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Abstract: This paper presents an optimal design of a modified Proportional Integral Derivative (PID) 

controller with nonlinear signum function for vibration control of a single-link flexible manipulator 

system. This manipulator is a Single Input Multi Output (SIMO) system with applied torque as the input 

signal, and the hub angle and tip deflection as the outputs. The dynamic model of the flexible link system 

is represented by finite element method. The Bacteria Foraging Optimization (BFO) algorithm is used to 

tune the parameters of the PID controller. A nonlinear signum function is added to improve the 

performance of this controller. Different types of inputs are tested with different payloads to illustrate the 

robustness of the control scheme. The scheme successfully reduces the effect of the vibration and 

minimize it to zero at the tip-end, even with payload variation. 
 

Keywords: single link flexible manipulator, PID controller, vibration control, bacterial foraging 

optimization. 
  

رراع للسيطرة على   BFOاهثل رو دالة غير خطية بأستخذام طريقة  PIDتصوين هسيطر 

 وبوت هرى احادي الوصلةر
 

غٌر خطٌة للسٌطرة على الاهتزازات فً ذراع روبوت  Signumمعدل مع دالة  PIDٌقدم هذا البحث تصمٌم امثل لمسٌطر  الخلاصة:

مرن أحادي الوصلة. نظام الذراع هو احادي الادخال و متعدد الاخراج, مع اعتبار العزم المسلط كقٌمة ادخال وزاوٌة المحور واهتزاز 
طرٌقة العناصر المحددة. ٌتم تنغٌم مسٌطر  ٌتم تمثٌل النموذج الدٌنامٌكً للذراع المرن احادي الوصلة باستخدام نهاٌة الذراع كقٌم اخراج.

PID  المعدل باستخدام طرٌقةBFO تمت اضافة دالة .Signum  الغٌر خطٌة لغرض تحسٌن اداء المسٌطر. التصمٌم المقترح تم فحصه

  ى مع تغٌٌر الحمل.لأكثر من اشارة ادخال و لأكثر من حمل و اظهرت النتائج تقلٌل الاهتزازات فً نهاٌة الذراع المرن الى الصفر حت

 
1. Introduction 
 

     One of the modern industrial robots is the flexible robot manipulator system. This 

system has many advantages when compared to the rigid industrial robots, it has: lighter 

weight, higher payload to robot weight ratio, faster operation, less power consumption, 

and cheaper cost [1]. Difficulties in modelling arise due to the flexibility of the system, 

as it generates high vibration and oscillation at the tip-end [2]. The complexity of 

modelling is increased when a payload is carried by the flexible robot [3]. 
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In practice, the flexible robot is designed to achieve a single or multi task, such as 

taking up a payload, move to a specific location or track pre-planned trajectory and sets 

the payload. The payload variation has a significant impact on the dynamic behavior of 

the flexible robot [4]. Therefore, an accurate modelling of flexible link manipulator is 

required to represent the dynamic characteristics and the actual behavior of the system. 

     Modelling of a single Flexible Link Manipulator (FLM) has been widely evaluated 

in the literature. The FLM robotic systems are continuous dynamical nonlinear systems, 

which are described by ordinary and partial differential equations with an infinite 

number of degrees of freedom. Practically, the exact solution of these systems is not 

feasible and the infinite dimensional model establishes severe constraints on the design 

of controllers Therefore, the dynamic equations are discretized most commonly using 

the Assumed Modes Method (AMM), the Finite Element Method (FEM) or the lumped 

parameter method. The FEM and AMM use either the Lagrangian formulation or the 

Newton–Euler recursive formulation [5].  

     The AMM assumes that the flexibility of link is ordinary represented by truncated 

finite model series in terms of spatial mode Eigen functions, with time-dependent mode 

amplitudes. The difficulty in finding methods for single links with irregular cross 

sections and multi-link manipulators is the main obstacle of the AMM [6].  

Many boundary conditions must be considered for solving the major set of differential 

equations derived in the FEM. However, in most cases, these conditions are uncertain 

for flexible links [7]. 

     When deriving a closed-form of the dynamic equations of motion for the flexible 

links, the first several modes in AMM are kept by assumption, while the higher modes 

are disregarded. The simplest method for analysis is the lumped parameter model. 

Unlike the spring and mass system, in which the manipulator does not produce accurate 

results [6].  

