following ranges: wall heat flux (5–

120) kW/m
2
, mass flux 50–300 kg/m

2
s and system pressure 8.5–12.5 bar. The heat transfer coefficient 

increases with heat flux and  system pressure but there is insignificant mass flux. This could be 

interpreted as a nucleate boiling dominant mechanism. The measured two phase flow pressure drop 

increases with increasing heat flux and mass flux but decreases with increasing system pressure. The 

effect of system pressure depends on mass flux, therefore. no pressure effect was found at low mass flux 

while the heat transfer coefficient increased with pressure at the high mass flux values. Pressure drop was 

investigated as a variation of heat flux. Simulation with Artificial Neural Network (ANN) was performed 

to predict heat transfer coefficient and pressure drop using MATLAB- version R2014a software, at mass 

flux G (75, 125, 175, 225, 275) kg/m
2
.s and pressure Ps (8.5, 10.5, 12.5) bar .The predicted results were 

compared with the experimental data and showed a good agreements.  
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 الخصائص التنبؤية لجريان الغليان ثنائي الطور باستخدام الشبكة العصبية الاصطناعية 
 

حخعّٓ اٌذساعت اٌذاٌُت اٌخذمك ِٓ أخماي اٌذشاسة وهبىغ اٌعغػ خلاي جشَاْ اٌغٍُاْ فٍ ِجاسٌ ِخىاصَت ِخٕاهُت اٌّمطغ   الخلاصة:

ِخش. َذخىٌ  0.2ِخش وغىي  0.15وّائغ اٌجشَاْ اٌّمطغ إٌذاعٍ رو ابؼاد بؼشض  R134aداخً حصشَف دشاسٌ ٔذاعٍ ِغخخذِا  

. اٌظشوف ِاَىشوُِخش 420وبمطش هُذسودَٕاُِىٍ  ِاَىشوِخش 300َىشوِخش واسحفاع ِا 000لُك بؼشض ِجشي د  25اٌّمطغ غًٍ 

وٍُىغشاَ/ِخشِشبغ ثأُت  300-50وٍُىواغ/ ِخش ِشبغ و ِؼذي اٌجشَاْ بُٓ  120-5اٌخشغٍُُت حخعّٓ اٌفُط اٌذشاسٌ ٌٍغطخ َخشاوح بُٓ 

ؼذي اٌفُط اٌذشاسٌ وِغ ظغػ إٌّظىِت وٌُظ هٕان حاثُش باس . َضداد ِؼذي أخماي اٌذشاسة ِغ اصدَاد ِ 12.5-5.5حذج ظغػ ِٓ 

ٌّؼذي اٌجشَاْ. هزٖ اٌذاٌت حفغش ػًٍ هُّٕت ٔظاَ بذاَت اٌغٍُاْ. فشق اٌعغػ اٌّماط ٌذاٌت اٌجشَاْ ثٕائٍ اٌطىس َضداد ِغ صَادة ِؼذي 

ىِت ػًٍ ِؼذي اٌجشَاْ َؼٍٕ اٌخاثُش لًٍُ اٌفُط اٌذشاسٌ ووزٌه ِغ ِؼذي اٌجشَاْ وَٕخفع ِغ صَادة ظغػ إٌّظىِت. َؼخّذ ظغػ إٌّظ

ت ػٕذ ِؼذي اٌجشَاْ اٌىاغئ بُّٕا ِؼاًِ أخماي اٌذشاسة َضداد ِغ اٌعغػ ػٕذ ِؼذي اٌجشَاْ اٌؼاٌٍ حُ اجشاء ِذاواة باعخخذاَ ٔظاَ اٌشبى

kg/m. ػٕذ ِؼذي جشَاْ MATLAB- version R2014aاٌؼصبُت ِٓ خلاي بشٔاِج    
2
.s (75, 125, 175, 225, 275)  وظغػ

 . واظهشث إٌخائج حطابما ِؼمىلا ِغ إٌخائج اٌؼٍُّت.bar (12.5 ,10.5 ,8.5)  إٌّظىِت ػٕذ
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1. Introduction 
 

       Two-phase flow parallel multi-microchannels are the cutting-edge technologies for 

high heat flux components cooling devices in recent years. The two-phase flow is 

considered as an optimum option to be applied in microchannels because of its 

extremely high heat transfer coefficients, so it keeps the wall at acceptable temperature 

rises.  

