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Abstract: A new mathematical finite element model suitable for the general bending analysis of double 

curved shell structures depending on the strain based approach has been derived. The element is simple 

and contains only the essential degrees of freedom. The element has the advantage over the other 

available double curved shell elements. The improvement obtained is due to the fact that all the 

displacement fields of the present element satisfy the exact representation of rigid body modes of 

displacements then the shape function error due to rigid body modes becomes zero. Also, the present 

element satisfies the full geometry of the double curved shell due to this point discretization error 

becomes zero. Finally, the error due to strain mode becomes very small because the present element 

satisfies the compatibility equations of strains and the 19 coefficients of strain mode derived exactly from 

partial differential equations of strains. The numerical solution of several problems by using the present 

element proved to be powerful in the structural analysis of double curved shells, such as cylindrical 

shells. Its results are better than the solution of other elements and packages with respect to analytical 

solution. 
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نمورج رياضي لعنصر محذد ثنائي التقوس للتحليل العام للمنشاءات القشرية اعتمادا على مبذأ 

 الانفعال
 

ذى أشرمماق ػُصش لششٌ ثُائٍ الاَحُاء يحذد َؼرًذ ػهً طشَمح الأَفؼال حُث َظى دسجاخ انطلالح انشئُسُح. انؼُصش َحمك   الخلاصة:

(، كًا َحمك كايم انخىاص نهشكم انهُذسٍ نهؼُصش exact rigid body modeيىاصفـاخ انحـشكح نهجسى انصهة تشكم ذاو )

(، إضافح إنً رنك فأٌ انؼُصش َحمك ششوط انرىافك نًؼادلاخ الأَفؼال full geometry of double curved shellانمششٌ)

(compatibility equation of strainَؼرثش هز .) ٍا انؼُصش يلائى نرحهُم الأَحُائٍ انؼاو نهًُشاءاخ انمششَح انًخرهفح وهى أفضم ي

انؼُاصش انساتمح نرحهُم انًُشاءاخ اَِفح انزكش حُث أٌ الأخطاء انرٍ ذظهش فٍ انؼُاصش انًحذدج انساتمح يثم أخطاء انرمسُى 

(discritization error( أخطاء انذوال انشكهُح ،)shape function error ذخرفٍ فٍ هزا انؼُصش َرُجح نهًىاصفاخ انرٍ َرًرغ تها. ذى )

َىاذج أسرخذاو انؼُصش انحانٍ فٍ ذحهُم ػذج يسائم نهمشىس الأسطىاَُح. إٌ انُىاذج انؼذدَح نهرحهُم تأسرخذاو انؼُصش انحانٍ ذى يماسَرها يغ 

ث أضهش انؼُصش انجذَذ َرائج جُذج جذاً وَحمك ألرشاب سشَغ يٍ أخشي نرحهُلاخ سَاظُح، ونرحهُلاخ ػذدَح نُرائج انثاحثٍُ آلاخشٍَ، حُ

ٍُ. َرائج انرحهُم انشَاضٍ وانؼذدٌ نهثاحثٍُ انساتمٍُ وتؼذد لهُم يٍ انؼُاصش يماسَحً يغ ػذد انؼُاصش انًسرخذيح يٍ لثم انثاحثٍُ انساتم

ٌ نؼذد يٍ انًساءل تأسرخذاو انؼُصش انحانٍ ذثٍُ وذثشهٍ % . انرحهُم انؼذد1.0إٌ َسثح انخطاء فٍ انحم لأغهة انًساءل كاَد ألم يٍ 

 أٌ انؼُصش انحهٍ يًراص وكفؤ فٍ ذحهُم ػذج أَىاع يٍ انًُشاءاخ تشكم أفضم يٍ انؼُاصش انًحذدج نثاحثٍُ آخشٍَ.
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1. Introduction 
 

 An alternative approach for the analysis of shells by the finite element method was 

to develop curved elements that would be able to represent a particular shell surface 

geometrically. Jones and Storm ]1[ and Strickland et al ]2[ have modified the method 

for a shell of revolution. They used curved meridional elements rather than conical 

segments. The limited number of comparison studies carried out indicates that curved 

elements lead to considerably better results for the stresses. In fact, Navaratna ]3[ found 

that the stress discontinuity, arising when using different size elements in the same 

mesh, essentially disappeared when curved rather than conical segments were used. 

