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Abstract: A new mathematical finite element model suitable for the general bending analysis of double
curved shell structures depending on the strain based approach has been derived. The element is simple
and contains only the essential degrees of freedom. The element has the advantage over the other
available double curved shell elements. The improvement obtained is due to the fact that all the
displacement fields of the present element satisfy the exact representation of rigid body modes of
displacements then the shape function error due to rigid body modes becomes zero. Also, the present
element satisfies the full geometry of the double curved shell due to this point discretization error
becomes zero. Finally, the error due to strain mode becomes very small because the present element
satisfies the compatibility equations of strains and the 19 coefficients of strain mode derived exactly from
partial differential equations of strains. The numerical solution of several problems by using the present
element proved to be powerful in the structural analysis of double curved shells, such as cylindrical
shells. Its results are better than the solution of other elements and packages with respect to analytical
solution.
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1. Introduction

An alternative approach for the analysis of shells by the finite element method was
to develop curved elements that would be able to represent a particular shell surface
geometrically. Jones and Storm [1] and Strickland et al [2] have modified the method
for a shell of revolution. They used curved meridional elements rather than conical
segments. The limited number of comparison studies carried out indicates that curved
elements lead to considerably better results for the stresses. In fact, Navaratna [3] found
that the stress discontinuity, arising when using different size elements in the same
mesh, essentially disappeared when curved rather than conical segments were used.

2. Literature review

In order to obtain more accurate solutions for shells, a stiffness matrix for a curved
element, which provides the coupling between the bending and the membrane actions,
is needed. This coupling is usually done by, including the curvature terms in the strain-
displacement relationships. A number of curved rectangular elements have been
developed using different displacement functions to express the in plane and out of
plane displacements within the elements. he simplest of these was that of Conner and
Brebbia [4]. This element is based on shallow shell theory. The in plane displacements
(u) and (v) were expressed by the usual bilinear displacement functions in terms of the
coordinate variables (X) and (Y):

U=a, +a,X+agy +a,xy

V=285 +8X+a;y +agXy

)

and the out of plane displacement (w) by the well-known non-conforming (12 terms)
plate bending displacement function of Zienkiewicz and Cheung [5]:

W=y + a,gX + 8,y + 8, X + a,aXy + a, Y + asX° +a Xy

2 3 3 3
+ XY + gy + QXY + AypXY )

The element possesses three principal curvatures (two direct and one twisting). Five

ow ow
degrees of freedom were considered at each node, namely, u, v, w, 0X and x . This
leads to a (20X20) element stiffness matrix.

Conner and Brebbia tested this element to analyze a clamped hyperbolic paraboloid
shell and obtained satisfactory results using a 12X12 mesh of elements. However, they
reported that the coupling due to the curvature in the out of plane strain equations was
neglected and that the expressions for (u) and (v) did not contain all the rigid body
modes of displacements. Bogner et al [6] expressed the out of plane displacement (w) in
terms of a 16-terms cubic polynomial, in which the additional terms to (w) were:
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and the in plane displacements (u) and (v) as above, and obtained a (24X24) element

ow

stiffness matrix for a cylindrical shell. The additional nodal degree of freedom was %Y

. They then proceeded to develop a (48X48) stiffness matrix in which (u), (v), and (w)

were all expressed by the same 16-terms polynomial used for (w) as above. In this
ou du o°u ov ov and o%v

element, the additional degrees of freedom were OX 0y xdy ox oy’ OXY | This
latter element showed superior convergence characteristics over the other available
elements apparently due to the use of higher order in plane displacement functions. It
was also claimed that all the rigid body modes of displacements (essential for a shell
element) were implicitly included. This, however, can only be true in the limit where
the elements are very small since the exact rigid body displacements of a shell element
cannot be expressed in terms of polynomial functions. Cantin and Clough [7] pointed
out that none of the previously considered polynomial forms for (u), (v), and (w)
allowed all six rigid body displacements of the shell element. They removed this
restriction by including terms containing trigonometric functions. A more convenient
set of nodal degrees of freedom than those for previously mentioned elements was used;
u, v, w. The example shown for a cylindrical shell segment under gravity loads and a
pinched cylindrical shell indicate that the inclusion of rigid body displacement terms
permits the attainment of better results with relatively coarse mesh.

