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Abstract: This paper presents an optimal design of a modified Proportional Integral Derivative (PID)
controller with nonlinear signum function for vibration control of a single-link flexible manipulator
system. This manipulator is a Single Input Multi Output (SIMO) system with applied torque as the input
signal, and the hub angle and tip deflection as the outputs. The dynamic model of the flexible link system
is represented by finite element method. The Bacteria Foraging Optimization (BFO) algorithm is used to
tune the parameters of the PID controller. A nonlinear signum function is added to improve the
performance of this controller. Different types of inputs are tested with different payloads to illustrate the
robustness of the control scheme. The scheme successfully reduces the effect of the vibration and
minimize it to zero at the tip-end, even with payload variation.

Keywords: single link flexible manipulator, PID controller, vibration control, bacterial foraging
optimization.
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1. Introduction

One of the modern industrial robots is the flexible robot manipulator system. This
system has many advantages when compared to the rigid industrial robots, it has: lighter
weight, higher payload to robot weight ratio, faster operation, less power consumption,
and cheaper cost [1]. Difficulties in modelling arise due to the flexibility of the system,
as it generates high vibration and oscillation at the tip-end [2]. The complexity of
modelling is increased when a payload is carried by the flexible robot [3].
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In practice, the flexible robot is designed to achieve a single or multi task, such as
taking up a payload, move to a specific location or track pre-planned trajectory and sets
the payload. The payload variation has a significant impact on the dynamic behavior of
the flexible robot [4]. Therefore, an accurate modelling of flexible link manipulator is
required to represent the dynamic characteristics and the actual behavior of the system.

Modelling of a single Flexible Link Manipulator (FLM) has been widely evaluated
in the literature. The FLM robotic systems are continuous dynamical nonlinear systems,
which are described by ordinary and partial differential equations with an infinite
number of degrees of freedom. Practically, the exact solution of these systems is not
feasible and the infinite dimensional model establishes severe constraints on the design
of controllers Therefore, the dynamic equations are discretized most commonly using
the Assumed Modes Method (AMM), the Finite Element Method (FEM) or the lumped
parameter method. The FEM and AMM use either the Lagrangian formulation or the
Newton—Euler recursive formulation [5].

The AMM assumes that the flexibility of link is ordinary represented by truncated
finite model series in terms of spatial mode Eigen functions, with time-dependent mode
amplitudes. The difficulty in finding methods for single links with irregular cross
sections and multi-link manipulators is the main obstacle of the AMM [6].

Many boundary conditions must be considered for solving the major set of differential
equations derived in the FEM. However, in most cases, these conditions are uncertain
for flexible links [7].

When deriving a closed-form of the dynamic equations of motion for the flexible
links, the first several modes in AMM are kept by assumption, while the higher modes
are disregarded. The simplest method for analysis is the lumped parameter model.
Unlike the spring and mass system, in which the manipulator does not produce accurate
results [6].

Different control approaches have been applied to solve the problems of vibration
and tip deflection of flexible manipulator systems. Two main cases cause problems in
the FLMs controller design, the first is the high order of the system. The second is the
non-minimum phase dynamics of the system, which exist between the applied input
torque and the tip position at the hub joint of the system [1].

Various methods have been suggested in the literature to control the FLMs, some of
these are:

Linear control methods such as conventional PID control [8], linear quadratic
regulator [9], generalized proportional integral control [10], pole placement control
[11], integral resonant control [1], H-infinity [12]. Modified linear controllers such as
PID tuned by Particle Swarm Optimization (PSO) algorithm [13], PSO for vibration
funnel of flexible manipulator structures [14], and proportional derivative controller
tuned by cuckoo search [15].

Nonlinear control methods such as: nonlinear feedback [16], optimal nonlinear
feedback [17], fuzzy logic control technique [2, 11], neural network control technique
[18], neuro-fuzzy control [19]. Hybrid linear/nonlinear control methods such as:
modified PID [20], neural network for tuning modified PID [21].
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Generally, due to the nonlinear dynamic structure of the flexible manipulator, it is
difficult to be accurately controlled by linear control method [22]. In this paper, the
characteristic of the mathematical model of single FLM is investigated. The FEM is
used for the dynamic modelling of the system.

The transfer function of this system is SIMO. BFO is used to tune the PID
parameters to improve the performance of the controller due to its encouraging results
shown in prior work such as [23] which gives a clear comparison between three
optimization algorithms in tuning PID control. [24, 25]. An optimal modified PID
controller with nonlinear signum function is designed for the vibration control of the
single FLM.

