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1. Introduction  

Object detection in aerial images is still being worked on; it has 

many uses, such as large-scale monitoring, intelligent 

transportation, and location-based services  [1]. Recent work on 

the object detection problem has made much progress, but it is 

still challenging to solve when things in aerial images are tiny, 

like vehicles that are less than 8 pixels across [2]. Pixels in 

digital photographs encode color and intensity. Small object's 

limited pixel representation makes key aspects challenging to 

extract, whereas more oversized items provide a wealth of 

detail. Also, distinguishing small objects from background 

noise is complex in complicated settings  [3]. The model must 

have high spatial resolution to locate and classify these objects 

among similar-sized parts and textures. To identify and analyze 

objects in aerial photographs, professionals in artificial 

intelligence utilize convolutional neural networks (CNNs) 

based on deep learning [4]. 

Object detection algorithms can be categorized into region-

based and single-shot methods. Examples of region-based 

approaches consist of Mask Region-Based Convolutional 

Neural Networks (Mask R-CNN)  [5], Faster Region-Based 

Convolutional Neural Networks (Faster R-CNN  [6], and Fast 

Region-Based Convolutional Neural Networks (Fast R-CNN)  

[7]. Fast R-CNN proposes regions for training using an 

exhaustive selective search, then extracts features from these 

regions to classify data. Faster R-CNN, on the other hand, uses 

a Region Proposal Network (RPN) within a convolutional 

network to remove the need for intensive selective searching. 

An additional branch of pixel-to-pixel segmentation mask 

prediction is introduced by Mask R-CNN, which further 

expands Faster R-CNN. Single-shot techniques such as YOLO  

[8], Single Shot MultiBox Detector (SSD)  [9], and various other 

ways have been introduced recently. These approaches see 

object detection as a regression task. YOLO processes the 

whole image in one step, predicting both bounding box and 

class probabilities concurrently. It utilizes abjectness scores for 

making predictions. It is not advisable for small objects that 

make up a significant portion of the aerial information  [10]. 

Compared to two-stage detectors, YOLO, which includes 

YOLOv5s, provides faster inferences and improves the 

detection accuracy for aerial images [11]. The YOLOv7, 

introduced in 2022, outperforms previous object identification 

models and earlier YOLO versions in terms of speed and 

accuracy. However, it still struggles with detecting small 

objects with a limited number of pixels due to the image 

resolution being reduced to 80x80 for such objects. This 

technology has various applications, such as monitoring 
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deforestation [12], tracking wildlife [13], disaster management 

[14], urban planning [15], precision agriculture [16], and 

maritime surveillance [17], demonstrating its significant impact 

across different fields. 

The YOLOv5 algorithm consists of different versions. These 

are nano, small, medium, large, and X-large, based on the depth 

and width of the algorithm [18]. The YOLO algorithm is 

divided into three essential parts: the backbone, neck, and head 

[19]. The proposed algorithm EN-YOLO is based on YOLOv5s 

and provides a new prediction head of 160x160 resolution that 

significantly improves tiny object detection. 

This paper aims to enhance object detection in aerial images, 

focusing on discovering tiny objects. It achieves its objectives 

by modifying the YOLOv5s architecture, including replacing 

the SPPF module with the SPP module, using the SiLU 

activation function instead of ELU, and adding a new prediction 

head. 

2. Related Work 

There is much work on the topic of object detection in aerial 

images. In 2017, Sommer et al. [20] introduced the detection of 

vehicles in aerial images using deep learning based on multi-

category. The proposed approach is Faster R-CNN to detect 

objects based on multi-category. They implemented all 

experimental methods on DLR 3K Munich Vehicle Aerial 

Image, and the results are when method VGG16 was used, the 

result of AP for the cars and trucks was (58.8% and 30.6%) 

respectively. The mAP was (44.7%). The result of AP for the 

cars and trucks when adapted VGG16 was used is (65% and 

27.5%), respectively, and the mAP was (46.2%). When the 

proposed Net method was used, the value of AP for cars and 

trucks was (91.6% and 25.3%) respectively, and the result of 

mAP was (58.8%). 

In 2019, Yang et al.[21] introduced detecting clustered objects 

instead of individual objects. This approach addressed the 

challenges of tiny object pixels and objects' sparse and 

disorganized distribution. Using the ClusDet method with 

ResNet50, ResNet101, and ResNeXt101, the mAP results on 

the DOTA dataset were 32.0, 31.7, and 32.0, respectively. 