A number of triangular elements were also developed. Bonnes et al [8] used
complete cubic polynomials for the displacements u, v, w. Nine degrees of freedom
were specified at each corner and three at the mid side nodes thus making a (36X36)
element stiffness matrix. This high order element, however, was shown by Sabir and
Lock [9] to be unsatisfactory when tested in the analysis of hyperbolic paraboloid shell
problems. The work on the development of high order elements was continued and one
of the most successful elements was developed, by Cowper, et al. [10]. It is a
conforming shallow shell element of arbitrary triangular shape. They pointed out that
using shallow shell approximation leads to significant simplification that all necessary
mathematical manipulations may be carried out in the base reference plane and it is
sufficient to assume constant curvature over the element. The displacement function for
the out of plane displacement (w) of the shell was taken as a quintic polynomial (21
terms) in the two cartesian coordinates in the base plane.

Three constraints are placed on the polynomial to ensure that normal derivative vary
cubically along edges. The generalized coordinates (degrees of freedom) were, at each
vertex: w and its first and second derivatives. The in plane displacements u and v were
each expressed as cubic polynomial (10 terms) and the generalized coordinates were
taken to be u, v and there are first derivatives at each vertex plus u, v at the centroid.
However, these two centroidal displacements were condensed out of the final stiffness
matrix, hence, the final element has 36 degrees of freedom and is completely
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conforming to smooth shells. They tested this element on three shell problems, which
show its superiority over previous developments.

Dawe [11] employed the same approach and used an even higher order element. His
element is a curved triangular one and has a total of 54 degrees of freedom, in which,
each of the three displacements u, v, w was independently represented by a quintic
polynomial.

Yang [12] developed a shell element having rectangular projections on a plane with
three constant radii of curvature (two direct and one twisting). The displacement
parameters were approximated with one-dimensional, first-order, Hermite interpolation
formulae. The element stiffness matrix was generated with the help of minimum
potential energy. Eigenvalue analysis was performed on the element stiffness matrix
yielded six nearly zero values corresponding to six independent rigid body modes.
Three numerical examples including a cylindrical shell, a translational shell with two
constant radii of curvature and clamped hyperbolic paraboloid shell were solved. The
degree of accuracy for deflection profile at centerline remained within 1% with only
5X5 mesh size against the 12X12 mesh of Conner and Brebbia [4].

Bhimaraddi, et al. [13] used a modified isoparametric quadrilateral element with a
64 degree of freedom for the analysis of shells of revolution. The element is suitable for
the analysis of shells of revolution subjected to any general class of loading
(axisymmetric or asymmetric). This element was used in the analysis of a pinched-
cylindrical shell, conical and hyperboloidal shells subjected to uniformly distributed
edge loads, free vibrations of fixed-free circular cylindrical shell and laminated shells of
revolution. The numerical results showed good convergence.

Most of the successful curved finite elements available to analyze shell problems are
high order elements. However, there are some shortcomings about these elements. The
high order elements not only lead to a considerable increase in the total number of
unknowns to be solved but also lead to a much wider band width of the overall
structural matrix. And, since the solution time is proportional to the number of
arithmetical operations [8], then the computing effort or the execution time for high
order elements becomes excessive and expensive. Also, the additional internal degrees
of freedom are not associated with physical corresponding generalized forces and a
problem arises whether these degrees of freedom need to be made continuous at the
node.