However, these benefits cannot pass without penalty. The narrow passages for fluid 

flow cause an increase in pressure drop. The comprehensive understanding of heat 

transfer and pressure drop presents valuable considerations for evaluation of these heat 

exchangers to get the design approach. The popular approach to analyse the unsteady 

and steady heat transfer problems is associated with the availability of non-linear 

empirical modeling methodologies, such as neural networks, inspired by the biological 

network of neurons in the brain, Ou and Achenie [1].  The large number of published 

researches reflect the great effort that have been collected for two-phase flow boiling 

and pressure drop characteristics in microchannels.  

The heat transfer and pressure drop results of saturated flow boiling heat transfer 

coefficient in oxygen-free copper micro-channel heat sinks were investigated by Qu and 

Mudawar (2003) and Lee and Mudawar [2,3], the heat sink consisted of 21 rectangular 

micro-channels with 231 µm wide and 713 µm deep , fitted with a polycarbonate plastic 

cover plate,  the deionized water and R134a were used as a working fluids. They 

compared the results and  showed a good agreement with the corresponding numerical 

predictions.  

Chen et al. [4] investigated experimentally and theoretically flow boiling and heat 

transfer characteristics of Methanol  in silicon based multi microchannel heat sink with 

different hydraulic diameters ranging from (57−267)μm. Experimental results indicated 

that the critical nucleate heat flux condition appeared, flow mechanism changed into 

fully developed nucleate boiling and accompanied with wall temperature decreased 

rapidly and pressure drop increased sharply. Steinke and Kandlikar [5]  focused on 

obtaining the fundamental heat transfer data and two phase flow patterns presented 

during flow boiling of water in microchannels in six parallel, horizontal microchannels 

with a hydraulic diameter of 207  m.  

The local flow boiling heat transfer coefficient exhibits a decreasing trend with 

increasing quality. Agostini et al. [6] investigated high heat flux flow boiling of R236fa 

and R245fa in silicon multi-microchannels with 67 parallel channels, which are 223 µm 

wide, 680 µm high and 20 mm long with 80 µm thick fins. The heat transfer coefficient 

increased with heat flux and was almost independent of vapour quality and mass 

velocity. Zhang [7] developed a correlation of two-phase frictional pressure drop and 

flow pattern in mini-channels with refers to 13 sets of data collected from literatures. 

Neural network algorithm was used to propose the Chisholm parameter (C) for mini-

channel. An extensive evaluation was presented of existing correlations with a collected 

database covering a wide range of running parameters, and proposed alternative 

correlations. Artificial Neural Network (ANN) has become a modeling tool frequently 

used in applications and analyzing the complex problems in different disciplines. 
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Particularly, its usage has increased in engineering applications such as heat transfer 

analysis. ANN has been successfully used in the analysis of heat transfer data and the 

heat transfer coefficient by algorithm for training and testing steps of neural network 

configurations. Picanço et al. [8] proposed using of genetic algorithms to correlate the 

derived functional relation between dimensionless numbers in convective and nucleate 

boiling heat transfer.  

Shokouhmand et al. [9] used an artificial neural network (ANN) to simulate the heat 

sink having laminar flow, the best geometry and volume fraction of nanofluid could be 

found based on minimum thermal resistance. By applying the artificial neural  network.  

Mehta [10] presented prediction of two phase air and water flow patterns in a 2.1 mm 

horizontal circular Y-junction minichannel using (ANN). The experimental results are 

predicted and compared using different artificial neural network models such as feed 

forward back propagation, cascade-feed forward back propagation, non-linear 

autoregressive exogenous model and radial basis functions. The comparison is 

performed by considering statistical parameters like mean bias error and root mean 

square error . 

 
2. The Objectives. 
  

  2.1. This work aimed to predict the values of heat transfer coefficients and pressure drop 

as a function of exit vapour quality and wall heat flux by using ANN algorithm  based 

on the experimental results which performed at working pressure (8.5, 10.5, 12.5) bar, 

with mass fluxes G (50, 100, 150, 200, 250, 300) kg/m
2
.s, with respect of the 

experiment inlet paramters G, Ps, xe, DTsup ,   
  . 