In 2020, Su et al. [22] introduced a method for detecting 

multiscale key points in aerial images. Traditional keypoint-

based detectors typically use a fixed-size feature map, which 

limits their ability to recognize objects of varying scales in 

aerial views. The authors proposed the multiscale keypoint 

detection network (MKD-Net) to address this issue. This novel 

network fuses multiscale layers to generate multiple feature 

maps for objects of different sizes. All feature maps can be used 

for corner prediction during the inference stage. The 

effectiveness of MKD-Net was evaluated using the mAP metric 

on two datasets: DOTA and PASCAL VOC. MKD-NET 

achieved 31.8 on the DOTA dataset and 44.8 on the PASCAL 

VOC dataset. 

In 2021, Wang et al.[2] presented a method for detecting small 

objects in aerial images, those with a size of less than 8 pixels. 

The authors introduce a novel dataset called AI-TOD, which 

consists of 700,621 items categorized into eight distinct 

categories. The majority of the objects in this dataset have a size 

of 12.8 pixels. The AI-TOD was constructed using publicly 

accessible extensive aerial image datasets, including DOTA-

v1.5, xView, VisDrone2018-Det, Airbus Ship, and DIOR. 

Their methodology uses a Learning Network called M-

CenterNet in combination with Multiple Centre Points. The M-

CenterNet is an anchor-free keypoint detector that utilizes 

several points to precisely locate the center of an object, hence 

enhancing the accuracy of detecting small objects. The 

proposed method achieved accuracies 14.5, 40.7, 6.4, 6.1, 15, 

19.4, and 20.4 in terms of AP, AP0.5, AP0.75, APvery tiny, APtiny, 

APsmall, and APmedium, respectively. Superior to Yolov3 and 

other methods. 

In 2022, Pandey et al.[10] proposed a method to enhance object 

detection for drone or unmanned vehicle images. The 

challenges addressed in this work are the accuracy of small 

object detection, class imbalance issues, and boosting 

performance by contextual information. The method used in 

this work improved MCNN to obtain a density map and 

RetinaNet to detect small objects, and the results were evaluated 

on the VisDrone dataset. The results of the AP metric values 

were (29.6 and 29.9) respectively. 

In 2022, Singh and Munjal[23] introduced an enhanced version 

of the YOLOv5l p6 model to improve the detection of small 

objects in aerial images. They used the prior version of 

YOLOv5 -p6 as the baseline model, which consists of four 

prediction heads by default, ranging from (80x80) for small 

objects to (10x10) for extra-large objects. The baseline model 

includes a focus module at the beginning of the backbone 

network and the Spatial Pyramid Pooling (SPP) at the end. This 

work aims to improve the YOLOv5l architecture for detecting 

small targets by modifying its structure. A new layer for feature 

fusion was incorporated into the feature pyramid module of 

YOLOv5l, enhancing its performance in detecting tiny objects. 

The algorithm's performance was evaluated using the DOTA 

and VisDrone datasets, benchmark datasets for aerial images. 

To increase accuracy in detecting tiny objects, input images 

were used at a resolution of 1024x1024 rather than the default 

640x640 in YOLOv5. The enhanced YOLOv5l achieved a 

mean Average Precision (mAP) of 0.386 on the DOTA dataset, 

surpassing the 0.371 mAP achieved by YOLOv5x. On the 

VisDrone dataset, the enhanced YOLOv5l attained an mAP of 

0.452, compared to 0.317 mAP in YOLOv5x, using confidence 

thresholds ranging from 0.5 to 0.95. 

In 2023, Deng et al.[24] introduced a lightweight version of 

YOLOv5. This work proposed a new feature fusion method 

called the Deep Feature Map Cross Path Fusion Network 

(DFM-CPFN) to enhance the semantic information of deep 

features. Replacing the minimum detection head with the 

maximum detection head is recommended to improve 

performance. The second part of the article is devoted to 

constructing a new VoVNet-based module that enhances the 

backbone network's feature extraction capabilities. The study 

concluded by making the network more lightweight without 

compromising detection accuracy, using the concept of 

ShuffleNetV2. Compared to the original method, LAI-

YOLOv5s achieves 40.4 on the mAP@0.5 index using the 

VisDrone2019 dataset.  