Meanwhile, Sabir et al [14-21] has used a different approach for the development of
curved elements. The method is based on the development of displacement functions,
which satisfy the exact representation of strain-free rigid body modes of movements and
on assumed independent strain, rather than displacement functions insofar as it is
allowed by the elasticity compatibility equations. The resulting various components of
the displacements are not independent, as in the usual displacement approach, but are
linked. This linking is present in the exact terms representing rigid body modes and the
approximate terms, within the context of the finite element method, representing the
straining of the element. Another feature of the strain based approach is that the method
allows the in plane components of the displacements to be represented by higher order
terms than the out of plane components without increasing the number of degrees of
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freedom beyond the essential external degrees of freedom. This is of particular interest
since the improvement obtained by the high order element is mainly due to the
representation of the in plane displacements by higher order polynomial terms.

Strain-based elements for arches deforming in the plane containing the curvature
[14] and out of plane of curvature [14] as well as for cylindrical shell [16] were first
developed. These elements, while possessing only geometric external degrees of
freedom, were found to yield more accurate results and the solutions were obtained
more rapidly than those for other more complex elements. This approach was further
extended to develop a general quadrilateral cylindrical element [16] and was used [17]
to investigate the problem of stress concentrations in cylinders having circular and
elliptical holes, and also to obtain a solution to the problem of normally intersecting
cylinder [17].

Moreover, Sabir and Ramadhani [18] developed an even simpler curved element for
general shell analysis. The element is rectangular in plane and has only the essential five
external nodal degrees of freedom at each of the four corner nodes, namely, the three
displacements u, v, w and the two first partial derivatives of w with respect to the two
cartesian axes. The simplicity of the element is due to the use of shallow, instead of
deep, formulations. The element was tested by applying it to the analysis of cylindrical
[18], as well as, spherical [19] shells and the results show a high degree of accuracy and
can converge to the correct solution with relatively coarse meshes.

A curved strain based conical shell finite element suitable for the general bending
analysis of conical shells has been developed by EI-Erris[22]. The element is simple and
contains only the essential degrees of freedom. The test problems carried out show that
results of acceptable degree of accuracy can be obtained when few elements are used.

Mehdi, H. A.[23], developed an element suitable for the general bending analysis of
conical shells depend on based strain approach. The element’s displacement functions
are developed in such a way that the six rigid body modes of displacements are exactly
represented and the straining of the element is exactly represented by suitable
polynomial expressions due to exact derivation from strain equations after satisfying the
compatibility of assumed strain polynomial before the derivation. The element is simple
and it possesses all the requirements for less computational work. The element is shown
to provide satisfactory solutions for a range of conical shell bending problems.

3. Derivation of Double Curved Shell Element Based on Simple Independent
Strain Functions

3.1. Theoretical Consideration

The thin shell theory, used to analyze the thin shell structures, provides a direct
relationship between stresses and strains by which the equilibrium of the stress
resultants and stress couples are related to the strains of compatibility equations,
Flugee(24). For the general problem in three dimensions, there are six equilibrium
conditions as shown in Figure (1), Finally, the strain equations of double curved shell
element are as follows Flugge[24]:
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where: ¢

E . . .- . .
«, ¥ and 7 are the middle surface in-plane meridional, circumferential

and shear strain, respectively. 4, Zyvand v are the middle surface changes in the
curvature of (x) and (y), and the twisting curvature, respectively. If Z = f(x, y) is the
equation of the middle surface, then

1 9%z
R,  oOx2
1 9%z
R, &7
1 9%z
Ryy __axay

(6)

Where Ry, Ry, and Ryy are the principle surface radii of curvature in the direction of
x and y and the twist radius of curvature, respectively, of the unstrained element.