     Different control approaches have been applied to solve the problems of vibration 

and tip deflection of flexible manipulator systems. Two main cases cause problems in 

the FLMs controller design, the first is the high order of the system. The second is the 

non-minimum phase dynamics of the system, which exist between the applied input 

torque and the tip position at the hub joint of the system [1]. 

Various methods have been suggested in the literature to control the FLMs, some of 

these are: 

     Linear control methods such as conventional PID control [8], linear quadratic 

regulator [9], generalized proportional integral control [10], pole placement control 

[11], integral resonant control [1], H-infinity [12]. Modified linear controllers such as 

PID tuned by Particle Swarm Optimization (PSO) algorithm [13], PSO for vibration 

funnel of flexible manipulator structures [14], and proportional derivative controller 

tuned by cuckoo search [15]. 

     Nonlinear control methods such as: nonlinear feedback [16], optimal nonlinear 

feedback [17], fuzzy logic control technique [2, 11], neural network control technique 

[18], neuro-fuzzy control [19].     Hybrid linear/nonlinear control methods such as: 

modified PID [20], neural network for tuning modified PID [21]. 
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Generally, due to the nonlinear dynamic structure of the flexible manipulator, it is 

difficult to be accurately controlled by linear control method [22]. In this paper, the 

characteristic of the mathematical model of single FLM is investigated. The FEM is 

used for the dynamic modelling of the system.  

     The transfer function of this system is SIMO. BFO is used to tune the PID 

parameters to improve the performance of the controller due to its encouraging results 

shown in prior work such as [23] which gives a clear comparison between three 

optimization algorithms in tuning PID control. [24, 25]. An optimal modified PID 

controller with nonlinear signum function is designed for the vibration control of the 

single FLM. 

     The rest of this paper is organized as follow. Section 2 describes the mathematical 

model of the single FLM. In Section 3 the proposed controller of the flexible 

manipulator is illustrated. Different simulation results are presented in Section 4. 

Finally, the summary and conclusions of the overall work is addressed in Section 5. 

 
2. Mathematical Model of Single FLM 

 

     This section provides a brief description for the dynamic model of the FLM, which is 

developed by using the FEM and infinite-dimensional transfer function. 

 
2.1. Modelling the Single FLM Using FEM  

 

     The schematic diagram of the single FLM which is used in this work is shown in 

Fig. 1. The symbols pointed on this figure are described by Table 1 along with the 

Sheffield FLM physical parameters  that is considered in this study [26].  

  

 

 

 

 

 

Figure 1. Schematic diagram of the FLM. 
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   Both XOY and X0OY0 axes lie in a horizontal plane and all rotation occurs about a 

vertical axis, thus allowing the manipulator to vibrate dominantly in the horizontal 

direction and hence, the gravity effects are neglected. In addition, the flexible link is 

considered to have constant cross section and unified material properties [26]. 

     The overall displacement y(x,t) of a point along the FLM from the hub at a distance x 

can be defined as [15, 26]: 

 

 (   )     ( )   (   )                                             (1) 

 

The FEM is used to solve the dynamic problems that resulting in: 

 

 (   )     ( )  ( )                                                       (2) 

 

Where Na(x) is the shape function and Qa(t) is the nodal displacement. The displacement 

y(x,t) can be represented as: 

 

 (   )    ( )  ( )                                           (3) 

  

Where  ( )  [      ( )]  and   ( )  [ ( )    ( )]
  

 

     The distance x and the angle θ(t) are global variables, while Qa(t) and Na(x) are local 

variables. Defining k = x − ∑    
   
    as a local variable of the n

th
 element, where li is the 

length of the i
th

 element, and using Macsyma, the shape function can be represented by 

[26]. 