 



Journal of Engineering and Sustainable Development, (Vol. 29, No. 01, January 2025)                                         ISSN 2520-0917 

 

59 

In this paper, the contributions are: 

• The Sigmoid Linear Unit (SiLU) activation function 

commonly utilized in the convolutional layers of YOLO 

has been substituted with the Exponential Linear Unit 

(ELU) activation function. This modification is 

accompanied by integrating an additional convolutional 

layer across all components of YOLO. This adjustment 

addresses issues related to the rate at which the loss 

function converges during the training phase. 

• The deployment of Spatial Pyramidal Pooling-Fast 

(SPPF) at the terminal section of the YOLO backbone 

architecture has been replaced with Spatial Pyramidal 

Pooling (SPP). This decision stems from recognizing that 

while SPPF offers expedited processing, its suitability for 

accurately detecting small-scale objects is suboptimal. By 

reverting to SPP, the objective is to enhance the network's 

capability to handle small objects effectively. 

•  Another prediction head has been introduced, particularly 

for detecting tiny objects. The default YOLOv5 

architecture includes three prediction heads that extricate 

features from neck feature maps of different sizes: (20x20) 

for large objects, (40x40) for medium objects, and (80x80) 

for small objects. This new version adds a (160x160) 

prediction head to detect tiny objects better. This 

enhancement is designed to improve the network's ability 

to detect objects of varying scales, thereby increasing its 

effectiveness in object detection tasks. 

The EN-YOLO model used in this work enhances localization 

accuracy and achieves notable performance improvements on 

the DOTA and CarJet datasets when evaluated using the mAP 

metric. It overcomes default YOLOv5 and most other work. 

Choosing YOLOv5 instead of the latest versions of YOLO for 

the contribution is due to YOLOv5 offering specialized anchor 

box customization, stability, compatibility, performance 

adequacy, community support, and suitability for detecting very 

small objects in aerial images. In addition, the last versions need 

more considerable computation resources without a significant 

difference in accuracy.   

3. Materials and Methods 

3.1. Dataset 

Two types of datasets are used. The first one is the large-scale 

Google Earth images (DOTA), which contain 2806 images with 

15 classes. The images include objects with a diverse range of 

sizes, orientations, and shapes, and each one is approximately 

4000×4000 pixels in size[25]. Only photos of vehicles and 

plane objects were collected, about 1325 images. 

The DOTA dataset contains about 52763 small objects (less 

than 3 pixels) of 145195 objects, as shown in Fig. 1. This 

number is problematic for authors studying object detection. 

 

Another dataset, CarJet, was compiled from multiple sources, 

including the HRPlane, Semantic Drone, and Aerial Car 

datasets. It consists of approximately 2,043 images captured by 

drones and unmanned aerial vehicles (UAVs) from low 

altitudes. Consequently, the majority of objects in these images 

are medium to large, as depicted in Fig. 2. 

 

 

Acknowledging that using only two classes (vehicles and 

planes) reduces the data's diversity and may simplify the 

classification task is essential. However, the primary objective 

is to develop a model that can reliably distinguish between 

vehicles and planes, the most common objects of interest in 

target urban scenarios. Although these two classes may not 

frequently co-occur in cities, this approach aims to address 

scenarios where distinguishing between these broad categories 

is critical. This focus on vehicles and planes is based on their 

relevance to urban monitoring and surveillance applications. In 

this work, small and large vehicles have been combined into a 

single "vehicle" class. The primary reason for this decision was 

to simplify the classification problem and focus on the broader 

category of vehicles commonly found in urban environments. 

By doing so, the objective is to develop a generalized model 

capable of detecting vehicles without distinguishing between 

different subcategories. 

Figure 1. Sample of DOTA dataset images[25] 

Figure 2. Sample of CarJet dataset images 
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3.2.  Labeling  

All objects in the images must be labeled manually before 

beginning the training in the YOLO algorithm, which assigns a 

class to each object called the ground truth [26].  

All images in two datasets were labeled manually by an 

application called “lebelImg,” as shown in Fig. 3. The 

"lebelImg" app provides advanced labeling tools, allowing 

precise labeling of various object shapes and sizes. To minimize 

labeling errors, it includes built-in quality control mechanisms, 

such as label validation and consistency checks. Additionally, a 

validation process was conducted in which multiple annotators 

manually reviewed a subset of the labeled data to ensure 

consistency and accuracy. 

