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 In this paper, an ultra-wideband terahertz monopole antenna is proposed to address the 

limitations of lower bandwidth and low gain in previously designed antennas at THz 

frequencies. The antenna is composed of three parts: a pentagonal patch, a modified ground 

plane that provides impedance matching (2.5-12) THz, and an FR-4 material substrate. The 

complete proposed antenna has been simulated using electromagnetic software and a 

computer simulation tool. Based on the simulation findings, the proposed antenna is the 

best option for Tera-Hertz applications. The antenna has an acceptable gain in the intended 

frequency spectrum band and operates between 2.4 and 12 THz. Computer simulation 

technology (CST 2020) software has been used to Analyze and simulate the proposed 

antenna. The simulation results show that the return losses of the frequency band (2.4-12) 

THz are less than -10 dB, and the gain has an appropriate value over the frequency band 

2.4-12) THz. The radiation pattern of the antenna is omni-direction at the desired frequency 

band. 
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1. Introduction  

The terahertz (THz) frequency range, spanning from 0.1 to 10 

THz, offers a broad spectrum that is well-suited for supporting 

the high data rates anticipated in future 6G wireless 

communication technologies. However, several technical 

challenges associated with this frequency band must be 

addressed to enable its effective use in next-generation 

networks [1]. As wireless communication systems demand 

higher data rates and face limitations in the available spectrum, 

the terahertz frequency range (0.1–10 THz) has become a focal 

point of research efforts [2]. 

Recent advances in data creation, sharing, and consumption 

have led to a significant increase in wireless data traffic. Due to 

this modification, high-speed wireless data transfer is now 

required everywhere, at all times [3]. It is expected that 

communications in terahertz technology will double every five 

years. With terahertz communication technology, data traffic 

problems can be minimized because it can send data at a very 

high-speed rate [4]. The THz frequency band is the part of the 

spectrum that occupies spectrum (0.1 -10) THz. The frequency 

ranges are less than those of far infrared and somewhat more 

than those of microwaves, which are part of the spectrum. THz 

advantage, used in biomedical, security, imaging, and 

spectroscopy, has increased dramatically in the past ten years 

[5]. 

Terahertz (THz) and sub-terahertz (S-THz) communications 

are increasingly being utilized due to the ever-growing demand 

for high bandwidth, higher data rates, and improved spectrum 

efficiency [6]. This has created a wealth of opportunities for the 

development of THz and S-THz antennas. It outlines the THz 

spectrum's application in wireless communication and its 
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distinct radiation properties. Located in a vast domain of the 

electromagnetic spectrum between the microwave and infrared 

bands, the THz and S-THz band is typically characterized as a 

segment that spans from 0.1 THz to 10 THz. This band exhibits 

rich promise for applications in sensing, imaging, 

communication, and screening [7]. 

Death is one of the most prevalent health issues in today's 

world. Globally, extensive research has been conducted on the 

detection and treatment of cancer. Promising research 

demonstrating notable progress in treating THz radiation and 

cancer diagnostics has been conducted in recent years. 

However, this topic is relatively new and hasn't yet reached the 

end of the literature [8]. The sub-THz (0.1–0.3 THz) and 

Terahertz (0.1–10 THz) ranges are commonly used for short-

range wireless communication. Compared to long-distance data 

transfer, the main drawback is the shorter transmission distance, 

but the data rate will be higher [9],[10]. A notable obstacle 

encountered at THz communication frequencies is the 

extremely high path loss imposed over longer distances. The 

primary benefit of THz frequencies is in their ability to reduce 

antenna size below micrometers (mm) [11],[12].  

The implementation of communication devices operating in the 

THz band was made possible by the discovery of photonic and 

semiconductor devices that function in this frequency range 

[13]. These communication lines are essential for short-distance 

transmission of very high data rates [14]. The main drawback is 

the short transmission distance, although the data rate will be 

higher. The shorter wavelengths of Tera-hertz cause greater 

attenuation and free-space loss [15]-[17]. Antennas with greater 

gain and directivity can help overcome this problem. 

Due to its low cost, simplicity of installation, and production, 

the microstrip patch antenna meets the specifications above. 