 

Sheffield FLM 

Physical Parameters 

Parameter Description Symbol 

 The moving coordinate frame. XOY 

 The stationary coordinate frame. X0OY0 

71*10
9
 N/m

2 
The Young Modulus. E 

5.1924 * 10
-11 

m
4 

The second moment of inertia.  I 

2710 kg/m
3 

The mass density per unit length of the FLM.  ρ 

900 mm
 

The length of flexible beam. l 

6.08332*10
-2 

m
2 

Cross-sectional area. A 

5.8598 * 10
-4

 kgm
2
 The Hub inertia.  Ih 

 The input torque applied at the hub by a motor. τ 

 The angular displacement (hub-angle) of the manipulator. θ(t) 

 The elastic deflection of a point along the manipulator, at a 

distance x from the hub of the manipulator. 

w(x, t)  

  

 The payload mass attached at the end-point of link. Mp 

 Table 1. Parameters  of an FLM. 
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     The element stiffness Kn and element mass Mn matrices can be defined as [26]: 

 

   ∫   ( 
  )  

 

 
                                                 (4) 

 

   ∫   ( 
  )  

 

 
                                                  (5) 

 

By solving (4) and (5) for n elements, the element stiffness and element mass matrices 

can be obtained as [26]: 
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     Assembling the above matrices and utilizing the Euler-Lagrange equation of motion, 

the dynamic equation of the FLM can be represented by [26]: 

 

  ̈( )    ( )   ( )                                               (6) 

 

Where K and M are the stiffness and global mass matrices respectively, the Kn and Mn 

are assembled to obtain these matrices. While, F(t) is the vector of external torques and 

Q(t)=[               ]
 , where  ,   and    refer to the hub-angle output, rotation of 

the manipulator and end-point deflection respectively [26]. With n = 1, the elements of 

M, K, F(t), and Q(t) become: 
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   By consolidating the payload and the hub inertia into the model of the system, a new 

system mass matrix that consolidates the hub inertia and the payload can be determined 

as: 
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Here, Q(0) is assumed to be zero. By combining the initial conditions and considering 

flexural and angular displacements at the hub as zero, the second and third rows and 

columns in K, M, Q and F can be ignored [26]. These yield to: 
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 ( )  [         ]
  and  ( )  [       ]  

 

2.2. State Space and Transfer Functions Representation 

 

     The state space form of the dynamic equation of the flexible manipulator (6) is 

represented by: 

  

                      ̇                                            (7) 

 

        

 

Where 
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And 

u = τ 

 

  [              ̇   ̇    ̇ ]
 

 

 

 

   is a 3 × 3 null matrix,    is a 3×3 identity matrix,      is a 3 × 1 null vector and 

  
   is the first column of    . The output matrix C depends on the desired transfer 

functions. Considering C=[                ] for the torque input to hub-angle output, 

while C=[                ] for torque input to end-point displacement [15, 26].  

The transfer functions from torque input to both hub-angle output of the manipulator 

and end-point displacement can be obtained as [26]: 

 

  ( )  
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 ((                )                 )   

 ((                      )                         )  

 (                                      ) ]
 
 
 
 
            (8) 
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  (9) 

 

Where α=ρAl represents the weight and β=EI represents the flexural stiffness of the 

manipulator [26]. The Sheffield FLM as presented in [26] is considered in this study 

with the physical parameters shown in Table 1. 

Equations 8 and 9 can be written as: 

 

   ( )  
(             ) 

  (                  ) 
          

(            ) 
  (               ) 

  (                 ) 
   (10) 

 

   ( )  
                         

(            ) 
  (               ) 

  (                 ) 
   (11) 

 

Both    ( ) and    ( ) has six poles, two are at the origin, for Mp ≥ 0, two of the four 

poles are negative, and the remaining are imaginary poles. These poles cause system 

vibration. Since, all zeros of the transfer function G1b(s) for Mp ≥ 0 lies on the imaginary 

axis, therefore this transfer function result in minimum phase manner. While the zeros 

of    ( ) lead to a non-minimum phase [26]. 

 
3. Tuning PID Controller Using BFO 

 

     PID controllers have been used in wide range of applications, because of their simple 

design, low cost and effectiveness [27]. These controllers have three parameters that are 

illustrated in terms of time, where P depends on the present error, I depends on the 
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accumulation of past errors and D is a prediction of future errors based on current rate 

of change [27], these terms of parameters are summed to calculate the output of the PID 

controller and minimize the error by regulating the process control inputs. The 

controller output can be defined by u(t) as: 

 

 ( )      ( )      ∫  ( )  
 

 
    

   ( )

 ( )
     (12) 

 

Where Kp is the proportional gain, Ki is the integral gain, Kd is the derivative gain, 

e(t) is the error as a function of time. Many tuning methods have been suggested to 

determine the suitable values for the PID controller parameters (Kp, Ki, and Kd), one of 

these methods is the BFO. The BFO is an algorithm that is based on the behavior of 

food searching of E. coli bacteria [27]. This algorithm is divided into four stages: 

1. Chemotaxis. 

2. Swarming. 

3. Reproduction. 

4. Elimination dispersal. 

 
3.1. Chemotaxis 
 

     The movement of bacteria when searching for food passes through two stages: 

swimming and tumbling. The combination of these stages is called chemotaxis [27]. In 

this stage, the movement of bacteria alternates between swimming when the bacteria 

move in the same direction, and tumbling when the bacteria move in different direction 

[28]. 