  
2. Literature review 
       

In order to obtain more accurate solutions for shells, a stiffness matrix for a curved 

element, which provides the coupling between the bending and the membrane actions, 

is needed.  This coupling is usually done by, including the curvature terms in the strain-

displacement relationships. A number of curved rectangular elements have been 

developed using different displacement functions to express the in plane and out of 

plane displacements within the elements. he simplest of these was that of Conner and 

Brebbia ]4[. This element is based on shallow shell theory. The in plane displacements 

(u) and (v) were expressed by the usual bilinear displacement functions in terms of the 

coordinate variables (X) and (Y): 

 

    
xyayaxaau 4321 

                                           (1) 

    
xyayaxaav 8765 

            
 

and the out of plane displacement (w) by the well-known non-conforming (12 terms) 

plate bending displacement function of Zienkiewicz and Cheung ]5[: 
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The element possesses three principal curvatures (two direct and one twisting). Five 

degrees of freedom were considered at each node, namely, u, v, w, x

w





  and x

w





. This 

leads to a (20X20) element stiffness matrix. 

      Conner and Brebbia tested this element to analyze a clamped hyperbolic paraboloid 

shell and obtained satisfactory results using a 12X12 mesh of elements. However, they 

reported that the coupling due to the curvature in the out of plane strain equations was 

neglected and that the expressions for (u) and (v) did not contain all the rigid body 

modes of displacements. Bogner et al ]6[ expressed the out of plane displacement (w) in 

terms of a 16-terms cubic polynomial, in which the additional terms to (w) were: 

 

(2) 
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and the in plane displacements (u) and (v) as above, and obtained a (24X24) element 

stiffness matrix for a cylindrical shell. The additional nodal degree of freedom was yx

w





. They then proceeded to develop a (48X48) stiffness matrix in which (u), (v), and (w) 

were all expressed by the same 16-terms polynomial used for (w) as above. In this 

element, the additional degrees of freedom   were yx

v
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. This 

latter element showed superior convergence characteristics over the other available 

elements apparently due to the use of higher order in plane displacement functions. It 

was also claimed that all the rigid body modes of displacements (essential for a shell 

element) were implicitly included. This, however, can only be true in the limit where 

the elements are very small since the exact rigid body displacements of a shell element 

cannot be expressed in terms of polynomial functions. Cantin and Clough ]7[ pointed 

out that none of the previously considered polynomial forms for (u), (v), and (w) 

allowed all six rigid body displacements of the shell element. They removed this 

restriction by including terms containing trigonometric functions. A more convenient 

set of nodal degrees of freedom than those for previously mentioned elements was used; 

u, v, w. The example shown for a cylindrical shell segment under gravity loads and a 

pinched cylindrical shell indicate that the inclusion of rigid body displacement terms 

permits the attainment of better results with relatively coarse mesh.  

      A number of triangular elements were also developed. Bonnes et al ]8[ used 

complete cubic polynomials for the displacements u, v, w. Nine degrees of freedom 

were specified at each corner and three at the mid side nodes thus making a (36X36) 

element stiffness matrix. This high order element, however, was shown by Sabir and 

Lock ]9[ to be unsatisfactory when tested in the analysis of hyperbolic paraboloid shell 

problems. The work on the development of high order elements was continued and one 

of the most successful elements was developed, by Cowper, et al. ]10[. It is a 

conforming shallow shell element of arbitrary triangular shape. They pointed out that 

using shallow shell approximation leads to significant simplification that all necessary 

mathematical manipulations may be carried out in the base reference plane and it is 

sufficient to assume constant curvature over the element. The displacement function for 

the out of plane displacement (w) of the shell was taken as a quintic polynomial (21 

terms) in the two cartesian coordinates in the base plane.  