The rest of this paper is organized as follow. Section 2 describes the mathematical
model of the single FLM. In Section 3 the proposed controller of the flexible
manipulator is illustrated. Different simulation results are presented in Section 4.
Finally, the summary and conclusions of the overall work is addressed in Section 5.

2. Mathematical Model of Single FLM

This section provides a brief description for the dynamic model of the FLM, which is
developed by using the FEM and infinite-dimensional transfer function.

2.1. Modelling the Single FLM Using FEM

The schematic diagram of the single FLM which is used in this work is shown in
Fig. 1. The symbols pointed on this figure are described by Table 1 along with the
Sheffield FLM physical parameters that is considered in this study [26].

M,
Flexible link (p, E,I, L)

Rigid hub (1;,)

Figure 1. Schematic diagram of the FLM.
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Table 1. Parameters of an FLM.

Symbol Parameter Description Sheffield FLM
Physical Parameters

XOoY The moving coordinate frame.

Xo0Y,  The stationary coordinate frame.

E The Young Modulus. 71*10° N/m?

I The second moment of inertia. 5.1924 * 10 m*
p The mass density per unit length of the FLM. 2710 kg/m®

I The length of flexible beam. 900 mm

A Cross-sectional area. 6.08332*107 m?

Iy The Hub inertia. 5.8598 * 10 kgm?
T The input torque applied at the hub by a motor.

0(t) The angular displacement (hub-angle) of the manipulator.

w(x, t) The elastic deflection of a point along the manipulator, at a
distance x from the hub of the manipulator.

My The payload mass attached at the end-point of link.

Both XOY and X,0Y, axes lie in a horizontal plane and all rotation occurs about a
vertical axis, thus allowing the manipulator to vibrate dominantly in the horizontal
direction and hence, the gravity effects are neglected. In addition, the flexible link is
considered to have constant cross section and unified material properties [26].

The overall displacement y(x,t) of a point along the FLM from the hub at a distance x
can be defined as [15, 26]:

y(x, t) = x0(t) + w(x,t) (1)
The FEM is used to solve the dynamic problems that resulting in:
w(x,t) = Ng(x)Qqa(t) (2)

Where Ny(x) is the shape function and Q(t) is the nodal displacement. The displacement
y(x,t) can be represented as:

y(x,t) = N(x)Qp(t) 3)
Where N(x) =[x Ng(x)] and Q,(t) = [6(t) Q(t)]"

The distance x and the angle 6(t) are global variables, while Q,(t) and N,(x) are local
variables. Defining k = x — Y77 I; as a local variable of the "™ element, where I; is the
length of the i™ element, and using Macsyma, the shape function can be represented by
[26].
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The element stiffness K, and element mass M, matrices can be defined as [26]:
Kn = f, EI(9" @) dk 4)

M, =[] pA(NTN)dk (5)

By solving (4) and (5) for n elements, the element stiffness and element mass matrices
can be obtained as [26]:

0 0 0 0 0
0 12 6 -12 6l
El
Kn=720 6 4 -6l 4l
0 -12 -6l 12 —é6l
0 6 21 -6l 4l
[14012(3n%-3n+1) 211(10n-7) 713(5n—3) 2U@A0ON-3) —712(5n-2)]
| 2uaon-7) 156 22l 54 ~13l
n=f;2—0 712(5n—3) 22 4 13l ~312
211(10n - 3) 54 13l 156 — 22l
~712(5n-2) ~13l ~317 — 22l 42 |

Assembling the above matrices and utilizing the Euler-Lagrange equation of motion,
the dynamic equation of the FLM can be represented by [26]:

MQ(t) + KQ(t) = F(t) (6)

Where K and M are the stiffness and global mass matrices respectively, the K, and M,
are assembled to obtain these matrices. While, F(t) is the vector of external torques and
Q()=[0 wq B¢ ... w, 8,17, where 8, 6,and w,, refer to the hub-angle output, rotation of
the manipulator and end-point deflection respectively [26]. With n = 1, the elements of
M, K, F(t), and Q(t) become:

[1400% 631 141> 1471 —2112]
pAl| 631 156 221 54 -—131 |
=m| 1412 220 412 131 —312)
1471 54 131 156 —22I
lo12 —130 32 221 a2 |

M

18



Journal of Engineering and Sustainable Development Vol. 21, No. 04, July 201 Y www.jeasd.org (ISSN 2520-0917)

