

270

Journal of Engineering and Sustainable Development

Vol. 29, No. 03, May 2025

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd

ISSN 2520-0917

Research Article

https://doi.org/10.31272/jeasd.2723

Work of This Research is
Licensed under CC BY

 A Proposed Mechanism for Trusted Evaluation of Web

Services

Aya Joumaa* , Basel Hasan , Nasser Nasser

Department of Software and Information Systems, Faculty of Informatics Engineering, Tishreen University, Latakia, Syria

*Email: aya.joumaa@tishreen.edu.sy

1. Introduction

Web services are software systems that perform a task or a set

of tasks, deployed and called over the World Wide Web. Web

services are designed basically to allow variant systems to

communicate with each other and exchange data across the

internet, regardless of the frameworks or programming

languages used to build these systems. Web services define the

rules for communication between different systems, and to

achieve this, they use standard protocols and architectural styles

to ensure compatibility and interoperability. The most popular

standards used in web services are Simple Object Access

Protocol (SOAP) and Representational State Transfer

architectural style (REST) [1],[2].

The web has developed, and its popularity has increased over

the last few decades. Many companies have taken it to the web

to present their services, which led to the development of web

services and increased their numbers significantly. On the other

hand, given that many services may be similar to each other and

provide the same functions, efforts were made to find

mechanisms that help users choose the appropriate services for

them, so the evaluation of web services has taken a large portion

of the researchers' interest [3],[4].

The evaluation of web services is the process of analyzing and

studying the various attributes of services to determine the

quality of the service or the extent to which it meets consumers'

requirements and the functions desired from it. The attributes

of services can be classified into functional or behavioral

attributes and non-functional or non-behavioral attributes. On

one hand, functional attributes define what the service must do

and the behaviors it must exhibit. On the other hand, non-

functional attributes determine the quality of service (QoS), and

they are represented by a set of quality-of-service metrics that

are studied, such as response time, maximum throughput, and

availability [1],[5].

2. Related Work

The research that studied the mechanisms for evaluating and

recommending web services has branched out, and many

strategies have been followed. Some of the research has studied

the evaluation of web services based on quality of service (QoS)

metrics, given that the quality of service describes its

capabilities to meet the requirements of consumers in a specific

field. Zhang et al. [6] proposed a tool to measure web service

quality independent of service providers or consumers. The

Article Info Abstract

Received 25/05/2024
 Web services are one of the important innovations in the software field, and they are used

on a large scale in modern software systems. Web services have evolved and significantly

increased during the last two decades, resulting in large numbers of similar services in terms

of function and can be used to perform the same tasks. As a result, choosing the most

appropriate web service to meet users' needs has become an important research topic. This

research presents a trusted mechanism for evaluating web services by relying on Quality of

Service (QoS) metrics, where several metrics that are measurable on the user's side were

chosen. Work has been done to make the mechanism general, scalable, and expandable to

support additional quality metrics, in addition to focusing on the ease of using this

mechanism and the evaluation calculation for the different web services. This research

works on ensuring the reliability of the results when sending them by signing results

digitally. To prove the possibility of implementing the proposed mechanism, it was tested

on three groups of web services, with each group consisting of three functionally similar

services. The experiment demonstrated the possibility of implementing the proposed

mechanism on different web services.

Revised 06/01/2025

Accepted 20/01/2025

Keywords: Digital signature; Quality of Service metrics; Service-Oriented Architecture; Web services evaluation.

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd
https://doi.org/10.31272/jeasd.2723
mailto:aya.joumaa@tishreen.edu.sy
https://orcid.org/0009-0006-1676-4226
https://orcid.org/0000-0003-0176-6975
https://orcid.org/0009-0006-6340-9171

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

271

proposed tool provides a dynamic approach to measure and

store QoS metrics, where the similarity is calculated between

the QoS values announced by service providers and the actual

values that were calculated; similarity is used to evaluate the

reputation level of the web service. Bouasker et al. [7]

introduced a monitoring system whose role is to assess and

track the values of web service quality standards to ensure new

information about the quality of service. The system is based on

QoS metrics, where these metrics are measured, and the

evaluation of services is calculated according to users'

preferences.

Another section of research is concerned with studying the

quality of service standards and data quality standards, given

the importance of data quality and its recent impact on some

services, such as medical services. Romdhani et al. [8]

presented a model for evaluating service quality and

determining the degree of trust in it so that this model integrates

a set of service quality indicators, including service

performance and data quality. The presented model is based on

the fact that it is necessary to determine to what extent the

service can guarantee a certain level of quality. However, it is

also necessary to determine the extent to which the data

provided can be trusted for data services. Therefore, the trust

measure for the service can be an indicator that represents both

the quality of the service and data quality. Song et al. [9] studied

a framework for measuring the quality of service called Quality

of Information (QoI), which is a quality measure

complementary to quality of service that measures the degree to

which web services meet non-functional requirements related

to data, where four measures were studied: Accuracy, which

measures the quality of the results whether they are correct or

meet the user's expectations, Completeness which define the

level of missing information in the results. Coverage Indicates

how the web service interacts with various inputs. Freshness

measures the number of times the web service interface related

to the data updates its data from the data source.

Some research has focused on examining user experience

characteristics and the popularity of the services for consumers.

Li et al. [10] proposed an evaluation approach based on users'

experience characteristics, such as click-through rate and the

number of components generated by web service constructs.

Where work was done to build an evaluation system based on

users' experience instead of relying on some characteristics of

Quality of Service (QoS) standards such as response time,

reliability, and other metrics. Wu et al. [11] suggested a method

to recommend web services called the popularity-aware and

diverse method of web API compositions' recommendation

(PD-WACR), where the web services' popularity and

compatibility are modeled with an API correlation graph. After

that, correlation graph-based web APIs' recommendation is

implemented with guaranteed popularity and compatibility.