Three constraints are placed on the polynomial to ensure that normal derivative vary 

cubically along edges. The generalized coordinates (degrees of freedom) were, at each 

vertex: w and its first and second derivatives. The in plane displacements u and v were 

each expressed as cubic polynomial (10 terms) and the generalized coordinates were 

taken to be u, v and there are first derivatives at each vertex plus u, v at the centroid. 

However, these two centroidal displacements were condensed out of the final stiffness 

matrix, hence, the final element has 36 degrees of freedom and is completely 
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conforming to smooth shells. They tested this element on three shell problems, which 

show its superiority over previous developments. 

      Dawe ]11[ employed the same approach and used an even higher order element. His 

element is a curved triangular one and has a total of 54 degrees of freedom, in which, 

each of the three displacements u, v, w was independently represented by a quintic 

polynomial.  

      Yang ]12[ developed a shell element having rectangular projections on a plane with 

three constant radii of curvature (two direct and one twisting). The displacement 

parameters were approximated with one-dimensional, first-order, Hermite interpolation 

formulae. The element stiffness matrix was generated with the help of minimum 

potential energy.  Eigenvalue analysis was performed on the element stiffness matrix 

yielded six nearly zero values corresponding to six independent rigid body modes. 

Three numerical examples including a cylindrical shell, a translational shell with two 

constant radii of curvature and clamped hyperbolic paraboloid shell were solved. The 

degree of accuracy for deflection profile at centerline remained within 1% with only 

5X5 mesh size against the 12X12 mesh of Conner and Brebbia ]4[. 

      Bhimaraddi, et al. ]13[ used a modified isoparametric quadrilateral element with a 

64 degree of freedom for the analysis of shells of revolution. The element is suitable for 

the analysis of shells of revolution subjected to any general class of loading 

(axisymmetric or asymmetric). This element was used in the analysis of a pinched-

cylindrical shell, conical and hyperboloidal shells subjected to uniformly distributed 

edge loads, free vibrations of fixed-free circular cylindrical shell and laminated shells of 

revolution. The numerical results showed good convergence.  

      Most of the successful curved finite elements available to analyze shell problems are 

high order elements. However, there are some shortcomings about these elements. The 

high order elements not only lead to a considerable increase in the total number of 

unknowns to be solved but also lead to a much wider band width of the overall 

structural matrix. And, since the solution time is proportional to the number of 

arithmetical operations ]8[, then the computing effort or the execution time for high 

order elements becomes excessive and expensive. Also, the additional internal degrees 

of freedom are not associated with physical corresponding generalized forces and a 

problem arises whether these degrees of freedom need to be made continuous at the 

node. 

      Meanwhile, Sabir et al ]14-21[ has used a different approach for the development of 

curved elements. The method is based on the development of displacement functions, 

which satisfy the exact representation of strain-free rigid body modes of movements and 

on assumed independent strain, rather than displacement functions insofar as it is 

allowed by the elasticity compatibility equations. The resulting various components of 

the displacements are not independent, as in the usual displacement approach, but are 

linked. This linking is present in the exact terms representing rigid body modes and the 

approximate terms, within the context of the finite element method, representing the 

straining of the element. Another feature of the strain based approach is that the method 

allows the in plane components of the displacements to be represented by higher order 

terms than the out of plane components without increasing the number of degrees of 
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freedom beyond the essential external degrees of freedom. This is of particular interest 

since the improvement obtained by the high order element is mainly due to the 

representation of the in plane displacements by higher order polynomial terms.  