  2.2. Predict values of heat transfer coefficients and pressure drop at fluxes G (75, 125, 

175, 225, 275) kg/m
2
.s. and working pressure (8.5, 10.5, 12.5) bar.  

 
3. Experimental Work. 
 

To perform the experimental tests, the test section is established for the experimental 

investigation as shown in "Fig. 1". The heat transfer performance of two-phase flow in 

horizontal copper multi microchannels has been investigated in the mechanical 

engineering laboratories of Brunel University-London, United Kingdom. The 

refrigerant R134a is used, initially saturated liquid, as the working fluid, to test forced 

convection heat transfer. The effects of heat flux, mass flux and operating pressure on 

boiling heat transfer and pressure drop characterization in multi microchannels. 

 
3.1. Test sections. 
 

    The test section consists of a polycarbonate housing with dimensions 0.132m length, 

0.06m width and 0.074m high, have inlet/outlet rectangular plenums and converging 

inlet, diverging outlet manifolds., top covered by transparent quartz glass top cover 

plates for visualizations as shown in "Fig. 1a". An oxygen free copper block with 

twenty-five rectangular micro channels were cut into the top surface.  
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The copper block has overall dimensions of 15mm width, 20mm length, and 74mm 

height have three cartridge heaters of 175W heating power each. The nominal 

dimensions of the micro channel, are 300μm width, 700μm depth, 200μm fin thickness 

and 2cm length.  

 

 

 

 

 

 

 

 

 

 

 

 

 

                (a)                                                                                         (b)   

Figure 1. Schematic diagram of the test section components, (a) Housing Polycarbonate,  

(b) Microchannels copper part. 

 

The surface roughness of the bottom wall was measured and found to be 0.301μm. T-

type calibrated thermocouples were inserted vertically along the centerline of the copper 

block at 12 mm equidistance to measure the heat flux.  

 
3.2. Test Loop and cooling system. 
 

The main refrigeration system uses R134a as a refrigerant  and the cooling systems 

which uses R404a is illustrated in "Fig. 2".  The main loop consists of , gear pump, 

Coriolis mass flow meters, electric heaters and R134a wall insulated tank. The cooling 

system consists of compressor, condenser, gear pump, heat exchangers used as 

evaporators and R404a wall insulated tank. The cooling system is used to carry the heat 

away from R134a test loop through a cooling coil and heat exchangers.  

(a) 
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The system can regulate its cooling capacity automatically to adapt the heating load 

from the R134a experimental system.   

 

Figure 2. Schematic diagram for test loop and cooling system. 

 
4. ANN Modeling of Two-Phase Flow Parameters 

 

Artificial neural network is based on the important rules for classifying the two-

phase flow parameters. Neural network stimulate human mind and demonstrate high 

intelligence and it can be trained to study the correct output and classify training 

exercises and needs knowledge input for training. After the training, the neural network 

can classify the similar flow parameters with  high accuracy,[11]. ANN mainly grouped 

into two major type categories:- 

 - Feed forward in which no loops are formed by network.  

 - Feedback in which one or more loops are formed.  

The ANN approach seems to be completely suitable to the problems where the relations 

between variables are not linear and complex. In a multi-layer structure, the neurons are 

grouped into layers, layer of input neurons, layer of output neurons and one or more 

hidden layers which are made up of many interconnected neurons. 

As shown in "Fig. 3", a Multi Layer Preceptron (MLP) has two hidden layers. It consists 

of input layer which has five neurons. These become input signals to neurons of the 

hidden layers where input signals are 
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Figure 3. The proposed neural network architected. 

 

summed after weighing and then compute in function. The activation functions under 

hidden layer considered are Linear (PURELIN), hyperbolic tangent sigmoid (LOGSIG), 

Logistic sigmoid (TANSIG). The output of output layers are computed in same manner 

as hidden layer,[10]. The identification of two-phase flow parameters in microchannels 

using ANN algorithm and consider the G, P, xe, DTsup ,   
  as input parameters while 

heat transfer coefficient (h), pressure drop (DP) are considered as outputs.  