In this research, we designed and developed a trusted

mechanism for evaluating web services, aiming to make the

mechanism scalable and expandable, enabling it to work on

various common web service types, namely SOAP and

RESTful web services. During the design of the mechanism, an

evaluation strategy was followed based on QoS standards,

where five metrics were considered: service response time,

productivity, availability, accessibility, and successability. The

calculation of evaluations for all services has also been

scheduled periodically through the use of scheduled cron jobs,

in addition to ensuring the authority of the evaluation results

sent for services by adding a digital signature to the results

when they are sent. The mechanism is provided through a

website so that various services can be added and ratings

calculated dynamically, in addition to displaying the added

services and their ratings to end users.

3. Materials and Methods

This section describes the methodologies used in designing the

proposed evaluation mechanism. It consists of eight

subsections: (1) Service-Oriented Architecture (SOA), (2) The

architecture of internal and external web services, (3) SOAP

web services, (4) RESTful web services, (5) Digital Signature,

(6) Techniques used in developing the proposed mechanism,

(7) Design the proposed mechanism, (8) Presented the proposed

mechanism.

3.1. Service-Oriented Architecture (SOA)

The SOA design model is a set of components whose interface

descriptions can be published, discovered, and called across a

network. These components are provided as independent

services that can be accessed uniformly. SOA provides an

infrastructure that facilitates the discovery and use of services

while maintaining loose coupling between service providers

and consumers. Fig. 1 shows the provided infrastructure by

SOA, which comprises a service provider that hosts services

and publishes their interfaces. A service broker is used to

publish descriptions of service interfaces and all necessary

means for accessing services. Service requesters are the

consumers who use the service [12].

Figure 1. Infrastructure provided by SOA.

Updated from: Sunyaev, A., (2020). Web services, in:

Internet Computing [12].

The concept of a web service is closely related to a Service-

Oriented Architecture, where SOA can be implemented through

web services technologies. Web services do not need to be

deployed in the SOA environment, and SOA does not need to

rely on web services technologies. SOA can be achieved using

almost any programming model, but it will be difficult to

achieve the required degree of loose coupling without using

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

272

web services [12]. The two most common web service types are

SOAP and RESTful web service [13].

3.2. The Architecture of Internal and External Web

Services

The internal architecture of a web service describes a complex

and multi-level system consisting of several layers that

communicate with each other, as represented in Fig. 2. Initially,

the web service interface level receives incoming messages. It

passes them to a program that translates them into a format that

the middleware layer understands. It then sends the messages to

the middleware layer. Middleware, in turn, interacts with the

web service's internal processes and resources. The service

interface is implemented and described using standard

technologies such as SOAP and REST. These two standards are

closely related to web services, where services that implement

their interfaces using SOAP are called SOAP web services,

while those that implement their interfaces using REST are

called RESTful web services [12].

The external web service architecture facilitates access to

internal services whose respective functions are exposed

through their web service interface. The external architecture

can be described as a program that acts as an intermediary

between service providers and service consumers and is in the

form of a central service broker. The role of a service broker

depends on how you implement it [12].

Figure 2. The internal and external architecture of web

services.

Updated from: Sunyaev, A., (2020). Web services, in:

Internet Computing [12].

3.3. SOAP Web Services

Web services whose interfaces are implemented using SOAP

are known as SOAP web services. SOAP is a protocol used to

exchange data, where data is sent in the form of messages

written in XML, known as SOAP messages; Fig. 3 shows an

example of a SOAP message for a client request. Several

network protocols can be used to transfer SOAP messages. Still,

the Hypertext Transfer Protocol (HTTP) is the most popular

protocol for web services and is commonly used for sending

SOAP messages. A SOAP web service publishes its

functionality through machine-readable service descriptions

based on the Web Services Description Language (WSDL)

[14],[15].

Figure 3. SOAP message for a client request.

3.4. RESTful Web Services

Web services whose interfaces are implemented using the

REST architectural style are known as RESTful web services.

REST describes an architectural style created to represent and

organize distributed systems. It helps in designing loosely

coupling applications. REST can be defined as a set of

constraints that must be taken into account when developing

applications. Constraints focus on how different components

communicate in the system rather than on the semantics of these

components. Therefore, RESTful web services are designed

with the constraints of the REST architectural style applied and

based on the HTTP transport protocol. Fig. 4 shows an example

of a REST message for a client request [16],[17].

Figure 4. REST message for a client request.

3.5. Digital Signature

The digital signature is considered one of the most common

forms of electronic signature. It is defined as information in

electronic form related to the data message, and it may be

included or added to the message or logically linked to it. The

digital signature is used to assert the identity of the sender of

the message and to indicate his agreement with the information

contained in it. A digital signature helps verify the message's

authentication and integrity and ensures nonrepudiation. Digital

signature is achieved through asymmetric cryptographic

algorithms, where the message is signed using the sender's

private key, and the signature is verified on the recipient's side

using the sender's public key. There are several mechanisms to

achieve digital signatures, as with short messages, the message

is signed directly.

Meanwhile, with long messages, only the hash of the message

is signed; this is because asymmetric encryption algorithms

take a long time to sign long messages. To avoid this, the hash

of the message is formed, and then it is signed. Many algorithms

are used with digital signatures, one of the most prominent of

which is the RSA algorithm, the ElGamal algorithm, and the

DSA algorithm [18].

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

273

RSA is one of the popular asymmetric algorithms that contains

three phases; the first phase is the generation of public and

private keys used during the encryption and decryption

processes. The next phase is the encryption process, which

transforms the plaintext into ciphertext. The third phase is

decryption, which includes decrypting the ciphertext and

converting it into plaintext on the receiver side [19],[20]. RSA

is based on the difficulty of factorizing a large number; the

public key is produced from two numbers, one of which is the

outcome of multiplying two large prime numbers, and these two

primes are used to construct the secret code. Therefore, the

secret key will be compromised if an adversary successfully

factors a large number. For this reason, the encryption strength

relies on the key's size, and the doubling or tripling of the key

size leads to an exponential increase in the strength of

encryption. The standard RSA key's length is 2048 bits; experts

expect this length will be compromised shortly. However, this

task seems unachievable at this time [21].