Several types of patch antennas are recommended for Terahertz 

applications in the literature. Numerous varieties of 

nanoantennas, most of which have complicated structures, have 

been studied in the literature. Countless additional applications, 

including brain cancer detection and medical imaging, are also 

considered [18]. Numerous antennas, including horn antennas, 

integrated waveguides, and surface log-periodic antennas, are 

being studied in the literature. Still, none of these structures can 

be used due to their three-dimensional structure, coupled with a 

compact structure [18], [19]. Due to its low cost and sub-

millimeter size, microstrip antennas are suitable for integration 

with small devices. The substantial path loss that results in 

short-distance communication is the worry when using 

terahertz [9], [19]. To increase the channel capacity, a Mult 

Input-Multi-output technique was used [20]-[23].  

By va6G, wireless communications will be incorporated into 

numerous applications in the future. It's anticipated that it will 

manage satellite communications as well as all Internet of 

Things services. For instance, wireless data rates are currently 

approaching the capacity of traditional communication 

networks at a rapid pace and have been increasing every 1.5 

years. Within the next five to ten years, it is anticipated that this 

technology will make wireless Terabit-per-second (Tbps) links 

a reality. Above all, new spectral bands and advanced physical 

layer technologies will be needed to achieve these incredibly 

enormous data rates. The oversaturation of gigahertz (GHz) 

wireless communication channels and the growing demand for 

increased bandwidth are driving forces behind the exploitation 

of the underutilized terahertz (THz) band. Due to the THz 

band's larger bandwidth, future wireless devices will be able to 

achieve high data rates, such as one terabit per second. 

The structure and gold deposition method required to create thin 

layers with a trace width of less than 100 nm. It also results in 

substantially lower conductivity values for gold than for the 

bulk material. Grain boundary scattering, surface scattering, 

and surface roughness are the causes of this lower conductivity. 

The radiation efficiency of antennas in the THz range and above 

is expected to be significantly reduced by these variables. Other 

materials, besides metals, should be considered for small-scale 

antenna loss management. Graphene is the most recent 

breakthrough in the boundary of science and technology. 

Furthermore, due to its unique properties and advantages, the 

single atomic layer of graphene from Carbone dubbed the most 

fundamental and complicated material, has received more 

attention lately. Graphene is used in various sectors, including 

thermal, electrical, and mechanical sectors. Many graphene-

based devices have been proposed for applications in the 

microwave, terahertz, and optical frequency ranges. These 

devices include filters, absorbers, polarizers, and antennas. This 

is because the applied electrical potential can be changed to 

regulate the surface conductivity of graphene. Moreover, 

graphene-based THz and photonic antennas were developed as 

a result of the gold deposition and manufacturing process. 

This study focuses on the design and simulation of an ultra-wide 

band tapered rectangular patch monopole antenna optimized for 

terahertz applications. The antenna is engineered to provide 

wideband performance while maintaining compact size and 

high efficiency, making it suitable for integration into modern 

THz communication systems. The design employs advanced 

electromagnetic modeling techniques and parametric analysis 

to achieve the desired performance characteristics. The key 

objectives of this work include achieving a wide impedance 

bandwidth suitable for terahertz frequencies, ensuring stable 

radiation patterns and gain across the operating band, and 

maintaining structural simplicity for practical fabrication using 

photolithographic or nanofabrication techniques. 

The proposed design contributes to the growing body of 

research aimed at advancing THz antenna technology, 

supporting the development of high-speed wireless networks, 

spectroscopy, imaging, and security screening systems. 

 

2. Proposed Mono-pole Antenna Element 

The UWB THz technology frequency spectrum uses a 

bandwidth of many THz, unlike commercial narrowband 

communication systems. The design of UWB antennas in the 

terahertz range is more challenging and presents numerous 

problems compared to commercial narrowband antennas. The 

microstrip patch antenna is illustrated in Fig 1. It consists of 

three parts: patch, substrate, and ground from a conducting 

material. A 50Ω transmission line feeds the patch of the 

antenna. 
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Figure. 1. Rectangular 𝑀𝑃𝐴 

 

Equations (1) to (5) were used in the design procedure, and 

MATLAB software was used to calculate the antenna 

dimensions. CST-2020 program was used to simulate the 

antenna and analyze the results, such as the radiation pattern, 

return losses, and gain of the antenna [4]: 