The comparison of different algorithm is based on the statistical parameter squared 

correlation coefficient (R). The normalization of values is a conclusive step in the 

ANNs. The input values to the ANN may differ by several orders of magnitude, which 

may not reflect the relative importance of the input data which normalize the maximum 

and minimum values of each row within the range of (-1,1). The procedure to predict 

the output parameters using ANN modeling is summarized as follows:- 

a) Determine training patterns from data sets. 

b) Define neural network architecture. 

c) Determine network parameters. 

d) Run feed-forward back propagation program. 

e) Comparison and analysis. 

The selected ANNs have two hidden layers with 10 neurons and an output layer with 

2 neurons. The hidden layer has a TANSIG transfer function. The output layer has a 

PURELIN transfer function. Each neuron sums the product of each connection weight 

(wjk) from a neuron (j) to the neuron (k) and input (xj ), and the additional weight called 

the bias to get the value of sum for the neuron. The i
th

 neuron has a summer that gathers 

its weighted input (wij,xj) and the bias bi to form its net input Pi 

 

                                            ∑         
   
                                                           (1) 

 

where wij denotes the strength of connection from the j
th

 input to the i
th

 neuron and 

(n) being the number of input vectors, xj is the input vector; bi is the i
th

 neuron bias. An 

activation function F(Pi), the sigmoid function, is used to calculate the neuron output 

given the set of neuron inputs. To find suitable ws and biases for each neuron, a process 
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training is essential; it is the first step to build an ANN. Training means that the weights 

are corrected to produce prespecified (“correct”, known from experiments) target 

values, and the training requires sets of pairs (XS, YS) for input: the actual input into the 

network is a vector (XS), and the corresponding target is labeled (YS) after successful 

training. When correct values of YS for each vector of XS from the training set are 

obtained, it is hoped that the network will give correct predictions of Y for any new 

object of X according to the ANN model fundamentals and with the use of more data 

for training the network, better result would be obtained.  

The most utilized training method for multilayered neural network is called back 

propagation, where Levenberg-Marquardt (LM) is applied which is considered the most 

efficient algorithm in terms of speed and memory usage. The number of observed data 

used in the ANN is 243 which are divided into three sections: the training set (240 data), 

test set (33 data) and validation set (30 data). Training, test and validation subsets of the 

ANN are obtained as selecting 74% of the dataset as training, 12.4% of the dataset as 

test and 13.6% of the dataset as validation subsets. The differences between observed 

and predicted values are filtered back through the system and is used to adjust the 

connections between the layers, thus performance improves.  

Statistical quality of the ANN for the training, test and validation sets is evaluated 

using the squared correlation coefficient R: 

 

                                                         
∑       

    
   

∑        
  

   

                                                               (2) 

 

                                                   
 

 
∑ (     

 ) 
                                                                 (3) 

 

where    represents either the i
th

 trained, test or validation output value and   
  is the 

corresponding target value. [12] ,[13]. 

 
5. MATLAB Algorithm 
 

The algorithm to predict the experimental data using ANN algorithm by using  

MATLAB software version R2014a, is summarized as follows:- 

a. Experimental data file in EXCEL format and read these data into MATLAB must be 

prepared also MATLAB M.file to target, train and test the data.  

b. In the MATLAB command window, type (nntool) and import inputs and targets data 

file into the neural network data manager. 

c. Set input data, target data. 

d. Train the network. On the train tab of the network, network dialog, select inputs and 

targets: and then press the train network button to start the network training. 

e. Obtain the result of the trained data. 

f. Hit the export button and test unseen data. 

g. It is interesting to note that the performances of the neural networks decrease when 

overtraining occurs. 

 h. Input and target data. 
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     The 243 experimental data are considered for modeling, data are trained by feed 

forward back propagation neural network. The targets, heat transfer coefficient and 

pressure drop are the predicted flow parameters of testing input data (input pressure, 

mass flux, exit vapour quality, heat flux, DTsup).[10]. 

 
6. Results and Duscussion 

 

The predictive ability of  ANN can give a satisfying output to flow parameters 

included in the examples of the ANN learned. To determine that predictive ability, cross 

validation has been used. In this procedure one compound is removed from the data set, 

the network is trained with the remaining compounds and used to predict the discarded 

compound. The process is repeated in turn for each compound in the data set. After 

cross-validation, the predictive ability of different networks was assessed by the cross-

validated (R).  