The above six components of strains cannot be considered independent as they are
in terms of the three displacements u, v, w and hence the strains must satisfy three
additional equations called the compatibility equations. These equations are obtained by
eliminating the three displacements from equations (4), and (5). The final results of
compatibility equations are as follows:

825X 528y 827/xy +&+ﬂ_ ZXY —

ayZ

+ —
ox* ox0y Rx Ry Rxy (7a)
0
Dy 50 _
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3.2. Displacement Functions

It is assumed that the double curved shell element possesses only five external nodal

degrees of freedom, namely, u, v, w, O, and . Proceeding as with the usual strain-

based approach, the first major component of the displacement function is due to
(strain-free) rigid body modes of displacement and can be obtained by equating all the

components of strains, equations (4), and (5), to zero and integrating the resulting
partial differential equations becomes:

2 2 2
XY X y Xy _ Y
Up=ay| —+—=—|+3,| — —=— |+ay| =+ [+a, +
i 1[RX RXJ {ZRX ZRJ 3(Rx nyj o " %Y

(8a)
2 2 2
. _3{1+L]+a{ﬁm_}a{y__x_}as_a6X
R, Ry R, Ry 2R, 2R, o)
Wg =—8 —@X— a3y (8¢)

In these equations uR, VR, and wR are the rigid body components of the
displacement fields u, v and w, respectively, and are expressed in terms of the six

independent constants (al S aG). The second major component of the displacement
function is due to straining of the element. If the element is to have twenty-five degrees
of freedom (five at each node) then the strains of the element must be associated with

nineteen additional constants (a7 o a25)_ Assuming strain polynomial functions of
(87 ———ays) constants.
Ex =a; +agy (93)
£y =8g + X (9b)
Vxy = 41 (9¢)
Xy =gy + AyaX + Ay + AeXY + 8y X7 + 8y, Y’ (©d)
Xy =846+ 87X+ 8gY + AgXY +8paX” +8y,Y (9%)
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Xxy = 8o T ay5XY (9f)

Checking the above polynomials of strain for compatibility equations of double

curved shell (7a, 7b, and 7c). Finally, the assumed strain functions of double curved
shell element which satisfy the requirement of compatibility equations become:

B 2 3 3 2,2 4

y Xy y Xy X"y y
Ex=@+t@Y—| Qe Tt T T +ay; +tay

2 2 6 6 2 12} R (108

G X3 X2y Xy x* y2x? | 1

i 2 6 12 2 IRy o)
2 ng 2 Xy3
a X"y +as 3 +a,Xy" + a9 EY + 350Xy 1
Vay =811~ Y22 x2y? Rixy
2 (10c)
2 2
Xx =855+ 85X+ 8,y +asXy + X" + 85y (10d)
2 2
Xy =g T a7 X+ agY +aoXy +ayX" +ay,Y (10¢)
2 2
Xxy =80+ 8psXy + [2a14x +8,:X" 4+ 28,y + Ay +28,,X+ 2a23y] (10

The above six equations 10a, b, c, d, e and f are integrated in the same procedure
that was used to derive the rigid body modes of general double curved shell element,
then the final polynomial function of strain mode becomes:

U, =a,X+agXy —a y—2+a X-l-a X3 +a X4 +a ﬁ+a X4y
s = 87X +3g 107 Ty Pl gp T Ao p T hugR TAs R
3 4 4 5 2 3
X
A6 J — 87 ! T ag J — ! +8y 2y
3R, V24R, IR, 120R, (4R, 12R,

a21—5+azzy2 3_azsa Y +ay, y +ays X3y2_ Y
120R, 6R, 120R, *6OR, 2R, 240R, ) .
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2 4 4
3 X 5

X X X X -
Vg :—a8?+agy+aloxy+a11§+a12 3R +a1312R ~ A 24R _a15120Rx

Xy Xy X

3 3 4 4 2 3
6R, '6R, C24R, '°24R, 4R, 12R,

NG 5 2y3 ys x2y? «5
ayy —3ay +ay;3 +ay, +ays -
60R,  “2120R, “6R,  2*120R, 24R, "~ 240R, (110

2 3 2 3 2 2 3
X X X7y X7y y Xy y
WS:_alZ?_aBE_aM 5 — &5 5 _3-16?_3177_318€
3 4 2.2 2,2 4 2,2
Xy Xy X X"y X"y y X7y
Ay — Byt — By —Bypy 2 — Byg o — Byy o — By
19 6~ 807, T8y, T8 237, 245, "85, (119