3.6 Techniques Used in Developing the Proposed

Mechanism

3.6.1 Wagtail CMS 1

Wagtail is an open-source content management system written

in Python and built on the Django web framework. Its modular

architecture allows it to expand and customize its functionality

to suit the needs of users and developers, whether by adding

new features or integrating with third-party services. Wagtail

provides an easy-to-use interface with many features that help

users add and track website content.

3.6.2 Zeep Library 2

Zeep is a Python library that provides fast, modern functionality

for SOAP clients; Zeep parses WSDL documents and generates

the code needed to use the services and operations within the

document. In addition, Zeep facilitates sending requests to

SOAP web services and analyzing the server response to get

results.

3.6.3 Cron Jobs 3

Cron jobs are Linux operating system commands used to

schedule tasks to be executed at some point in the future. They

are commonly used to schedule tasks to be executed

periodically according to a specific timetable written in Cron

format.

3.6.4 SignXML Library 4

SignXML is a library that implements the W3C standard for the

digital signing of XML files, known as W3C XML Signature.

The library is implemented in the Python programming

language. It helps create a digital fingerprint for XML files,

digitally sign them, and verify the signature.

3.6.5 PyCryptodome Library 5

PyCryptodome is a stand-alone Python package that covers

low-level encryption basics. It performs many tasks, including

1Wagtail CMS - Django Content Management System
2Zeep: Python SOAP client — Zeep 4.1.0 documentation
3Free cronjobs - from minutely to once a year. - cron-job.org

creating a fingerprint for files, creating and verifying the digital

signature of messages, encrypting data, and decrypting data.

3.6.6 OpenSSL Library 6

OpenSSL is a software library for various applications that

provides secure communications over computer networks. It is

widely used to allow users to perform SSL-related tasks, such

as generating private keys and creating Certificate Signing

Requests (CSRs).

3.7 Design the Proposed Mechanism

This research took advantage of the evaluation mechanism

proposed by Taycir Bouasker, Mahjoub Langar, and Riadh

Robbana [7]. The reference introduces several algorithms to

design a mechanism for evaluating web services, considering

the client's requirements, where communication occurs

continuously between clients, and the proposed mechanism in

the reference [7] for calculating evaluations. In this research,

proposed algorithms are analyzed and allocated to design an

evaluation mechanism directed toward web service users and

providers.

The proposed mechanism calculates evaluations for web

services periodically to ensure the freshness and reliability of

the evaluations. The mechanism collects all similar services

together and arranges them according to the evaluation results

while giving users the ability to filter services according to the

priority of the factors studied for them, thus helping them

choose the appropriate service for them according to their

different preferences, providing users with graphic charts that

help them know the development of services and evaluating

them over the years, in addition to ensuring the reliability of the

evaluations sent for web services by signing them digitally.

3.7.1 Define the evaluation metrics

The proposed mechanism follows the evaluation strategy based

on Quality of Service (QoS) metrics, where five metrics are

selected to be measurable from the user side; they are [7]:

• Response Time (RT): The period required from the send

request time until the response is received.

• Maximum Throughput (TH): This metric refers to the

number of requests processed during the time unit. It is

determined mathematically according to the equation:

𝑇𝐻 =
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠𝐼𝑛𝑇𝑖𝑚𝑒𝑈𝑛𝑖𝑡

TimeUnit
 (1)

• Availability (AV): It determines the availability of the

web service, as it specifies the time during which the web

service is available during the measured time. It is defined

mathematically according to the equation:

4SignXML documentation
5PyCryptodome’s documentation
6OpenSSL - openssl.org

https://wagtail.org/
https://docs.python-zeep.org/en/master/
https://cron-job.org/en/
https://xml-security.github.io/signxml/
https://pycryptodome.readthedocs.io/en/latest/
https://www.openssl.org/

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

274

𝐴𝑉 =
TimeServiceAvailable

MeasuringTime
 (2)

• Accessibility (ACC): This metric defines the accessibility

of a web service. It is determined mathematically according

to the following equation:

𝐴𝐶𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐴𝑐𝑘𝑀𝑒𝑠𝑠𝑎𝑔𝑒𝑠

NumberOfRequests
 (3)

• Successability (SUCC): It measures the ability to process

requests successfully and return responses to the client. It

is determined mathematically according to the following

equation:

𝑆𝑈𝐶𝐶 =
𝑁𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑠

NumberOfRequests
 (4)

In this research, all service operations are considered when

calculating the metrics. Therefore, all service operations and the

information necessary to send requests to them correctly are

extracted. To calculate any metric, its value is measured for

each operation, and the average represents the value of this

metric for the service.

Each metric was determined through a set of five parameters

whose value is determined by the client, which are [7]:

• The class (C) determines the importance of the metric

when calculating the service evaluation. It may take one

of the following three values: N means the metric is

mandatory, DNN means it is preferable to calculate the

metric, but it is not mandatory, and O means it is not

mandatory (optional).

• The weight (W): It is the relative importance of a metric

in comparison to other metrics.

• QoS attribute (Q): The metric that is calculated.

• Best Value (BV): Defines the best value a customer can

expect for the metric.

• Worst Value (WV): Specifies the worst value of the metric

for the customer.

The parameters within the research are identified according to

the following:

• Class (C): Its value is set to N for all metrics, so the five

metrics will be used to calculate the evaluation of all web

services.

• Worst Value (WV) and Best Value (BV): These values are

variable and manageable through the control panel for

each category.

Weight (W): It is controlled in a variable and manageable

through the control panel for each category. The sum of

all metrics' weights must be ten because the evaluations

are calculated out of ten.

Therefore, evaluations are calculated for all services in the same

category according to the same parameters' values to compare

them effectively.

Initially, WV, BV, and W parameters are given the default

values defined in Table 1.