0 0 000 1
grl0 12 412 —12 6l |
K=l—3|o 6l -6/ —6l 212|
0 —12 131 12 —él

lo e 202 —61 a2

Fit)=[t 0000 0]”
Q(t) = [0 wo By wg Ga]T
By consolidating the payload and the hub inertia into the model of the system, a new

system mass matrix that consolidates the hub inertia and the payload can be determined
as:

(1401 +1 Mp+1h 631 141 1471+IMp —21]
63l 156 22l 54 —13l
pAl
1471 + IMp 54 131 156+Mp —22I
-2 ~131 -3 -22I 4

Here, Q(0) is assumed to be zero. By combining the initial conditions and considering
flexural and angular displacements at the hub as zero, the second and third rows and
columns in K, M, Q and F can be ignored [26]. These yield to:

g0 0 o
K=5[0 12 -6l
0 —6l 412

=0 | 1471+, 156 + M,  —22l

[ [140 12 + BMp + 1, 1470 + 1M, —2112]
—211? —221 4]?
Q) =10 wg 0]T and F(@)=[r 0 0]"

2.2. State Space and Transfer Functions Representation

The state space form of the dynamic equation of the flexible manipulator (6) is
represented by:

v =Av + Bu (7)
y=Cv+Du
Where
03x1
a=| %] p=o
M- 1K 0 M11 3x1
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And
u=r

v = [9 Wy O 0 Wy QOC]T

05 is a 3 x 3 null matrix, I3 is a 3x3 identity matrix, 05,; is a 3 x 1 null vector and
M7 1is the first column of M~1. The output matrix C depends on the desired transfer
functions. Considering C=[1 0 0 0 0 0] for the torque input to hub-angle output,
while C=[L 1 0 0 0 0] for torque input to end-point displacement [15, 26].

The transfer functions from torque input to both hub-angle output of the manipulator
and end-point displacement can be obtained as [26]:

30?17 5% ~48600cS1*s%+4536000821

G.(s) = 8
1(5) [ ((156218+36000c16 1) My +x3 18 +300216 T )+ l (8)
SZI+((396000<B15+1512000ﬂl31h)Mp+52200<2ﬁ15+3672000<3l31h)52I
[ +(45360003212 My, +1512000c 3212 +4536000821,) |
(3600a15 My, +300021%)s*+(1512000813 Mp+367200aB13)s2+453600032
Gy(s) = 9)

{ ((15«218+36000<l61h)Mp+o<318+300o<2161h)s4 }
52| +((39600°<315+1512000/3131h)Mp+52200<2/315+3672000<ﬁz31h)52 |
[ +(45360008212 My +1512000a 3212 +45360005211,) ]

Where a=pAl represents the weight and S=EI represents the flexural stiffness of the
manipulator [26]. The Sheffield FLM as presented in [26] is considered in this study
with the physical parameters shown in Table 1.

Equations 8 and 9 can be written as:

(283.86Mp+3.51)s*+(4116760M p+148339.8)5%+6.33x107
(0.3Mp+0.0035)s6+(1537.2Mp+340.36)s*+(5.13X107 Mp+257860)s2

Gip(s) = (10)

0.325%-17669.952+5.69x107
(0.3Mp+0.0035)s6+(1537.2Mp+340.36)s*+(5.13x107 Mp+257860)s2

Gap(s) = (11)
Both G,;,(s) and Gy;,(s) has six poles, two are at the origin, for M, > 0, two of the four
poles are negative, and the remaining are imaginary poles. These poles cause system
vibration. Since, all zeros of the transfer function Gip(s) for M, > 0 lies on the imaginary
axis, therefore this transfer function result in minimum phase manner. While the zeros
of G,,(s) lead to a non-minimum phase [26].

3. Tuning PID Controller Using BFO

PID controllers have been used in wide range of applications, because of their simple
design, low cost and effectiveness [27]. These controllers have three parameters that are
illustrated in terms of time, where P depends on the present error, | depends on the
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accumulation of past errors and D is a prediction of future errors based on current rate
of change [27], these terms of parameters are summed to calculate the output of the PID
controller and minimize the error by regulating the process control inputs. The
controller output can be defined by u(t) as:

u(®) = Kpe() + K; [, e(t)dt + Ky %g) (12)

Where K, is the proportional gain, K; is the integral gain, Kq is the derivative gain,
e(t) is the error as a function of time. Many tuning methods have been suggested to
determine the suitable values for the PID controller parameters (K,, Ki, and Kg), one of
these methods is the BFO. The BFO is an algorithm that is based on the behavior of
food searching of E. coli bacteria [27]. This algorithm is divided into four stages:

1. Chemotaxis.

2. Swarming.

3. Reproduction.

4. Elimination dispersal.

3.1. Chemotaxis

The movement of bacteria when searching for food passes through two stages:
swimming and tumbling. The combination of these stages is called chemotaxis [27]. In
this stage, the movement of bacteria alternates between swimming when the bacteria
move in the same direction, and tumbling when the bacteria move in different direction
[28].