      Strain-based elements for arches deforming in the plane containing the curvature 

]14[ and out of plane of curvature ]14[ as well as for cylindrical shell ]16[ were first 

developed. These elements, while possessing only geometric external degrees of 

freedom, were found to yield more accurate results and the solutions were obtained 

more rapidly than those for other more complex elements. This approach was further 

extended to develop a general quadrilateral cylindrical element ]16[ and was used ]17[ 

to investigate the problem of stress concentrations in cylinders having circular and 

elliptical holes, and also to obtain a solution to the problem of normally intersecting 

cylinder ]17[.  

      Moreover, Sabir and Ramadhani ]18[ developed an even simpler curved element for 

general shell analysis. The element is rectangular in plane and has only the essential five 

external nodal degrees of freedom at each of the four corner nodes, namely, the three 

displacements u, v, w and the two first partial derivatives of w with respect to the two 

cartesian axes. The simplicity of the element is due to the use of shallow, instead of 

deep, formulations. The element was tested by applying it to the analysis of cylindrical 

]18[, as well as, spherical ]19[ shells and the results show a high degree of accuracy and 

can converge to the correct solution with relatively coarse meshes.  

      A curved strain based conical shell finite element suitable for the general bending 

analysis of conical shells has been developed by El-Erris]22[. The element is simple and 

contains only the essential degrees of freedom. The test problems carried out show that 

results of acceptable degree of accuracy can be obtained when few elements are used. 

      Mehdi, H. A.]23[, developed an element suitable for the general bending analysis of 

conical shells depend on based strain approach. The element’s displacement functions 

are developed in such a way that the six rigid body modes of displacements are exactly 

represented and the straining of the element is exactly represented by suitable 

polynomial expressions due to exact derivation from strain equations after satisfying the 

compatibility of assumed strain polynomial before the derivation. The element is simple 

and it possesses all the requirements for less computational work. The element is shown 

to provide satisfactory solutions for a range of conical shell bending problems. 

 
3. Derivation of Double Curved Shell Element Based on Simple Independent 

Strain Functions 
 

3.1. Theoretical Consideration 
  

      The thin shell theory, used to analyze the thin shell structures, provides a direct 

relationship between stresses and strains by which the equilibrium of the stress 

resultants and stress couples are related to the strains of compatibility equations, 

Flugee(24). For the general problem in three dimensions, there are six equilibrium 

conditions as shown in Figure (1), Finally, the strain equations of double curved shell 

element are as follows Flugge]24[:  
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      where: x , y  and xy
 are the middle surface in-plane meridional, circumferential 

and shear strain, respectively. x , y and xy
 are the middle surface changes in the 

curvature of (x) and (y), and the twisting curvature, respectively. If Z = f(x, y) is the 

equation of the middle surface, then 

 

                                                       































yx

z

R

y

z

R

x

z

R

xy

y

x

2

2

2

2

2

1

1

1

                                            (6) 

 

      Where Rx, Ry, and Rxy are the principle surface radii of curvature in the direction of 

x and y and the twist radius of curvature, respectively, of the unstrained element. 

      The above six components of strains cannot be considered independent as they are 

in terms of the three displacements u, v, w and hence the strains must satisfy three 

additional equations called the compatibility equations. These equations are obtained by 

eliminating the three displacements from equations (4), and (5). The final results of 

compatibility equations are as follows: 
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3.2. Displacement Functions  
 

      It is assumed that the double curved shell element possesses only five external nodal 

degrees of freedom, namely, u, v, w, x  and y . Proceeding as with the usual strain-

based approach, the first major component of the displacement function is due to 

(strain-free) rigid body modes of displacement and can be obtained by equating all the 

components of strains, equations (4), and (5), to zero and integrating the resulting 

partial differential equations becomes: 
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      In these equations uR, vR, and wR are the rigid body components of the 

displacement fields u, v and w, respectively, and are expressed in terms of the six 

independent constants
 61 aa 

. The second major component of the displacement 

function is due to straining of the element. If the element is to have twenty-five degrees 

of freedom (five at each node) then the strains of the element must be associated with 

nineteen additional constants
 257 aa 

. Assuming strain polynomial functions of 

 257 aa 
 constants. 
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      Checking the above polynomials of strain for compatibility equations of double 

curved shell (7a, 7b, and 7c). Finally, the assumed strain functions of double curved 

shell element which satisfy the requirement of compatibility equations become: 
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      The above six equations 10a, b, c, d, e and f are integrated in the same procedure 

that was used to derive the rigid body modes of general double curved shell element, 

then the final polynomial function of strain mode becomes: 
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      The complete displacement field functions for the double curved shell element are, 

thus, the sum of the corresponding terms for u, v and w from equations (8) to (11) 

respectively. 