Table 1. Default values for the BV, WV, and W parameters.

Metric BV WV W

RT 1 Sec 5 Sec 1.4

TH 6 Req/Sec 1 Req/Sec 1.4

AV 100 50 2.8

ACC

SUCC

100

100

70

70

2.8

1.6

3.7.2 Calculating the evaluation value

After calculating the metrics and determining their five

parameters, the web services evaluation is calculated by

following several algorithms [7]. In this research, the

algorithms were customized, and only two algorithms were

used, which are:

• Partial score computation algorithm: Partial scores for

metrics are calculated by calculating the distance between

the previously measured metric value (MV) and the range

of acceptable metrics values, BV and WV [7].

The bullets should be used as follows:

• Bullet one (Use “Paragraph - bullets)” style).

• Bullet two (Use “Paragraph - bullets” style).

• Global score computation algorithm: The final

evaluation is initialized with zero. Then, for each metric,

Algorithm 1: Partial score computation algorithm [7]

Input: A requirement defined by (C, W, Q, BV, WV, MV)

1: if (((Q ∈ Q+) AND (MV ≥ BV)) OR ((Q ∈ Q−) AND

 (MV ≤ BV))) then ▷ Best Case

2: scorer ← 1

3: else if (((Q ∈ Q+) AND (MV ≤ WV)) OR ((Q ∈ Q−)

 AND (MV ≥ WV))) then ▷ Worst Case

4: scorer ← 0

5: else if (Q ∈ Q+) then ▷ Case of positive attributes

 with accepted values

6: scorer ← 100 ∗ ((MV − WV) / (BV − WV)) ▷ How

 far is the MV compared to WV

7: else ▷ Case of negative attributes with accepted values

8: scorer ← 100 ∗ ((WV − MV) / (WV − BV))

9: end if

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

275

its partial points calculated in the previous algorithm are

multiplied by the parameter value (W) and added to the

final evaluation value [7].

Within the research, the evaluation of web services is calculated

periodically to ensure the evaluations are up-to-date and

objective. The previous steps are performed once every 6 hours

a day, achieved using cron jobs.

The concept of service quality is still under study, and no

unified definition exists. Instead, there are many different

points of view on how to define it. Some may take product

quality as a basis for determining service quality. In contrast,

others may define quality based on user preferences, whereas

some resort to using the concept of service value to infer

quality. In contrast, others calculate service quality based on the

purpose and context for which the service is used [22].

Therefore, when designing a system to evaluate web services

based on service quality metrics, we cannot create a general and

unified model because there is no fixed concept of service

quality but rather a set of interconnected approaches [23]. In the

research paper [7], the previous metrics and algorithms were

used to calculate the evaluation of web services by relying on

user preferences to calculate service quality. Therefore, to

evaluate a service, the user will communicate with the proposed

evaluation mechanism and determine the values of the four

parameters (C, BV, WV, and W) for each quality metric. In

addition, for each metric, the user has to determine the technical

attributes necessary to measure its value, such as test start time,

test end time, frequency, and iteration. The values of the metrics

are estimated based on the test periods and technical attributes

specified by the user. The measured values are used with the

two previous algorithms to calculate the final evaluation by

relying on the values of the parameters (C, BV, WV, W)

specified by the user for each metric. As for this research, the

previous metrics and algorithms were used to develop a

mechanism for evaluating the quality of web services based on

the context of service use and its purpose. According to the

proposed mechanism, many web services can be added and

classified into different groups based on the context of service

use and the functions they provide. Therefore, for all services

that belong to the same category (used in the same context), the

values of the parameters (C, BV, WV, W) will be determined

in a manner consistent with its use context, and from there, the

evaluation is calculated for all services under the same category

using the same metrics and parameters values, which enables us

to compare these services effectively. Following this approach

helped to evaluate a wide range of web services, with the

possibility of comparing functionally similar services in terms

of performance quality, which helped users choose the

appropriate service for them from among similar services. Fig.5

displays the proposed system's flowchart diagram, which

illustrates the system’s processes and how data flows between

them.

Figure 5. Flowchart diagram for the proposed system.

3.8 Presented the Proposed Mechanism

After designing the infrastructure for the evaluation

mechanism, the mechanism is presented through a website so

that new categories and web services can be easily added

through the control panel. After adding the services, the

calculating evaluation process begins dynamically, and the

evaluations are displayed to users through web pages. The work

is done through the following steps:

• Adding categories: categories are added through the

control panel, where the user can add categories to services

to group all services that provide similar functions and

NO

YES Is a

service

provider?

End

Calculate

initial scores

for metrics

Did 6

hours

pass?

Add new service

Extract service operations

Calculate service

evaluations every 6 hours

Send requests to the

service provider.

Measure evaluation's

metrics values

Inquiry all active

services in the

system

Calculate final

scores for

metrics.

Calculate final

evaluation

Sign the

evaluation

results

digitally.

Send the signed

results to the

service provider.

Verify the

authenticity of

the results

received by the

service provider.

Display the

latest results on

the website's

pages.

Interact with

pages and

check the latest

evaluations.

Start

Store

evaluation

results

NO

YES

Display results

on the service

provider

interface

Algorithm 2: Global score computation algorithm [7]

Input: The table of all requirements defined by {(C[i], W[i],

Q[i], BV[i], WV[i], MV[i]); i=1...M} the table of all

requirements scores defined by {scorer[i]; i = 1...M}

1: WSScore ← 0 ▷ WSScore: the global score assigned to

 the WS initialized to 0

2: for i := 1 → M do ▷ M is the number of all

 Requirements

3: WSScore ← WSScore + W [i] ∗ scorer [i] ▷ scorer

 [i] is the partial score of the ith requirement

4: end for

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

276

compare these services in terms of performance. As

mentioned previously in this research, the weight

parameter, the best value parameter, and the worst value

parameter are determined through the control panel, as

shown in Fig. 6, where the same values are added for all

similar services to ensure effective comparison between

them, as the comparison is done according to the same

standards.