𝐖𝐩 =
𝐜

𝟐𝐟𝐫
√(𝛆𝐫 + 𝟏)

𝟐

                                                           (𝟏) 
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                (𝟑) 
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𝐜

𝟒𝐟𝐫√𝛆𝐫𝐞𝐟𝐟

                                                                   (𝟒) 
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In this context: Wp represents the width of the patch, c denotes 

the speed of light, fr is the resonant frequency, εr refers to the 

dielectric constant of the substrate, εreff is the effective 

dielectric constant, h indicates the substrate thickness, W is the 

substrate width, Lp stands for the patch length, and Leff 

corresponds to the effective patch length. 

In this paper, the modified and optimized proposed monopole 

antenna consists of a pentagon-shaped radiating patch element 

made from copper material. It is deposited on FR-4 material 

substrate (Εr = 4.4). The modified ground plane is on the same 

side as the radiating element. A 50 Ω transmission line was used 

to feed the antenna. The proposed antenna shape and its 

dimensions are shown in Fig. 2, and all dimensions are in 

micrometers. The lower band edge is affected by the ground 

plane cut, and the design geometry, material properties, and the 

extent of the ground plane modification influence the overall 

impedance bandwidth. The first resonance frequency of the 

antenna can be found at one-quarter of a wavelength variation. 

The OA, shown in Fig. 2, is the distance from the end of the 

transmission line to the top of the patch. 

𝑓1 =
75

√(ℇ𝑒𝑓𝑓𝑥 𝑂𝐴)

                                                 (6) 

 

 

Figure 2. The proposed  monopole antenna 

 

3. Discussion and Results  

The antenna's dispersion parameter, or return loss, is depicted 

in Fig. 3. The antenna has an ultra-wide bandwidth from (2.5 to 

12) THz, at which the return losses are less than -10 dB. The 

antenna has many resonances frequency at 3, 5.5, and 8 THz 

 

Figure 3. Return loss of the antenna 

 

The voltage standing wave ratio is shown in Fig. 4. It is clear 

that the standing wave ratio is less than 2 at the operating 

frequency band (2.5-12) THz, and the minimum SWR occurs at 

3 and 8 THz. 

 

OA 
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Figure 4. SWR of the antenna 

 

 

 

Figure .5. Impedance of the designed monopole antenna  antenna  

 

Fig. 5 shows the total Impedance of the antenna. It can be seen 

that the Impedance varies around 50 ohm around the designed 

frequency band. The proposed antenna gain is shown in Fig. 6; 

the antenna has a good gain (1-3) dB. The maximum gain 

occurs at a frequency of 10 THz, corresponding to 

approximately 3.5 dB. 

 

 

Figure 6. Gain of the antenna 

 

Fig. 7 illustrates the radiation pattern of the designed antenna at 

various frequencies: 1, 2, 3, 4, 6, 8, 10, 12, and 15 THz. The 

antenna demonstrates an omnidirectional radiation behavior 

across the intended frequency range. Additionally, Fig. 8 

presents the radiation efficiency, showing that the antenna 

maintains a high level of performance, with efficiency values 

ranging from 62% to 88% throughout the operating band. 

 

a (f=3.07THz) 

 

b (F=5.13THz) 

 

c (F=8 THz) 
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d (f=10.54 THz) 

 

 

e (f=11 THz) 

Figure 7. Far-field of the antenna at frequencies (a ) 3.07THz, (b) 

5.13THz, (c ) 8 THz, (d) 10.54 THz, (e) 11THz.  

 

 

Figure 8. Radiation efficiency  of the antenna 

 

4. Conclusions 

A compact planar monopole antenna featuring an innovative 

ground plane design is proposed for use in terahertz and 

biomedical applications. The antenna structure comprises three 

main components: an RF-4 substrate, a modified ground plane, 

and a copper pentagon-shaped radiating patch. The overall size 

of the antenna is 10 × 14 µm². It operates efficiently within the 

2.5 to 12 THz frequency range, achieving a return loss below -

10 dB across this band. The design was modeled and evaluated 

using CST Studio Suite 2020. The result showed that the 

antenna has acceptable gain and good return losses at the 

designed frequency band. These achievements make the 

proposed design a good candidate for THz and 6G applications. 
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