The neural network performance is a function of the number of hidden neurons. The 

relationship between measured and predicted descriptors is expressed by a linear 

combination. The learning performance of the ANN increases with the number of 

iterations, but its predictive ability slowly decreases above 1000 iterations. This is 

known as the overtraining effect, due to a too long learning time. Indeed, the weights 

obtained after the overtraining contain more information specific to the training set. 

Therefore, prediction on the test set will not really be satisfying. Thus, when a very low 

error in the training set is sought, the predictive ability of an ANN is less successful- 

The ability to predict being an essential quality of an ANN, the overtraining effect must 

be avoided. The full results of cross validation for 1000 iterations and with the ANN 

architecture. 

 
6.1. Heat transfer Results. 
 

"Fig. 4",depicts the prediction of heat transfer coefficient with exit vapour quality 

and with heat flux at working pressures Ps(8.5, 10, 12.5)bar. The predicted data at 

selected new mass fluxes G(75, 125, 175, 225, 275) kg/m
2
.s are compared with the 

experimental data at mass fluxes G(50,100,150,200,250,300) kg/m
2
.s the curves trend 

show that the heat transfer coefficient increases as the vapour quality increases "Fig. 

4.a,c,e ",  and there is a clear mass flux effect this is because of convective heat transfer 

domination,[14]. The heat transfer coefficients increase as wall heat flux increase these 

are illustrated in "Fig. 4.b,d,f ". 

 
6.2. Pressure drop predictive results. 

 

The pressure drop DP increases as the exit vapour quality increases and also as the 

mass flux increases, these results are illustrated in "Fig. 5.a,c,e", at Ps(8.5,10,12.5)bar, 

with selected mass fluxes G(75,125,175,225,275) kg/m
2
.s. At the same conditions of 

system pressure and mass flux, ∆P increases as   
  increases, these results are depicted 

in "Fig. 5.b,d,f ". The curves trend agree with the results of experimental data. 
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Figure 4. ANN predicted and experimental heat transfer coefficient. 
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Figure 5. ANN predicted and experimental pressure drop data. 
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7. Conclusions  
 

Flow boiling experiments in a coper multi- microchannels heat sink using R134a 

were performed for a mass flux range 50-300 kg/m
2
.s, heat flux range (5-120) kW/m

2 

and system pressure range 8.5-12.5 bar. The main concluding points can be summarized 

as follows:- 

1- The heat transfer results demonstrated that the heat transfer coefficient depends 

strongly on heat flux while it is a weak function of mass flux. However, plotting the 

heat transfer coefficient versus vapour quality indicated dependence on vapour quality 

and mass flux. Based on that it would be difficult to infer the dominant mechanism 

using the conventional criteria. 

2- The higher inlet pressure resulted in a higher heat transfer coefficient, when the heat 

transfer coefficient is plotted as a function of heat flux. 

3. The two phase pressure drop increases with increasing heat flux, exit vapour quality 

at a constant mass flux the pressure drop decreased as the system pressure increased. 

4. The possibility of using ANN based techniques to identify two-phase flow boiling 

parameters in multi parallel microchannels. The computing ability with ANN are very 

flexible and powerful. They are also very well suited for real time systems.  

      
8. Nomenclatures 
 

  DTsup                   Super temperature difference (Tw-Ts) (
o
C)  

  DP                       Pressure drop  (bar) 

  G                         Mass flux  (kg/m
2
.s) 

   h                         Coefficient of heat transfer (W/m
2
.K) 

   LOGSIG            Hyperbolic tangent sigmoid 

   MLP                   Multi Layer Preceptron  

   Ps                        System pressure (N/m
2
). 

   PURELIN           Linear transfer function     

     
                        Wall heat flux (kW/m

2
)  

   R                         Squared correlation coefficient 

   Ts                         Saturated temperature (
o
C)    

   Tw                       Wall temperature (
o
C) 

    xe                         Exit vapour quality (-) 

 

Abbreviations 

  ANN                   Artificial Neural Network 

Supscriptions 

    s                             System 

   w                            Wall 

 
9. References 

 

1.  S. Ou and L.E.K. Achenie.(2005). "Artificial Neural Network Modeling of PEM fuel   



Journal of Engineering and Sustainable Development Vol. 21, No. 5, september 2017                                       www.jeasd.org (ISSN 2520-0917) 

                                                 

 

 

127 
 

     cells" Journal of Fuel Cell Science and Technology, 2(4), 226-233. 