Figure 6. Manage parameter values for each category through

the control panel.

• Adding web services: Web services are added through the

control panel, and work is done to evaluate the two most

common types of web services: SOAP and RESTful web

services. Thus, the services are added, then the service

processes are extracted, along with all their details and the

parameters necessary to call these processes in the correct

format.

• Calculating evaluations: In this step, the evaluation is

calculated for all web services that have been added to the

website by following the evaluation mechanism that was

proposed and designed. This is done through a command

that inquires about all active web services on the website

and executes the instructions for measuring the previously

described metrics and algorithms. This command is

executed periodically through cron jobs, and this is done

every 6 hours daily.

Every time a web service evaluation is calculated, the result

is stored in a special record for the service. These records

are used to display annual, monthly, and weekly statistics.

These statistics help users understand the development of

the web service's performance over the years and make a

choice based on that.

• Displaying web services and evaluation results to users:

All categories added to the site and all the services

affiliated with each category are shown. These services are

arranged according to the results of their evaluation while

allowing users to filter services according to the metric's

importance to them and their preferences. Users are

provided detailed service information and evaluation

results for each web service. The final evaluation result is

displayed in addition to the calculated values of the

metrics, as represented in Fig. 7, to achieve transparency

and reliability in presenting the results.

Figure 7. Displayed detailed evaluation results for each

web service.

In addition, statistical charts are displayed for each service,

showing its performance over the years, months, and

weeks, as in Fig. 8, to provide users with detailed

information that helps them choose the appropriate

services.

Figure 8. Statistical charts reflecting the service’s

performance.

• Ensuring the authenticity of evaluation results:

In the proposed mechanism in reference [7], the evaluation

results are displayed to the user only, while the proposed

mechanism in this research has been designed to be general

and provide the evaluation service for both web service

consumers who wish to choose the appropriate web service

for them from a group of functionally similar services, and

web service providers who need to have their services

evaluated by a trusted third party. Work has been done to

ensure reliability for both types of users, where for

consumers, reliability has been implicitly guaranteed by

ensuring the freshness of the evaluation results and

achieving transparency and objectivity by providing the

user with all service information and evaluation details. As

for service providers, in addition to evaluating their

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

277

services and displaying them on the website, the evaluation

results are sent to the service providers so that the service

provider can display the evaluation result on its service

description interface, and thus, all service users can know

the service evaluation when using it, where this evaluation

is reliable for them because it was calculated by a third

party, which is the proposed evaluation mechanism, which

helps them use the service with greater confidence based

on the evaluation information. Fig.9 shows how a locally

developed RESTful web service displays the evaluation

results calculated by the proposed evaluation mechanism.

Thus, consumers can learn and use service evaluation

based on that knowledge. Since the evaluation results are

sent from the proposed mechanism to service providers

over the network, it was necessary to ensure the integrity

and authenticity of the results when transmitting them over

the network by signing them digitally before sending them.

Two web services were developed locally to prove the

ability to guarantee authenticity for different evaluated

services: a SOAP web service and a RESTful web service.

For SOAP web service, its evaluation results will be signed

digitally from the evaluation mechanism side using the

SignXML library, depending on the RSA algorithm with

2048-bit keys generated locally via OpenSSL. When the

SOAP web service receives the evaluation results, it will

verify the authenticity of the data by verifying the signature

validity using the public key, and the evaluation result will

be displayed on its description interface after that. In

addition, for RESTful web services, evaluation results will

be signed digitally on the evaluation mechanism side using

the PyCryptodome library, depending on the RSA

algorithm with the same generated keys. When the

RESTful web service receives the evaluation results, it will

verify the authenticity of the data by verifying the signature

validity using the public key and display the evaluation

result on its description interface, as represented in Fig.9.

Figure 9. Displayed the evaluation results on the locally

designed RESTful web service description Interface.

4. Results and Discussion

To verify the validity of the approach followed and confirm the

possibility of its implementation, many web services belonging

to the various categories were added, and evaluations for these
services were calculated. It has relied on one of the largest and

7 Text Translator
8 Google Translate

most famous web service centers, RapidAPI, which provides

more than 40 thousand web services to obtain web services. The

RapidAPI team has grouped functionally similar services,

forming more than 500 groups. For example, one group

contains services that belong to flight data, and another one

contains services related to sending emails and validating email

addresses [9], [24]. Services were grouped into categories to

compare similar functionality services each other, where for

each category of services, work was done depending on the

following steps:

• Determining the parameters' values: As discussed before,

for all services that belong to the same category, the same

parameters' values will be used to evaluate services based

on the same criteria so we can compare them effectively.

• Measuring the values of the five metrics for all web

services under this category.

• Calculating the initial score of services' metrics depending

on their measured values in step 2 and the best value and

worst value parameters specified for the category in step 1.

• Inferring the final score for services' metrics deepening on

the initial score calculated in step 2 and the weight

parameter determined for the category in step 1.

• Calculating the final evaluation for each web service by

summing the values of its metrics final scores

cumulatively.

This research will introduce three test cases for three web

services categories.

- First test case: Three services that provide translation

functionality are manually selected. These services are Text

Translator7, Google Translate8, and Tribal Mail9. This is

according to the information provided by the RapidAPI pages

for these services. Data and results for each step are

summarized by the following:

• Some translation web services may use advanced natural

language processing (NLP) techniques or handle complex

language process functionality. In its role, this can impact

response time for these services, mainly when they handle

long texts and some complex tasks. However, it's always

important for these services to be consistently available and

handle requests successfully without errors. Based on that,

in this test case, high weights were assigned for

availability, accessibility, and successability, and the

threshold of their worst accepted values was increased. In

contrast, the weights for response time and maximum

throughput were given lower values than previous metrics,

and the threshold of their worst value decreased. The

values of all the metrics' parameters are represented in the

Fig.10.