The complete displacement field functions for the double curved shell element are,
thus, the sum of the corresponding terms for u, v and w from equations (8) to (11)
respectively.

u=ur+us
V=Vr+vs (12)
W = Wr + Ws
GX:@. and y=_@
oy OX

3.3. The Element Stiffness Matrix

Figure (1) shows that the origin of the meridional coordinate of the element (x) is
located at the center of the double curved shell. Consequently, the origin of the
circumferential coordinate (y) is located at the center of the element. Since, the
calculation of the stiffness matrix is carried out explicitly; this choice of the origin will
simplify the task of integration, thus:

ke ]=[aT { [] [B]T[D][B]dxdy}[A]l a3

Y1 %

where [A], [B] and [D] are the transformation, strain and rigidity matrices of the
element, respectively. The (25X25) element stiffness matrix [ke], can now be calculated
using the displacement functions (12) and the strain displacement relationships (10). On
the other hand, to keep the storage memory small the stiffness matrix is condensates
from (25x25) to (20x20) by removing the influence of the central point (node 5) to the
four corner points (nodes 1, 2, 3, and 4) as follows:

[anoxzoJ{5n20x1}= {Pn20x1} 14)
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where:
[K n20x20] = [K e20><20]— [K ®20x5 IK ®5x5 ]>l [K e5x20]

07200 )= 200
{Pr20a )= {Pezm}—([Kezc)stKesxsF{Pesxl}j

3.4. Consistent Load Vector

The external applied nodal loads considered in the present finite element analysis are
calculated by using a consistent load vector. The consistent load vector is obtained by
equating the work done by the nodal loads on the nodal displacements to the work done
by the external applied load on the assumed displacement function of the element. The
double curved shell element shown in figure (1) is considered. If the element is
subjected to several loading types such as, distributed normal pressure (q), concentrated
load (Pi), uniform distributed moment (M), and concentrated moment (Mi) the load
vector becomes:

{pezg)xl}:if I[A]l[f]{g]}dxdy+;fi ij[A]l[f]at e (i){ll\a/ili}d)(dy w5

For the element stiffness matrix after condensation, the load vector is taken as follows:

IS SN

(16)

(a)

Figure (1) Geometry and in-plane, and out-of-plane displacements and stresses of doubly curved shell
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(b) in plane displacement

'\"’" Mxy
Nxy Mx
il S
I\'v.\:‘ M_\"
Ny = f H =Ny My Xt fm—Myx
[ Nyx ’M_\'
— e ——
Nxy Mx
' {
Nx Mxy
(d) Inplane stress resultants (e) Bending stress resultants

Figure (1) Continued

4. Clamped cylindrical shell under internal pressure

The present double curved shell element degenerates to a cylindrical shell element
by putting the Ry very large (Ry = 1010), where (Lc) is equal to the cylindrical length.
This problem represents a clamped-clamped cylindrical shell subjected to internal
pressure as shown in Figure (2). As the problem is symmetric about its center line, only
one half of the shell need be considered. Further in view of the axisymmetry in the
problem, only a thin strip along the axis of the cylinder can be considered. In the present
problem a strip generated with included angle of (6=50) is considered. One, two, three
and four elements are used to idealize this thin strip. Solutions obtained for the
maximum radial deflection for these idealizations are presented in Table (1) along with
the analytical solution of Timoshenko and Woinowsky-Krieger[25] and finite element
solution of Raju et. al [26]. This table demonstrates the rapid convergence and the
accurate result obtained by the present element. The figure (3) shows the behavior of
convergence of the present element and Raju’s element with Timoshenko and
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Woinowsky-Krieger[25]. It’s appearing the present element is more accurate and has a
rapid convergence than the Raju’s element with respect to the exact solution of

Timoshenko and Woinowsky-Kri

eger(25).
- 2 a il
//r‘j///////j///j///j/;
E=683551N/mm?2
a = 254mm
I _ < e
Lc=254mm
t=12.7mm
p=0.3
—

Figure (2) A Clamped-Clamped cylindrical shells under internal pressure.