3.2. Swarming

The swarm stage can be illustrated as the behavior of bacteria that move together in
groups looking for the best location of food, and sending attraction signals to other
bacteria to reach the best location, so that they always do movements in a high density
[27].

Assume 67(i, k,1) represents j" bacteria, i™ chemotactic, k™ reproductive and I"
elimination stage. The function of the swarm can be represented as [29]:

th

Jss = (6,P(i, k, D) = i I (6,09(, kD) =

j=1

Z§=1[_Datt exp(Watt Z?:l(en - 6711)2)] + Z]C'=1[Hrep exp (I/Vrep Z?:l(en - 9711)2)] (13)

Where, c is the total number of bacteria, m represents the number of parameters to be
optimized, Dy is the attractant’s depth which is released by the bacteria, Wy is width of
the attractant signal, Hyep is height of the repellent effect magnitude, and Wi is width of
the repellent signal [30].
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3.3. Reproduction

In the process of reproduction the healthier bacteria with good foraging result
divided into two bacteria, they replace the least healthy bacteria which die, and keep the
population of the bacteria constant [29].

3.4. Elimination Dispersal

The sudden changes in the environment may happen where bacteria live due to many
reasons. In this stage the bacteria are selected randomly to be exchanged by new
bacteria located at a new random place within the optimization domain. Then, the
bacteria are dispersed till finding the more productive areas nearer to the food location
[30]. The flowchart that explain the BFO algorithm is shown in Figure 2, where Ns is
the swimming step, Nre is the number of reproduction steps, Nc is the number of
chemotaxis steps and Ned is the number of elimination dispers

Set all counters and
bacteria index to zero

y

Increase the counter of elimination
dispersal /=/+ 1

SR

Yes

Increase the counter of reproduction A=k
+1

No Perform elimination dispersal to
a random location

Increase the counter of chemotactic 7

i1 Estimate P (/, & /)

Eliminate the least healthy bacteria and
split the healthy one in two groups

Get final values,

Kuy Kn Kd

Figure 2. The flowchart of BFO algorithm.
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4. The Complete Controller Scheme

The block diagram for the proposed controller is shown in Fig. 3. Instead of using
standard PID, a modified PID (PI-D) is used in order to avoid the derivative kick when
a sudden change occur in the input signal.

The modified PID parameters K,, K;i and Ky are the same optimized parameters
obtained when the traditional PID is connected.

[~—=====--- A

| |

| |

| K,

| Pl 0

I I U

el ! Un(t) — ab

Reference + | Y X Nonlinear + mgle >
wt. [ T & -l-'(l > Function [—(_ ) lechleLink \

: : - r__‘ - - (D

1 . Ka 1 Ko |1

1 | ]

: S e I

I — 2

L o o e e e e e e e 1 dt

PID tuned by BFO

Figure 3. The block diagram for the overall controlled system.

This figure shows that the control signal u(t) have the following equation:
e
u(t) = Ky e(t) + u,(t) — Ky = (14)
Where u,(t) is the output of the nonlinear function that is given by:

u, () = sign (K x) * Vx3 (15)

x = K; fy e(t)dt — Ky 5 (16)

Where K, and Kgq: are suitably selected gains, the parameters of (K,, K;, and Kgp) are
determined by the BFO algorithm.

5. Simulation Results and Discussion

The complete Matlab Simulink connection of the proposed controller for the single
FLM with mode n=1 is illustrated in Fig. 4.
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kd1 Derivative

’)—l
]

kd2 Derivative

Figure 4. Matlab Simulink for the overall controlled system.

The parameters of BFO algorithm shown in Table 2 are declared in sections 3.2 and 3.4.

Table 2. BFO parameters used in tuning the PID controller

The parameters of BFO algorithm Values
c 10
Ns 2
Nre 4
N, 10
Ned 2
Hrep 0.1
Wiep 10
Wt 0.04
Dat 0.01

The performance index considered in this paper to tune the modified PID parameters
is the Integral Absolute Error (IAE). The tuned parameters of the controller scheme are
(Kp=8, K;=0.01, K41=0.05, Kg,=0.8, and K,=0.8), in order to show the efficiency of the
proposed controller, different cases are investigated:

5.1. Simulation for Fixed Payload

The unit step response for the single FLM controlled by modified PID controller,
with/without the nonlinear function un(t), with a load of 20g for the hub angle and the
tip deflection, are shown in Fig. 5.