9 Tribal Mail – Translate

https://rapidapi.com/dickyagustin/api/text-translator2
https://rapidapi.com/robust-api-robust-api-default/api/google-translate113/
https://rapidapi.com/marchingtonoliver/api/tribal-mail-translate

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

278

Figure 10. The values of metrics’ parameters for translation

services.

• Table 2 shows the measured values for all translation

services’ metrics.

Table 2. Measured values for translation services' metrics.

Service RT TH AV ACC AVV

Text Translator 1.092 1.025 100 100 100

Google Translate 1.266 0.829 100 100 100

Tribal Mail 4.190 0.542 100 100 100

• The metrics' initial scores will be calculated depending on

measured values and parameters. Table 3 displays the

metrics' initial scores.

Table 3. Initial scores for translation services metrics.

Service RT TH AV ACC AVV

Text Translator 0.976 0.170 1 1 1

Google Translate 0.933 0.138 1 1 1

Tribal Mail 0.202 0.090 1 1 1

• Table 4 displays the final scores for all translation services’

metrics.

Table 4. Final scores for translation services metrics.

Service RT TH AV ACC AVV

Text Translator 1.367 0.239 2.80 2.80 1.60

Google Translate 1.306 0.193 2.80 2.80 1.60

Tribal Mail 0.283 0.126 2.80 2.80 1.60

10 Temp Mail
11 Email Verification

• Final translation services evaluations will be displayed in a

decreased order based on the evaluation results in Table 5.

Table 5. Translation services evaluation results.

Service Service Evaluation

Text Translator 8.806

Google Translate 8.699

Tribal Mail 7.6097

- Second test case: Three services were chosen manually, and

they provide the function of creating temporary email addresses

or verifying the validity of addresses. These services are Temp

Mail10, Email Verification11, and Email Validator API12,

according to the information provided by the RapidAPI pages

for these services. Data and results for each step are

summarized by the following:

• For email web services, the main tasks achieved by these

services are email verifications or generating temporary

emails. Because these functionalities are simple, the

response time for these services is expected to be small. In

addition, these services need to provide stable

functionalities, so they should be available and handle

requests successfully most of the time. For this reason, in

this test case, the weights of response time and maximum

throughput were increased, in addition to maximizing the

threshold of the worst accepted value for them and

increasing the limit of their expected best value. While

keeping the weights of availability, accessibility, and

successability high because they are important too, their

weights were decreased to increase the weights of response

time and maximum throughput. The values of all the

metrics’ parameters are represented in the Fig.11.

 Figure 11. The values of metrics’ parameters for email

services.

12 Email Validator API

https://rapidapi.com/ymgstuffs/api/temp-mail70
https://rapidapi.com/info-qGn690NaE/api/email-verification7
https://rapidapi.com/webtutstamil/api/email-validator-api3

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

279

• Table 6 shows the measured values for all email services’

metrics.

Table 6. Measured values for email services' metrics.

Service RT TH AV ACC AVV

Temp Mail 1.035 0.971 100 100 100

Email Verification 1.694 0.754 100 100 100

Email Validator 11.60 0.087 100 100 100

• The metrics' initial scores will be calculated depending on

measured values and parameters. Table 7 displays the

metrics' initial scores.

 Table 7. Initial scores for email services metrics.

Service RT TH AV ACC AVV

Temp Mail 0.654 0.043 1 1 1

Email Verification 0.435 0.007 1 1 1

Email Validator 0 0 1 1 1

• Table 8 displays the final score results for all email

services’ metrics.

Table 8. Final scores for email services metrics.

Service RT TH AV ACC AVV

Temp Mail 1.31 0.077 2.20 1.70 2.30

Email Verification 0.87 0.012 2.20 1.70 2.30

Email Validator 0 0 2.20 1.70 2.30

• Final email services evaluations will be displayed in

decreased order, based on evaluation results in Table 9.

Table 9. Email services evaluation results.

Service Evaluation Result

Temp Mail 7.587

Email Verification 7.082

Email Validator 6.2

- Third test case: Manually select three services that provide

users with the latest news related to various fields. These

services are News API13, Indonesian News Feed14, and Arabic

news API15, according to the information provided by the

13 News API
14 Indonesian News Feed

RapidAPI pages for these services. Data and results for each

step are summarized by the following:

• News web services will work to keep users updated with

the latest news; querying large numbers of news and

sending substantial payloads over the network can

noticeably affect response times, sometimes by several

seconds. While these services provide straightforward

functionalities, they must handle requests efficiently and

work correctly most of the time. Otherwise, their quality

will be perceived as low. Therefore, the weights of

response time and maximum throughput have been

decreased compared to translation and email services; in

addition, the threshold of the expected worst value for these

parameters has been decreased, and the limit of the

expected best value limit for them has been increased. In

addition, the weights of other parameters have been

increased, and the thresholds of their worst allowed value

have been raised to ensure that user requests are handled

correctly at all times. The values of all the metrics'

parameters are represented in the Fig.12.

Figure 12. The values of metrics’ parameters for news

services.

• Table 10 shows the measured values for all news services’

metrics.

Table 10. Measured values for news services metrics.

Service RT TH AV ACC AVV

News API 1.199 1.036 100 100 100

Indonesian News 2.362 0.740 100 100 100

Arabic news 6.440 0.263 100 100 100

• The metrics' initial scores will be calculated depending on

measured values and parameters. Table 11 displays the

metrics' initial scores.

15 Arabic news API

https://rapidapi.com/bonaipowered/api/news-api14
https://rapidapi.com/radityafajaremail/api/indonesian-news-feed
https://rapidapi.com/ruamazi/api/arabic-news-api

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

280

Table 11. Initial scores for news services metrics.

Service RT TH AV ACC AVV

News API 0.933 0.012 1 1 1

Indonesian News 0.545 0 1 1 1

Arabic news 0 0 1 1 1

• Table 12 displays the final score results for all news

services’ metrics.

Table 12. Final scores for news services metrics.