Table (1) Maximum deflection of a clamped-clamped cylindrical shell under internal pressure x104.

Raju conical element

Present double curved shell element

(Timoshenko and

Mesh | D.O.F Maximum radial Mesh D.O.F Maximum radial Woinowsky-
size deflection size deflection Krieger 1981)
1x1 28 5.6312 mm 1x1 20 5.5422 mm 5.1486 mm
1x2 42 5.1333 mm 1x2 30 5.2334 mm
1x3 56 5.1613 mm 1x3 40 5.1495 mm
1x4 70 5.1410 mm 1x4 50 mm
5.70
-1 Convergence of F.E.S
: N + Present element
5.60 __ A Raju element
: (Timoshenko and Woinowsky-Krieger 1981)
¥, 550 —_
B ]
g -
g 5.40 —_
a ]
é -
5.30 —]
5.20 .
i A
: VA ad - A
5.10 AN I [ N L N L I N L L Y L B L B
20.00 30.00 40.00 50.00 60.00 70.00

Degre

e of Freedom

Figure (3) Relation between maximum radial deflection and d.o.f.
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5.Pinched Cylinder Problem

A standard problem for testing non-axisymmetric cylindrical shell finite elements is
the pinched cylinder shown in Figure (4). The most accurate solution to this problem
appears to be that of Cantin and Clough[7], who used a procedure which satisfies the
conditions for convergence to the correct result as the mesh size is reduced. Bogner et
al. [6] and Cantin and Clough[7] did not continue the process of mesh refinement
sufficiently, but were satisfied to obtain a value of displacement close to the in-
extensional value of (2.7890 mm).

Timoshenko and Woinowsky-Kreiger[25] result, which is known to be too low, but
not that of Cantin and Clough[7] did obtain one value of (2.7655 mm) by dividing an
octant of the cylinder into three elements longitudinally and [49] circumferentially, with
(1200) degrees of freedom. Also Ashwell and Sabir[27], and Raju et al. [1] analyzed
this problem for a thick cylindrical shell with thickness (2.388mm) by using a
cylindrical and conical element respectively. Ashwell and Sabir[27], and Sabir and
Lock[9] analyzed the same problem but as a thin cylindrical shell with thickness
(0.4mm).

This problem for both cases are analyzed by the present element, the comparison of
the solution results of the present element and other elements are concluded in Table (2)
for thick cylinder and Table (3) for thin one. Table (2) shows the results of five
elements of thick pinch cylinder problem, the convergence of these elements are very
good but the errors between results of these elements and exact solution of Timoshenko
and Woinowsky-Krieger[25] are different from element to other. Table (3) shows the
results of four elements of the thin pinched cylinder problem, the convergence of two
elements by Ashwell and Sabir[27], and the present element are excellent but the other
two elements, Cantin and Clough[7], and Sabir and Lock[9] show very poor
convergence. The errors between results of these elements and exact solution of
Flugee[24] are different from element to other.

R=125.8mm (mean radius)
t=2.3876mm for thick cylinder problem 1
t=0.4mm for thin cylinder problem 2
Lc=262.89mm (length)

E=71816.8 N/mm’(aluminium)

pu= 0.3125 (Poissen’s ratio)

i P=425 N

Figure (4) the pinched cylinder problem with one octant.
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Table (2) Deflection in (mm) under one load for thick pinched cylinder problem (t=2.3876mm) prob. 1.