 

3.3. Overview of YOLOv5 

The YOLO algorithm idea is different from other systems 

because it predicts both surrounding boxes and classes at the 

same time. First, the picture sent is split into a (S x S) grid. Next, 

B bounding boxes are set up in each grid cell, and each one has 

a confidence score [27]. In this case, "confidence" means the 

chance that an object is inside each box, as shown in Equation 

(1): 

𝐶 = 𝑃 ∗ 𝐼𝑂𝑈                                                   (1) 

IOU, which stands for intersection over union, is a fraction 

containing values between 0 and 1. Fig. 4 illustrates the concept 

of intersection, representing the area where the predicted 

bounding box overlaps with the ground truth. The union refers 

to the combined area covered by both the predicted and ground 

truth bounding boxes. Ideally, the Intersection over the Union 

(IOU) should be close to 1, indicating that the predicted 

bounding box closely matches the actual bounding box [28]. 

The (P) is a prediction bounding box, and the (C) is a 

confidence score, so if the (C) is equal to or greater than the 

threshold of a specific class that is determined in training 

(default is 0.5), the object assigned to this class. Equation (2) 

describes the IOU. 

𝐼𝑂𝑈 =
|𝐴⋂𝐵|

|𝐴⋃𝐵|
                                                                  (2) 

 

The YOLOv5 model is structured into three key components: 

the Backbone, Neck, and Head modules. 

• The Backbone network is responsible for extracting 

feature information from input images. 

• The Neck module integrates these features to generate 

three feature maps at different scales. 

• The Head module then utilizes these feature maps to 

detect objects [29]. 

The backbone network of YOLOv5 is primarily constructed 

using the CSPDarkNet53 architecture, which incorporates 

Convolutional (Conv), C3, and SPPF layers. Convolution, 

batch normalization, and the SiLU function are all components 

that together make up the Conv layer. The C3 module can 

minimize the number of model parameters by utilizing residual 

connections, ultimately increasing the inference speed. The 

SPPF module consists of three max-pooling 5x5 layers. 

YOLOv5 utilizes the Path Aggregation Network (PANet) in its 

Neck component, which enhances the Feature Pyramid 

Network (FPN) with bottom-up paths. Following top-down 

feature fusion in FPN, the bottom-up routes convey positional 

information from lower layers to deeper ones, significantly 

improving the localization capability across various scales [30]. 

The YOLOv5 architecture is shown in Fig. 5. 

 

Figure 3. labelImg application 

Figure 4. Concept of Instruction and 

Union 

(a) 
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3.4. Evaluation Metrics 

This work assesses the performance of the original YOLOv5 

model and EN-YOLOv5s models' performance using several 

metrics, including Precision, Recall, F1-score, Average 

Precision (AP), and Mean Average Precision (mAP). Precision 

(P) is calculated as shown in Equation (3), Recall (R) is given 

by Equation (4), and the F-Score is defined in Equation (5). The 

Average Precision (AP) is computed as the integral of Precision 

over Recall, as shown in Equation (6), and the Mean Average 

Precision (mAP) is the mean of AP values across all classes, as 

expressed in Equation (7). 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃) =
𝑇𝑝

𝑇𝑝+𝐹𝑝
𝑋100                                     (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 𝑅𝑎𝑡𝑒 (𝑅) =
𝑇𝑝

𝑇𝑝+𝐹𝑛
𝑋100                                (4) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 (%) = 2𝑋
(𝑃 × 𝑅)

(𝑃+𝑅)
𝑋100                             (5) 

𝐴𝑃 = ∫ 𝑃(𝑅)𝑑𝑅
1

0
                                                       (6) 

𝐴𝑃 =
∑ 𝐴𝑃(𝑖)𝑛

𝑖=1

𝑛
                                                            (7) 

True Positive (TP) represents the accurately detected knots, 

False Positive (FP) signifies the additional knots incorrectly 

identified on the timber surface (commission error), and False 

Negative (FN) indicates the missed knots during detection 

(omission error). Precision is the proportion of accurately 

identified knots among all the knots that were identified. The 

Recall Rate served as a measure of the detector's sensitivity. 

The F-Score offered a method to merge Precision and Recall 

Rate into a unified score encompassing both aspects. A higher 

F-Score signifies a more precise model. 