Service RT TH AV ACC AVV

News API 1.119 0. 012 2.90 2.70 2.20

Indonesian News 0.654 0 2.90 2.70 2.20

Arabic news 0 0 2.90 2.70 2.20

• Final email services evaluations will be displayed in

decreased order, deepening on evaluation results in Table

13.

 Table 13. News services evaluation results.

Service Evaluation Result

News API 8.931

Indonesian News 8.454

Arabic news 7.8

5. Work Limitation:

- The parameter values of the metrics in various test cases were

assigned based on specific assumptions clarified previously for

each case. However, these values may be adjusted based on

real-life experiments or the development of new techniques that

enhance the speed of certain services, such as translation

services. Consequently, the mechanism has been designed to

manage metrics via a control panel, as illustrated in Fig. 10, Fig.

11, and Fig. 12, allowing for easy adjustments to accommodate

different conditions.

- The proposed evaluation mechanism will be a third-party

service located on a separate server and provided to different

types of users through a website. Users can view the various

categories and web services evaluated and interact with the

evaluation mechanism through the website pages. The

evaluation results shown in the tables are not affected by the

location and environment of the users, as these evaluations are

not calculated on the user's side but on a separate server.

Therefore, the results will be the same for all users regardless

of location and environment. However, the evaluation results

may differ if the location or environment of the proposed

mechanism's server changes due to the difference in some

factors, such as internet speed, and the impact of these factors

on the values of some metrics, such as response time when

measured. However, despite this difference, the results of the

comparison between the quality of functionally similar web

services are not affected because the values of the standards are

measured. The quality of service is calculated for all services

evaluated within the exact location and environment, ensuring

the effectiveness and integrity of the comparison between

functionally similar services.

6. Conclusion

This research proposes a mechanism for evaluating web

services. The mechanism follows the evaluation strategy based

on QoS metrics, where five metrics are chosen to be measurable

from the user side. We measured these metrics and calculated

evaluations for the two most common types of web services:

SOAP web services and REST web services. The mechanism is

presented through a website with the ability to add unlimited

numbers of web services and the ability to group similar

services to help users compare similar services and filter

services according to the importance of the metric to them, in

addition to calculating ratings periodically, to ensure the

freshness and the reliability of the evaluations, in addition to

display statistics to users to provide them with information

about the development of various web services over the years

and choosing the web service in light of that. In the future, by

taking advantage of the proposed mechanism, we seek to design

an evaluation mechanism that covers multiple evaluation

strategies. For example, designing a mechanism that calculates

the popularity of the service for users in addition to the quality

of service metrics (QoS) in an attempt to study the integration

of different strategies with each other, as well as its effect in

giving more objective and comprehensive evaluations of web

services.

Acknowledgments-

The authors would like to reveal their appreciation and gratitude

to the respected reviewers and editors for their constructive

comments.

Conflict of interest

The authors declare that there are no conflicts of interest

regarding the publication of this manuscript.

Author Contribution Statement

Aya Joumaa.: developed the theory and performed the

computations.

Basel Hasan and Nasser Nasser.: proposed the research

problem, verified the analytical methods, and supervised the

findings of this work.

All authors discussed the results and contributed to the final

manuscript.

Journal of Engineering and Sustainable Development, Vol. 29, No. 03, May 2025 ISSN 2520-0917

281

References

[1] A. V. Tokmak, A. Akbulut, and C. Catal, “Web service discovery:
Rationale, challenges, and solution directions,” Comput Stand Interfaces, vol.

88, p. 103794, 2024, doi: https://doi.org/10.1016/j.csi.2023.103794.

[2] A. Soni and V. Ranga, “API Features Individualizing of Web Services:
REST and SOAP,” International Journal of Innovative Technology and

Exploring Engineering, vol. 8, no. 9S, pp. 664–671, Aug. 2019, doi:

https://doi.org/10.35940/ijitee.I1107.0789S19.

[3] K. Zatwarnicki, “Providing Predictable Quality of Service in a Cloud-Based

Web System,” Applied Sciences, vol. 11, no. 7, p. 2896, Mar. 2021, doi:
https://doi.org/10.3390/app11072896.

[4] L. Purohit and S. Kumar, “Web Services in the Internet of Things and Smart

Cities: A Case Study on Classification Techniques,” IEEE Consumer

Electronics Magazine, vol. 8, no. 2, pp. 39–43, Mar. 2019, doi:

https://doi.org/10.1109/MCE.2018.2880808.

[5] O. V. Polska, R. K. Kudermetov, and V. V. Shkarupylo, “An Approach Web

Service Selection By Quality Criteria Based On Sensitivity Analysis of MCDM
Methods,” Radio Electronics, Computer Science, Control, no. 2, pp. 133–143,

Jul. 2021, doi: https://doi.org/10.15588/1607-3274-2021-2-14.

[6] H. Zhang, Z. Shao, H. Zheng, and J. Zhai, “Web Service Reputation
Evaluation Based on QoS Measurement,” The Scientific World Journal, vol.

2014, pp. 1–7, 2014, doi: https://doi.org/10.1155/2014/373902.

[7] T. Bouasker, M. Langar, and R. Robbana, “QoS monitor as a service,”
Software Quality Journal, vol. 28, no. 3, pp. 1279–1301, Sep. 2020, doi:
https://doi.org/10.1007/s11219-020-09514-1.

[8] S. Romdhani, G. Vargas-Solar, N. Bennani, and C. Ghedira-Guegan, “QoS-

based Trust Evaluation for Data Services as a Black Box,” in 2021 IEEE

International Conference on Web Services (ICWS), Chicago, IL, USA, pp. 476–

481, 2021, doi: https://doi.org/10.1109/ICWS53863.2021.00067.

[9] Z. Song, O. Rowader, Z. Li, M. Tello, and E. Tilevich, “Quality of

Information Matters: Recommending Web Services for Performance and

Utility,” in 2022 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), Bangkok, Thailand, pp. 41–48. 2022,

doi: https://doi.org/10.1109/CloudCom55334.2022.00016.