Mesh Bogner et al Raju et al. Cantin and Ashwell and Present

Size (48 d.o.f) (28 d.o.f) Clough Sabir (20 d.o.f) Element (20
(24 d.o.f) d.o.f)

1x1 -0.0635(48)* -0.0356(28)* -0.2964(24)* -2.6416(20)* -1.0431(20)*
1x2 -2.0371(72)* -1.9469(42)* -0.5789(36)* -2.6824(30)* -1.8928(30)*
1x3 -2.6060(96)* -2.5491(56)* -0.7544(48)* -2.7345(40)* -2.2764(40)*
1x4 -2.7610(120)* -2.5392(70)* -2.7915(60)* -2.8092(50)* -2.4597(50)*
2x2 -2.0523(108)* -1.9741(63)* -2.3647(54)* -2.8016(45)* -2.4889(45)*
2x3 -2.6314(144)* -2.5715(84)* -2.5070(72)* -2.8219(60)* -2.5789(60)*
2x4 -2.7890(180)* -2.7605(105)* -2.8270(90)* -2.8372(75)* -2.6241(75)*
33 | - -2.5865(112)* -2.6848(96)* -2.8447(80)* -2.6517(80)*
4x4 | - -2.7799(175)* -2.8600(150)* -2.8677(125)*  -2.7546(125)*
6x6 | - -2.8410(343)* -2.8880(294)* -2.8829(245)*  -2.7599(245)*
88 | - -2.8603(567)* -2.8931(486)* -2.8880(405)*  -2.7654(405)*

10x10 | - -2.8664(847)* -2.8931(726)* -2.8880(605)*  -2.7654(605)*

Exact Solution of (Timoshenko and Woinowsky-Krieger 1981) = -2.7655 mm

*Value between brackets is total degrees of freedom

Table (3) Deflection in (mm) under one load for thin pinched cylinder problem (t=0.4mm) problem 2.

Mesh Sabir and Lock Cantin and Clough Ashwell and Sabir Present Element
Size (20 d.o.f) (24 d.o.f)) (20 d.o.f) (20 d.o.f)
1x1 -0.0003 -0.0003 -0.5844 -0.5749
1x4 -0.0160 -0.0188 -0.6104 -0.6017
1x8 -0.1755 -0.1778 -0.6111 -0.6087
2x1 -0.0003 -0.0003 -0.5842 -0.6107
2x4 -0.0163 -0.0178 -0.6119 -0.6129
2x8 -0.1762 -0.1775 -0.6132 -0.6148
3x1 -0.0003 -0.0003 -0.5847 -0.6157
3x4 -0.0165 -0.0173 -0.6132 -0.6171
3x8 -0.1767 -0.1775 -0.6142 -0.6180
8x8 -0.1795 -0.1800 -0.6175 -0.6191

Exact Solution of (Flugge 1973) = -0.6195 mm

6. Cylindrical Tank with Constant Thickness

A cylindrical tank, Figure (5), with constant wall thickness is fixed at the base, and is
completely filled with water of density 9.81kN/m3. The dimensions of the tank are as
follows: height of tank (Lc=7.925m), radius of tank (R=9.144m), wall thickness
(t=356mm), elastic modulus (E=205GPa) and Poisson’s ratio (n=0.25) The present
element is used to analyze this problem by taking a longitudinal strip of unit width and
mesh size (1x9) elements and total degrees of freedom equal to (100).

Results obtained from this analysis, together with those given by Timoshenko and
Woinowsky-Krieger(25), Thevendran[28], and Francis et al.[29] are summarized in
Table (4 a, b, and c¢). The values given by Thevendran[28] were obtained by using the
Runge-Kutta method with 100 equal steps, whilst those given by Timoshenko and
Woinowsky-Krieger[25] were obtained by considering the simplifying assumption that

4 2 21 A2
the cylinder was treated as a long shell that is BLc>5 where 7 :3(1_“ )/ (R Le ) , and
Francis[29] results were obtained by using the finite element analysis based on an
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analogy with theory of beams on elastic foundation developed for closed circular
cylindrical shells. In the present element the results of different stress resultants (Ms),
(Ns), and (Qs) are compared with the values of different approaches for analysis of
cylindrical tanks and show excellent agreement with them.
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Figure (5) Cylindrical tank under hydrostatic loading.

Table (4a) Results of comparison of meridional normal force (Ns) (kN/m) for different approaches.