 

u = ur + us         

v = vr + vs                                                                                    (12) 

w = wr + ws 

x

w
and

y

w
yx









  .

 
 

 3.3. The Element Stiffness Matrix  
       

Figure (1) shows that the origin of the meridional coordinate of the element (x) is 

located at the center of the double curved shell. Consequently, the origin of the 

circumferential coordinate (y) is located at the center of the element. Since, the 

calculation of the stiffness matrix is carried out explicitly; this choice of the origin will 

simplify the task of integration, thus: 

 

                                      11 ][]][[][
2

1

2

1
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


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   AdxdyBDBAk

y

y

x

x

TTe
                              (13) 

 

where [A], [B] and [D] are the transformation, strain and rigidity matrices of the 

element, respectively. The (25X25) element stiffness matrix [ke], can now be calculated 

using the displacement functions (12) and the strain displacement relationships (10). On 

the other hand, to keep the storage memory small the stiffness matrix is condensates 

from (25x25) to (20x20) by removing the influence of the central point (node 5) to the 

four corner points (nodes 1, 2, 3, and 4) as follows: 

 

                                  
    1201202020 x

n
x

n
x

n PK 
                                        (14) 
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where: 
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3.4. Consistent Load Vector 
       

The external applied nodal loads considered in the present finite element analysis are 

calculated by using a consistent load vector. The consistent load vector is obtained by 

equating the work done by the nodal loads on the nodal displacements to the work done 

by the external applied load on the assumed displacement function of the element. The 

double curved shell element shown in figure (1) is considered. If the element is 

subjected to several loading types such as, distributed normal pressure (q), concentrated 

load (Pi), uniform distributed moment (M), and concentrated moment (Mi) the load 

vector becomes: 
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For the element stiffness matrix after condensation, the load vector is taken as follows: 
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Figure (1) Geometry and in-plane, and out-of-plane displacements and stresses of doubly curved shell 

(a) 
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(b) in plane displacement                                              (c) out of plan displacement 

 

     
(d) Inplane stress resultants                                               (e) Bending stress resultants 

 
Figure (1) Continued 

 
4. Clamped cylindrical shell under internal pressure  

      The present double curved shell element degenerates to a cylindrical shell element 

by putting the Ry very large (Ry = 1010), where (Lc) is equal to the cylindrical length. 

This problem represents a clamped-clamped cylindrical shell subjected to internal 

pressure as shown in Figure (2). As the problem is symmetric about its center line, only 

one half of the shell need be considered. Further in view of the axisymmetry in the 

problem, only a thin strip along the axis of the cylinder can be considered. In the present 

problem a strip generated with included angle of (θ=5o) is considered. One, two, three 

and four elements are used to idealize this thin strip. Solutions obtained for the 

maximum radial deflection for these idealizations are presented in Table (1) along with 

the analytical solution of Timoshenko and Woinowsky-Krieger]25[ and finite element 

solution of Raju et. al ]26[. This table demonstrates the rapid convergence and the 

accurate result obtained by the present element. The figure (3) shows the behavior of 

convergence of the present element and Raju’s element with Timoshenko and 
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Woinowsky-Krieger]25[. It’s appearing the present element is more accurate and has a 

rapid convergence than the Raju’s element with respect to the exact solution of 

Timoshenko and Woinowsky-Kri 

eger(25). 