[10] C. Li, B. Cheng, J. Chen, P. Gu, N. Deng, and D. Li, “A Web Service
Performance Evaluation Approach Based on Users Experience,” in 2011 IEEE

International Conference on Web Services, Washington, DC, USA, pp. 734–

735. 2011, doi: https://doi.org/10.1109/ICWS.2011.29.

[11] S. Wu et al., “Popularity-Aware and Diverse Web APIs Recommendation

Based on Correlation Graph,” IEEE Trans Comput Soc Syst, vol. 10, no. 2, pp.

771–782, Apr. 2023, doi: https://doi.org/10.1109/TCSS.2022.3168595.

[12] A. Sunyaev, “Web Services,” in Internet Computing, Cham: Springer

International Publishing pp. 155–194, 2020, doi: https://doi.org/10.1007/978-

3-030-34957-8_6.

[13] K. Kumar, A. K. Jain, R. G. Tiwari, N. Jain, V. Gautam, and N. K. Trivedi,

“Analysis of API Architecture: A Detailed Report,” in 2023 IEEE 12th
International Conference on Communication Systems and Network

Technologies (CSNT), Bhopal, India, Apr. 2023, pp. 880–884. doi:

https://doi.org/10.1109/CSNT57126.2023.10134658.

[14] J. Tihomirovs and J. Grabis, “Comparison of SOAP and REST Based Web

Services Using Software Evaluation Metrics,” Information Technology and

Management Science, vol. 19, no. 1, Jan. 2016, doi:

https://doi.org/10.1515/itms-2016-0017.

[15] M. A. Fdheel, I. K. Abboud, and A. S. Hassan, “Web Services Design and

Implementation through C# .NET,” J. eng. Sustain. Dev., vol. 18, no. 4, pp.
141–154, Jul. 2014. [Online].

Available: https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/8

44

[16] J. Juneau and T. Telang, “RESTful Web Services,” in Java EE to Jakarta

EE 10 Recipes, Berkeley, CA: Apress, pp. 511–530. 2022,doi:

https://doi.org/10.1007/978-1-4842-8079-9_13.

[17] S. U. Meshram, "Evolution of Modern Web Services – REST API with its

Architecture and Design," IJRESM, vol. 4, no. 7, pp. 83–86, Jul. 2021. [Online].

Available: https://journal.ijresm.com/index.php/ijresm/article/view/970

[18] B. Barhoum, Information systems security, Latakia, Syria: Directorate of

Books and Publications - Tishreen University, 2020.

[19] S. M. Suhael, Z. A. Ahmed, and A. J. Hussain, “Proposed Hybrid

Cryptosystems Based on Modifications of Playfair Cipher and RSA

Cryptosystem,” Baghdad Sci. J, vol. 21, no. 1, pp. 151-160, Jan. 2024. doi:

https://doi.org/10.21123/bsj.2023.8361

 [20] S. G. Chaloop and M. Z. Abdullah, “Enhancing Hybrid Security Approach

Using AES and RSA Algorithms,” J. eng. Sustain. Dev., vol. 25, no. 4, pp. 58–

66, Jul. 2021, doi: https://doi.org/10.31272/jeasd.25.4.6.

[21] K. K. Jabbar, F. Ghozzi, and A. Fakhfakh, “Robust Color Image

Encryption Scheme Based on RSA via DCT by Using an Advanced Logic
Design Approach,” Baghdad Sci. J, vol. 20, no. 6(Suppl.), p. 2593-2607, Dec.

2023, doi: https://doi.org/10.21123/bsj.2023.8715.

[22] J. Miliauskaite, “Quality of service: Concept analysis,” CEUR Workshop
Proc, vol. 924, pp. 235–240, Jan. 2012. [Online]. Available: https://ceur-

ws.org/Vol-924/paper24.pdf.

[23] Y. Wang and J. Vassileva, “A Review on Trust and Reputation for Web
Service Selection,” in 27th International Conference on Distributed Computing

Systems Workshops (ICDCSW’07), Toronto, ON, Canada pp. 25–25., 2007,

doi: https://doi.org/10.1109/ICDCSW.2007.16.

[24] J. C. Alonso, A. Martin-Lopez, S. Segura, J. M. Garcia, and A. Ruiz-

Cortes, “ARTE: Automated Generation of Realistic Test Inputs for Web APIs,”

IEEE Trans Softw Eng, vol. 49, no. 1, pp. 348–363, Jan. 2023, doi:

https://doi.org/10.1109/TSE.2022.3150618.

https://doi.org/10.1016/j.csi.2023.103794
https://doi.org/10.35940/ijitee.I1107.0789S19
https://doi.org/10.3390/app11072896
https://doi.org/10.1109/MCE.2018.2880808
https://doi.org/10.15588/1607-3274-2021-2-14
https://doi.org/10.1155/2014/373902
https://doi.org/10.1007/s11219-020-09514-1
https://doi.org/10.1109/ICWS53863.2021.00067
https://doi.org/10.1109/CloudCom55334.2022.00016
https://doi.org/10.1109/ICWS.2011.29
https://doi.org/10.1109/TCSS.2022.3168595
https://doi.org/10.1007/978-3-030-34957-8_6
https://doi.org/10.1007/978-3-030-34957-8_6
https://doi.org/10.1109/CSNT57126.2023.10134658
https://doi.org/10.1515/itms-2016-0017
https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/844
https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/844
https://journal.ijresm.com/index.php/ijresm/article/view/970
https://doi.org/10.21123/bsj.2023.8361
https://doi.org/10.1007/978-1-4842-8079-9_13
https://doi.org/10.21123/bsj.2023.8715
https://ceur-ws.org/Vol-924/paper24.pdf
https://ceur-ws.org/Vol-924/paper24.pdf
https://doi.org/10.1109/ICDCSW.2007.16
https://doi.org/10.1109/TSE.2022.3150618