 
3.2. Swarming 

 

     The swarm stage can be illustrated as the behavior of bacteria that move together in 

groups looking for the best location of food, and sending attraction signals to other 

bacteria to reach the best location, so that they always do movements in a high density 

[27].  

Assume   (     ) represents j
th

 bacteria, i
th

 chemotactic, k
th

 reproductive and l
th

 

elimination stage. The function of the swarm can be represented as [29]: 

 

    (   (     ))  ∑   
 

 

   

(    (     ))   

∑ [         (    ∑ (  
 
      

 ) )] 
     ∑ [         (    ∑ (  

 
      

 ) )] 
    (13) 

 

     Where, c is the total number of bacteria, m represents the number of parameters to be 

optimized, Datt is the attractant’s depth which is released by the bacteria, Watt is width of 

the attractant signal, Hrep is height of the repellent effect magnitude, and Wrep is width of 

the repellent signal [30]. 
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3.3. Reproduction 
 

     In the process of reproduction the healthier bacteria with good foraging result 

divided into two bacteria, they replace the least healthy bacteria which die, and keep the 

population of the bacteria constant [29]. 

 
3.4. Elimination Dispersal 

 

    The sudden changes in the environment may happen where bacteria live due to many 

reasons. In this stage the bacteria are selected randomly to be exchanged by new 

bacteria located at a new random place within the optimization domain. Then, the 

bacteria are dispersed till finding the more productive areas nearer to the food location 

[30].  The flowchart that explain the BFO algorithm is shown in Figure 2, where Ns is 

the swimming step, Nre is the number of reproduction steps, Nc is the number of 

chemotaxis steps and Ned is the number of elimination dispers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Set all counters and 

bacteria index to zero 

Increase the counter of elimination 

dispersal l = l + 1 

If l<Nea Stop 
No 

Yes 

Increase the counter of reproduction k=k 

+  1 

If k<Nre 

Yes 

No Perform elimination dispersal to 

a random location 

Increase the counter of   chemotactic i 

=  i +  1 
Estimate P (i, k, l) 

If i<Nc 
Eliminate the least healthy bacteria and 

split the healthy one in two groups 

Yes 

No 

Get final values, 

Kp, Ki, Kd 

Figure 2. The flowchart of BFO algorithm. 
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4. The Complete Controller Scheme 

 

      The block diagram for the proposed controller is shown in Fig. 3. Instead of using 

standard PID, a modified PID (PI-D) is used in order to avoid the derivative kick when 

a sudden change occur in the input signal.  

    The modified PID parameters Kp, Ki and Kd are the same optimized parameters 

obtained when the traditional PID is connected.  

 

 

 

This figure shows that the control signal u(t) have the following equation: 

 

 ( )      ( )    ( )     
  

  
             (14) 

 

Where un(t) is the output of the nonlinear function that is given by: 

 

  ( )       (   )   √            (15) 

 

    ∫  ( )       
  

  

 

 
          (16) 

 

Where Kn and Kd1 are suitably selected gains, the parameters of (Kp, Ki, and Kd2) are 

determined by the BFO algorithm. 

 
5. Simulation Results and Discussion 

 

       The complete Matlab Simulink connection of the proposed controller for the single 

FLM with mode n=1 is illustrated in Fig. 4. 

Figure 3. The block diagram for the overall controlled system. 

un(t) 
u(t) 

e(t) 
x 
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The parameters of BFO algorithm shown in Table 2 are declared in sections 3.2 and 3.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     The performance index considered in this paper to tune the modified PID parameters 

is the Integral Absolute Error (IAE). The tuned parameters of the controller scheme are 

(Kp=8, Ki=0.01, Kd1=0.05, Kd2=0.8, and Kn=0.8), in order to show the efficiency of the 

proposed controller, different cases are investigated: 

 
5.1. Simulation for Fixed Payload 

 

     The unit step response for the single FLM controlled by modified PID controller, 

with/without the nonlinear function un(t), with a load of 20g for the hub angle and the 

tip deflection, are shown in Fig. 5.  