                                          

 

Figure (2) A Clamped-Clamped cylindrical shells under internal pressure. 

 
Table (1) Maximum deflection of a clamped-clamped cylindrical shell under internal pressure x104. 

Raju conical element Present double curved shell element (Timoshenko and 

Woinowsky-

Krieger 1981) 

Mesh 

size 

D.O.F Maximum radial 

deflection  

Mesh 

size 

D.O.F Maximum radial 

deflection  

1x1 28 5.6312 mm 1x1 20 5.5422 mm 5.1486 mm 

1x2 42 5.1333 mm 1x2 30 5.2334 mm 

1x3 56 5.1613 mm 1x3 40 5.1495 mm 

1x4 70 5.1410 mm 1x4 50 mm 

 

 
Figure (3) Relation between maximum radial deflection and d.o.f. 
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5. Pinched Cylinder Problem  
 

A standard problem for testing non-axisymmetric cylindrical shell finite elements is 

the pinched cylinder shown in Figure (4). The most accurate solution to this problem 

appears to be that of Cantin and Clough]7[, who used a procedure which satisfies the 

conditions for convergence to the correct result as the mesh size is reduced. Bogner et 

al. ]6[ and Cantin and Clough]7[ did not continue the process of mesh refinement 

sufficiently, but were satisfied to obtain a value of displacement close to the in-

extensional value of (2.7890 mm).  

Timoshenko and Woinowsky-Kreiger]25[ result, which is known to be too low, but 

not that of Cantin and Clough]7[ did obtain one value of (2.7655 mm) by dividing an 

octant of the cylinder into three elements longitudinally and ]49[ circumferentially, with 

(1200) degrees of freedom. Also Ashwell and Sabir]27[, and Raju et al. ]1[ analyzed 

this problem for a thick cylindrical shell with thickness (2.388mm) by using a 

cylindrical and conical element respectively. Ashwell and Sabir]27[, and Sabir and 

Lock]9[ analyzed the same problem but as a thin cylindrical shell with thickness 

(0.4mm).  

This problem for both cases are analyzed by the present element, the comparison of 

the solution results of the present element and other elements are concluded in Table (2) 

for thick cylinder and Table (3) for thin one. Table (2) shows the results of five 

elements of thick pinch cylinder problem, the convergence of these elements are very 

good but the errors between results of these elements and exact solution of Timoshenko 

and Woinowsky-Krieger]25[ are different from element to other. Table (3) shows the 

results of four elements of the thin pinched cylinder problem, the convergence of two 

elements by Ashwell and Sabir]27[, and the present element are excellent but the other 

two elements, Cantin and Clough]7[, and Sabir and Lock]9[ show very poor 

convergence. The errors between results of these elements and exact solution of 

Flugee]24[ are different from element to other.  

 

 

Figure (4) the pinched cylinder problem with one octant. 
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Table (2) Deflection in (mm) under one load for thick pinched cylinder problem (t=2.3876mm) prob. 1. 

Mesh 

Size 

Bogner et al 

(48 d.o.f) 

Raju et al. 

(28 d.o.f) 

Cantin and 

Clough  

(24 d.o.f)) 

Ashwell and 

Sabir (20 d.o.f) 

Present 

Element (20 

d.o.f) 