Ratio Timoshenko and Thevendran Francis Solution Present Element
S/Lc Woinowsky-Krieger Solution Solution
Solution

1.0 000.0 000.0 000.0 000.0
0.9 122.0 122.0 122.0 122.0
0.8 302.6 302.6 303.6 302.6
0.7 409.7 409.8 409.8 409.8
0.6 428.0 428.2 428.7 428.2
0.5 385.0 385.0 385.4 385.4
0.4 312.1 312.8 312.7 312.8
0.3 230.3 231.0 231.0 231.0
0.2 149.5 149.5 149.3 149.4
0.1 72.6 70.2 70.3 70.2
0.0 -0.9 -8.0 1.7 -7.8
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Table (4b) Results of comparison of meridional bending moments (Ms) (kN.m/m) for different approaches.

Ratio Timoshenko and Thevendran Francis Solution Present Element
S/Lc Woinowsky-Krieger Solution Solution
Solution

1.0 62.2 62.2 62.5 62.2
0.9 6.7 6.7 6.7 6.7
0.8 -13.6 -13.6 -13.7 -13.6
0.7 -15.1 -15.1 -15.1 -15.1
0.6 -10.0 -10.0 -10.0 -10.0
0.5 -4.7 -4.7 -4.7 -4.7
0.4 -1.3 -1.3 -1.3 -1.3
0.3 0.3 0.1 0.2 0.2
0.2 0.7 0.4 0.4 0.4
0.1 0.6 0.2 0.2 0.2
0.0 0.3 0.0 0.0 0.0

Table (4c) Results of comparison of meridional shearing force (Qs) (kN/m) for different approaches.

Ratio Timoshenko and Thevendran Francis Solution Present Element
S/Lc Woinowsky-Krieger Solution Solution
Solution

1.0 -98.8 -98.8 -98.5 -98.8
0.9 -45.0 -44.2 -44.2 -44.2
0.8 -11.3 -10.5 -10.5 -10.4
0.7 3.7 4.1 4.1 4.1
0.6 7.1 7.3 7.4 7.3
0.5 5.6 5.6 5.6 5.6
0.4 3.1 3.0 3.0 3.0
0.3 1.1 0.9 1.0 1.0
0.2 0.1 -0.1 -0.1 -0.1
0.1 -0.3 -0.4 -0.4 -0.4
0.0 -0.3 0.0 0.0 0.0

Table (5) Shows the error between persent element and analytical solution of several problems.

Problem type Error of present element
Clamped cylindrical shell under internal pressure 0.03%
Thick pinched Cylinder Problem 0.01%
Cylindrical Tank with Constant Thickness 0.0%

7. Conclusions

A doubly curved shell finite element which is suitable for the general bending
analysis of shells has been developed. The element is simple and contains only the
essential degrees of freedom. The element has the advantage over the other available
double curved element. The improvement obtained is due to the fact that all the
displacement fields of the present element satisfy the exact representation of rigid body
modes of displacements. Also, the displacement fields due to straining of the element
are based on independent strains and satisfy the exact compatibility equations of strain
modes. The present element is used to analyze several types of cylindrical shell
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problems. The numerical results of the present element are compared with the
analytical, numerical, and experimental results of other researchers. The results of the
present element showed good and rapid convergence of displacements and stresses with
the use of few elements. The errors of output results are about less than 1% of mesh size
(6x6) and less than 0.03% of mesh size (8x8) for static analysis of cylindrical problems.

Abbreviations
[A] transform matrix
E modulus of elasticity
Rx, Ry, Rxy  Principle radii of double curved shell
u,v,w displacement field in X, Y, Z direction respectively
ur, vr, wr  rigid body mode displacement field in X, Y, Z direction respectively
us, vs, ws  strain mode displacement field in X, Y, Z direction respectively
Y unit weight of water
s Poisson’s ratio
0x, 0y  rotation about X, and y axes respectively
&x, &y the inplaine direct strain in the direction x, and y respectively of shell
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