     The results when only PID controller is used show that the hub angle tracks the 

desire hub angle of the system with a steady state error of 0.0001, rise time of 0.237 

second and 6.02 percentage overshoot.  

     The system with PID and the nonlinear function result in zero steady state error, rise 

time of 0.227 second, and 8.11 percentage overshoot. Similarly, Fig. 5 (b) shows the 

result of the tip deflection, which has been regulated close to zero deflection with a 

maximum peak to peak deflection of 17.4 for PID only and with deflection of 17.8 for 

PID and the nonlinear function. 

 

         Derivative

8

kp

-K-

ki

.8

kd2

-K-

kd1

Signal 1

bang bang

Tip deflection
Step

Manual Switch

1

s

Integrator

Hub Angle

x' = Ax+Bu

 y = Cx+Du

Flexible Link Manipulator

du/dt

du/dt

Derivative

Interpreted

MATLAB Fcn

 Nonlinear Function

Values The parameters of BFO algorithm 

10 c 

2 Ns 

4 Nre 

10 Nc 

2 Ned 

0.1 Hrep 

10 Wrep 

0.04 Watt 

0.01 Datt 

Table 2. BFO parameters used in tuning the PID controller 

Figure 4. Matlab Simulink for the overall controlled system. 
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5.2 Simulation with Different Payloads 

 

     The performance of the single FLM with the proposed controller tested also with 

different values of payload. Fig. 6 shows the hub angle, tip deflection, error, and control 

signal with payload values of 20g, 30g and 50g for a unit step input.  

 

  

 

  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Unit step response with/without the nonlinear function for (a) hub angle, (b) tip deflection, (c) transient 

for the hub angle, (d) the steady state for hub angle. 
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Figure 6: Unit step response with different loads (20, 30, and 50 gram) for: 
(a) Hub angle, (b) Tip deflection, (c) Error signal, (d) Control signal. 
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       These results show that the maximum overshoot of the hub angle, maximum tip 

deflection, rise time, and settling time change with different payload values. Table 3 

summarizes the time response specifications of the hub angle and the tip deflection with 

different payload values.        

 

 

 

 

 

 

 

 

 

 

 

(a)                                                                            (b) 

 

 

 

 

 

 

 

 

 

 

 

      The results in Table 3 imply that as the payload increases, the system exhibits higher 

settling time, rise time and overshoot. While the peak to peak deflection decreases when 

the payload increases. The results of the hub angle and the tip deflection demonstrate 

the capability of the proposed controller when the payload is changed. 

Tip deflection maximum 

percentage peak to peak 

deflection % 

Hub angle 

Settling 

time 

Hub angle 

Rise time 

Hub angle 

steady state 

error 

Hub angle 

Maximum 

percentage 

overshoot % 

Payload 

17.79 0.516 0.227 0 8.11 20 

11.2 0.581 0.233 0 10.75 30 

15.33 0.690 0.247 0 14.91 50 

(c) (d) 

Figure 7. Bang-bang input response with different loads (20, 30, and 50 gram) for: 
(a) Hub angle, (b) Tip deflection, (c): Error signal, (d) Control signal. 

Table 3. Summary of the simulation results with different payload values. 
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Fig. 7 shows the hub angle, tip deflection, error, and control signal with different 

payload values for bang-bang input. The error and control signal show that the 

derivative kick does not occur during a sudden change in the input signal. 

 

6. Summary and Conclusions 

 

     In this paper, an optimal PID controller which parameters are tuned by BFO method 

with signum function has been designed for the single FLM modelled by the FE 

method. The signum function is used to enhance the performance of the PID controller.  

The input of the signum function is the sum of the integral error and the derivative of 

the hub angle, the output of this function is summed with the output of the PD controller 

to perform the control signal for the single FLM. The proposed controller scheme 

suppresses the vibration and achieves accurate tracking performance. The robustness 

and tracking performance with payload variation were investigated using Matlab 

Simulink simulation. 
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