1x1 -0.0635(48)* -0.0356(28)* -0.2964(24)* -2.6416(20)* -1.0431(20)* 

1x2 -2.0371(72)* -1.9469(42)* -0.5789(36)* -2.6824(30)* -1.8928(30)* 

1x3 -2.6060(96)* -2.5491(56)* -0.7544(48)* -2.7345(40)* -2.2764(40)* 

1x4 -2.7610(120)* -2.5392(70)* -2.7915(60)* -2.8092(50)* -2.4597(50)* 

2x2 -2.0523(108)* -1.9741(63)* -2.3647(54)* -2.8016(45)* -2.4889(45)* 

2x3 -2.6314(144)* -2.5715(84)* -2.5070(72)* -2.8219(60)* -2.5789(60)* 

2x4 -2.7890(180)* -2.7605(105)* -2.8270(90)* -2.8372(75)* -2.6241(75)* 

3x3 ----- -2.5865(112)* -2.6848(96)* -2.8447(80)* -2.6517(80)* 

4x4 ----- -2.7799(175)* -2.8600(150)* -2.8677(125)* -2.7546(125)* 

6x6 ----- -2.8410(343)* -2.8880(294)* -2.8829(245)* -2.7599(245)* 

8x8 ----- -2.8603(567)* -2.8931(486)* -2.8880(405)* -2.7654(405)* 

10x10 ----- -2.8664(847)* -2.8931(726)* -2.8880(605)* -2.7654(605)* 

Exact Solution of (Timoshenko and Woinowsky-Krieger 1981) = -2.7655 mm 

*Value between brackets is total degrees of freedom  

 
Table (3) Deflection in (mm) under one load for thin pinched cylinder problem (t=0.4mm) problem 2. 

Mesh 

Size 

Sabir and Lock 

(20 d.o.f) 

Cantin and Clough  

(24 d.o.f)) 

Ashwell and Sabir 

(20 d.o.f) 

Present Element 

(20 d.o.f) 

1x1 -0.0003 -0.0003 -0.5844 -0.5749 

1x4 -0.0160 -0.0188 -0.6104 -0.6017 

1x8 -0.1755 -0.1778 -0.6111 -0.6087 

2x1 -0.0003 -0.0003 -0.5842 -0.6107 

2x4 -0.0163 -0.0178 -0.6119 -0.6129 

2x8 -0.1762 -0.1775 -0.6132 -0.6148 

3x1 -0.0003 -0.0003 -0.5847 -0.6157 

3x4 -0.0165 -0.0173 -0.6132 -0.6171 

3x8 -0.1767 -0.1775 -0.6142 -0.6180 

8x8 -0.1795 -0.1800 -0.6175 -0.6191 

Exact Solution of (Flugge 1973) = -0.6195 mm 

 

6. Cylindrical Tank with Constant Thickness  
 

A cylindrical tank, Figure (5), with constant wall thickness is fixed at the base, and is 

completely filled with water of density 9.81kN/m3. The dimensions of the tank are as 

follows: height of tank (Lc=7.925m), radius of tank (R=9.144m), wall thickness 

(t=356mm), elastic modulus (E=205GPa) and Poisson’s ratio () The present 

element is used to analyze this problem by taking a longitudinal strip of unit width and 

mesh size (1x9) elements and total degrees of freedom equal to (100).  

Results obtained from this analysis, together with those given by Timoshenko and 

Woinowsky-Krieger(25), Thevendran]28[, and Francis et al.]29[ are summarized in 

Table (4 a, b, and c). The values given by Thevendran]28[ were obtained by using the 

Runge-Kutta method with 100 equal steps, whilst those given by Timoshenko and 

Woinowsky-Krieger]25[ were obtained by considering the simplifying assumption that 

the cylinder was treated as a long shell that is βLc>5 where    2224 /13 LcR  , and 

Francis]29[ results were obtained by using the finite element analysis based on an 
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analogy with theory of beams on elastic foundation developed for closed circular 

cylindrical shells. In the present element the results of different stress resultants (Ms), 

(Ns), and (Qs) are compared with the values of different approaches for analysis of 

cylindrical tanks and show excellent agreement with them. 

 

 

Figure (5) Cylindrical tank under hydrostatic loading. 

 

Table (4a) Results of comparison of meridional normal force (Ns) (kN/m) for different approaches. 