2.  W. Qu, I. Mudawar. (2003). " Flow boiling heat transfer in two phase micro-channel  

     heat sink- I. Experimental investigation and assessment of correlation method , Int. J.   

     Heat and Mass Transfer 46, 2755-2771. 

3.  Jaeseon Lee and Issam Mudawar. (2005) " Two-phase flow in high-heat- flux micro- 

     channel heat sink for refrigeration cooling applications:Part II—heat transfer  

     characteristics" International  Journal of Heat and Mass Transfer 48 (2005) 941– 

     955. 

4. Yu-Tang Chen, Shung-Wen Kang, Wen-Chian Tuh and Tsung-Hsin Hsiao. (2004).      

"Experimental Investigation of Fluid Flow and Heat Transfer in Microchannels".   

     Tamkang Journal of Science and Engineering, Vol. 7, No. 1, pp. 11−16 (2004). 

5.  Mark E. Steinke, Satish G. Kandlikar. (2004). "An Experimental Investigation of  

     Flow Boiling Characteristics of Water in Parallel Microchannels " Transactions of  

     the ASME. Vol. 126, AUGUST. 

6.  Bruno. Agostini, J.R. Thome, M. Fabbri, B. Michel, D. Calm, U. Kloter. (2008). "  

     High heat flux flow boiling in silicon multi-microchannels- Part I:Heat transfer  

     characteristics of refrigerant R236fa". Int. J. Heat and Mass Transfer 51, 5400-5414.  

7.  W. Zhang, T. Hibiki , K. Mishima . (2010). " Correlations of two-phase pressure drop  

     and void fraction in min-channel". International Journal Heat Mass Transfer, 53: 453- 

     465. 

8.  Marco Antonio Silva Picanço, Enio Pedone Bandarra Filho and Júlio Cesar Passos.  

     (2006). " Heat Transfer Coefficient Correlation For Convective Boiling Inside Plain   

     and Microfin Tubes Using Genetic Algorithms". Proceedings of the 11 th Brazilian   

     Congress of Thermal Sciences and Engineering – ENCIT,Braz. Soc. of Mechanical   

     Sciences and Engineering – ABCM, Curitiba, Brazil, Dec. 5-8. 

9.  Hossein Shokouhmand, Mohammad Ghazvini and Jaber Shabanian. (2008).   

    "Analysis of Microchannel Heat Sink Performance Using Nanofluids in Turbulent  

     and Laminar Flow Regimes and its simulation using Artificial Neural Network" .   

     Tenth International Conference on Computer Modeling and Simulation. 

10. Hemant B. Mehta, Manish P. Pujara, Jyotirmay Banerjee. (2013). "Prediction of  

     Two Phase Flow Pattern using Artificial Neural Network"International Conference  

     on Chemical and Environmental Engineering (ICCEE'2013) April 15-16,  

     Johannesburg (South Africa). 

11. Rumelhart, D. E., Hinton, G. E. & Williams, R. J.in Parallel Distributed  

      Processing. (1986). " Explorations in the Microstructure of Cognition ". Vol. 1:   

      Foundations (eds Rumelhart, D. E. & McClelland, J. L.) 318−362 (MIT,  

      Cambridge). 

12. Xu-Lin Wen, Hui-Tao Wang, Hua Wang. (2012). " Prediction model of flow boiling  

      heat transfer for R407C inside horizontal smooth tubes based on RBF neural   

      network".ELSIVER Procedia Engineering 31, 233 – 239. 

13. Brahim Mohamed, Salah Hanini, Abdelrahmane Ararem, and Nacim Mellel. (2015).  

     "Simulation of nucleate boiling under ANSYS-FLUENT code by using RPI model  

      coupling with artificial neural networks, “NUCLEAR SCIENCE AND  



Journal of Engineering and Sustainable Development Vol. 21, No. 5, september 2017                                       www.jeasd.org (ISSN 2520-0917) 

                                                 

 

 

128 
 

      TECHNIQUES 26, 040601. 

14. Shizuo Saitoh , Hirofumi Daiguji , Eiji Hihara.(2005). " Effect of tube diameter on  

      boiling heat transfer of R134a in horizontal small-diameter tubes". International   

      Journal of Heat and Mass Transfer, Vol. 48, pp. 4973-4984.  