The results when only PID controller is used show that the hub angle tracks the
desire hub angle of the system with a steady state error of 0.0001, rise time of 0.237
second and 6.02 percentage overshoot.

The system with PID and the nonlinear function result in zero steady state error, rise
time of 0.227 second, and 8.11 percentage overshoot. Similarly, Fig. 5 (b) shows the
result of the tip deflection, which has been regulated close to zero deflection with a
maximum peak to peak deflection of 17.4 for PID only and with deflection of 17.8 for
PID and the nonlinear function.
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Figure 5. Unit step response with/without the nonlinear function for (a) hub angle, (b) tip deflection, (c) transient
for the hub angle, (d) the steady state for hub angle.

5.2 Simulation with Different Payloads

The performance of the single FLM with the proposed controller tested also with
different values of payload. Fig. 6 shows the hub angle, tip deflection, error, and control
signal with payload values of 20g, 30g and 50g for a unit step input.
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o - : _0-050 .0.5 1 1.5 2 2.5 3 3.5 4
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------- Mp=20g
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Figure 6: Unit step response with different loads (20, 30, and 50 gram) for:
(a) Hub angle, (b) Tip deflection, (c) Error signal, (d) Control signal.

25



Journal of Engineering and Sustainable Development Vol. 21, No. 04, July 201 Y www.jeasd.org (ISSN 2520-0917)

Table 3. Summary of the simulation results with different payload values.

Hub angle

. Hub angle Hub angle  Tip deflection maximum
Maximum Hub angle .
Payload steady state L Settling percentage peak to peak
percentage Rise time . .
error time deflection %
overshoot %

20 8.11 0 0.227 0.516 17.79

30 10.75 0 0.233 0.581 11.2

50 14.91 0 0.247 0.690 15.33

These results show that the maximum overshoot of the hub angle, maximum tip
deflection, rise time, and settling time change with different payload values. Table 3
summarizes the time response specifications of the hub angle and the tip deflection with

different payload values.

0.67— — 0.15 —
,'A . L T B i Mp=20g
0.4r¢ "7 Mp=20g 0.1 e Mp=30g |
i Mp=30g 3 R ———,
0.21f T Mp=50g H o,o5@§ P ‘f
y c 'ri Il‘l 1
2 % -g [ 51 . l .
: r s O Lt
< | < { ; £
2 02 : S .0.05 '
2 -0 ! 20
|_
-0.4 0.1
i tH
—EI“ b
0.6 ] -0.15 ¥
H
-0.8 -0.2
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
Time(sec) Time(sec)
(C)) b)
r r 5 : :
04F T Mp=20g (|l  { | | |77 Mp=20g
. "‘ L[ e Mp=30g ﬁ ___ Mpi30g
0.2+ " - Mp=50g h ¥ Mp=50g
! F'“ ‘q K33 ;gm‘ 5%
0 e ot —  Offse= 44 e
= < s L% T & g
= 5
8 02 5
S
E 0.4 £
Y06 O 5
]
-0.8
-1
-1.2 -10
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7
Time(sec.) Time(sec)
(© (d)

Figure 7. Bang-bang input response with different loads (20, 30, and 50 gram) for:
(a) Hub angle, (b) Tip deflection, (c): Error signal, (d) Control signal.

The results in Table 3 imply that as the payload increases, the system exhibits higher
settling time, rise time and overshoot. While the peak to peak deflection decreases when
the payload increases. The results of the hub angle and the tip deflection demonstrate
the capability of the proposed controller when the payload is changed.
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Fig. 7 shows the hub angle, tip deflection, error, and control signal with different
payload values for bang-bang input. The error and control signal show that the
derivative kick does not occur during a sudden change in the input signal.

6. Summary and Conclusions

In this paper, an optimal PID controller which parameters are tuned by BFO method
with signum function has been designed for the single FLM modelled by the FE
method. The signum function is used to enhance the performance of the PID controller.
The input of the signum function is the sum of the integral error and the derivative of
the hub angle, the output of this function is summed with the output of the PD controller
to perform the control signal for the single FLM. The proposed controller scheme
suppresses the vibration and achieves accurate tracking performance. The robustness
and tracking performance with payload variation were investigated using Matlab
Simulink simulation.
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