Ratio 

S/Lc 

Timoshenko and 

Woinowsky-Krieger 

Solution 

Thevendran 

Solution 

Francis Solution Present Element 

Solution 

1.0 000.0 000.0 000.0 000.0 

0.9 122.0 122.0 122.0 122.0 

0.8 302.6 302.6 303.6 302.6 

0.7 409.7 409.8 409.8 409.8 

0.6 428.0 428.2 428.7 428.2 

0.5 385.0 385.0 385.4 385.4 

0.4 312.1 312.8 312.7 312.8 

0.3 230.3 231.0 231.0 231.0 

0.2 149.5 149.5 149.3 149.4 

0.1 72.6 70.2 70.3 70.2 

0.0 -0.9 -8.0 -7.7 -7.8 
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Table (4b) Results of comparison of meridional bending moments (Ms) (kN.m/m) for different approaches. 

Ratio 

S/Lc 

Timoshenko and 

Woinowsky-Krieger 

Solution 

Thevendran 

Solution 

Francis Solution Present Element 

Solution 

1.0 62.2 62.2 62.5 62.2 

0.9 6.7 6.7 6.7 6.7 

0.8 -13.6 -13.6 -13.7 -13.6 

0.7 -15.1 -15.1 -15.1 -15.1 

0.6 -10.0 -10.0 -10.0 -10.0 

0.5 -4.7 -4.7 -4.7 -4.7 

0.4 -1.3 -1.3 -1.3 -1.3 

0.3 0.3 0.1 0.2 0.2 

0.2 0.7 0.4 0.4 0.4 

0.1 0.6 0.2 0.2 0.2 

0.0 0.3 0.0 0.0 0.0 

 
Table (4c) Results of comparison of meridional shearing force (Qs) (kN/m) for different approaches. 

Ratio 

S/Lc 

Timoshenko and 

Woinowsky-Krieger 

Solution 

Thevendran 

Solution 

Francis Solution Present Element 

Solution 

1.0 -98.8 -98.8 -98.5 -98.8 

0.9 -45.0 -44.2 -44.2 -44.2 

0.8 -11.3 -10.5 -10.5 -10.4 

0.7 3.7 4.1 4.1 4.1 

0.6 7.1 7.3 7.4 7.3 

0.5 5.6 5.6 5.6 5.6 

0.4 3.1 3.0 3.0 3.0 

0.3 1.1 0.9 1.0 1.0 

0.2 0.1 -0.1 -0.1 -0.1 

0.1 -0.3 -0.4 -0.4 -0.4 

0.0 -0.3 0.0 0.0 0.0 

 

Table (5) Shows the error between persent element and analytical solution of several problems. 

Problem type Error of present element 

Clamped cylindrical shell under internal pressure 0.03% 

Thick pinched Cylinder Problem 0.01% 

Cylindrical Tank with Constant Thickness 0.0% 

 
7. Conclusions 

 

A doubly curved shell finite element which is suitable for the general bending 

analysis of shells has been developed. The element is simple and contains only the 

essential degrees of freedom. The element has the advantage over the other available 

double curved element. The improvement obtained is due to the fact that all the 

displacement fields of the present element satisfy the exact representation of rigid body 

modes of displacements. Also, the displacement fields due to straining of the element 

are based on independent strains and satisfy the exact compatibility equations of strain 

modes. The present element is used to analyze several types of cylindrical shell 
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problems. The numerical results of the present element are compared with the 

analytical, numerical, and experimental results of other researchers. The results of the 

present element showed good and rapid convergence of displacements and stresses with 

the use of few elements. The errors of output results are about less than 1% of mesh size 

(6x6) and less than 0.03% of mesh size (8x8) for static analysis of cylindrical problems. 

 

Abbreviations  

[A] transform matrix 

E modulus of elasticity 

Rx, Ry, Rxy Principle radii of double curved shell 

u, v, w displacement field in X, Y, Z direction respectively 

ur, vr, wr rigid body mode displacement field in X, Y, Z direction respectively 

us, vs, ws strain mode displacement field in X, Y, Z direction respectively 

γ unit weight of water 

ѵ Poisson’s ratio 

x, y rotation about x, and y axes respectively 

εx, εy the inplaine direct strain in the direction x, and y respectively of shell 
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