4. The Proposed Method (EN-YOLOv5s) 

There are many challenges with identifying tiny objects; 

therefore, many authors are trying to figure out a solution. The 

proposed contributions are: 

4.1. Activation Function 

The Convolutional layer commonly uses the Rectified Linear 

Unit (ReLU) as its activation function due to its fast learning 

and simple implementation, owing to its low computational 

demands. However, a limitation of the ReLU activation 

function is that when it produces a value less than zero, the 

gradient remains at zero, which can cause the weight to stay 

zero throughout the training process. As a result, this can hinder 

effective learning. The ReLU function is defined in Equation 

(8), and its derivative is shown in Equation (9). 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥)                                                       (8) 

 

𝑅𝑒𝐿𝑈´(𝑥) = {
1         𝑖𝑓 𝑥 > 0
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                           (9) 

The ELU activation function is an altered version of the ReLU 

activation function. As a result, the training time is reduced, and 

neural networks' performance on the test set is improved. When 

x is less than zero, the exponential function links the differential 

function without breaking. A broken function, like the step 

function, might lead to local optima, as shown in Fig. 6 since 

the loss function can be constructed unevenly. Equations (10) 

and (11) describe the ELU activation function and its derivative, 

respectively. 

 

𝐸𝐿𝑈(𝑥) = {
𝑥                 𝑖𝑓 𝑥 > 0

𝛼𝑒𝑥 − 1     𝑖𝑓 𝑥 ≤ 0
                                       (10) 

 

𝐸𝐿𝑈´(𝑥) = {
1                    𝑖𝑓 𝑥 > 0 

𝑓(𝑥) + 𝛼     𝑖𝑓 𝑥 ≤ 0
                                   (11) 

 

α is typically defined as 1. (If α does not equal 1, it is called 

SeLU.) However, the exclusive linear unit combines the 

benefits of ReLU and tackles the issue of Dying ReLU. The 

exponential function is computed differently from the normal 

ReLU, and the output value is almost perfectly centered around 

zero. 

The comparison between the three activation functions is 

shown in Fig. 6. 

(b) 

(c) 

(e) 

(f) 

(g) 

(d) 

Figure 5. (a) The YOLOv5 Architecture (b) The CBC    

(c) The SPPF (d) The C3-True (e) The C3-False (f) The 

Bottleneck 1 (g) The Bottleneck 2 
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These issues can be addressed by using the Sigmoid Linear Unit 

(SiLU) activation function. SiLU, as defined in Equation (12), 

becomes saturated with negative inputs, which can sometimes 

cause gradients to vanish and impede learning. Moreover, SiLU 

is generally limited to systems based on reinforcement learning 

and is typically only accessible in the hidden layers of deep 

neural networks. The derivative of the SiLU function is 

presented in Equation (13). 

𝑆𝑖𝐿𝑈(𝑥) = 𝑥 ∗
1

1+𝑒−𝑥                                                      (12) 

 

𝑆𝑖𝐿𝑈´(𝑥) =
1

1+𝑒−𝑥 + {(𝑥 ∗
1

1+𝑒−𝑥) ∗ (1 −
1

1+𝑒−𝑥)}          (13) 

 

The ELU activation mechanism is employed to resolve this all-

encompassing issue. The SiLU and ELU activation functions 

both address the issue of dying ReLU. However, the SiLU 

function has limited applicability, leading us to substitute it 

with the ELU function in all parts of YOLOv5.  

4.2. Spatial Pyramidal Pooling (SPP) 

The most recent version of YOLOv5 uses SPPF, which alters 

the pooling core size to be the same for all of the cores and 

replaces the three parallel max pooling in SPP with serial 

pooling. By optimizing the process of pooling, it is possible to 

avoid duplicating SPP processes, which in turn helps to enhance 

the speed at which the network operates. Even while SPPF 

increases the network's detection rate, it is not optimal for 

detecting small dense objects (such as the objects in the DOTA 

dataset) due to its imperfect accuracy, so we suggest returning 

to SPP. In the YOLOv5 network, the Spatial Pyramid Pooling 

(SPP) structure is designed to generate a fixed-size feature 

vector from images of varying dimensions as output from the 

fully connected layer. To enhance the network's receptive field, 

improve the feature map's expressive capability, and leverage 

the maximum pooling operation for feature extraction, the SPP 

structure uses convolutional kernels of sizes 5, 9, and 13. It 

starts by performing (1 × 1), (5 × 5), (9 × 9), and (13 × 13) 

maximum pooling operations in parallel on the data processed 

through the convolutional normalization activation function. 

These results are then concatenated and combined with the CBE 

structure[31]. The architecture of the SPP module is illustrated 

in Fig. 7. 

 

 

Spatial Pyramid Pooling (SPP) is beneficial in the sense that it 

is best for small object detection tasks in terms of capturing 

multi-scale features, adaptively adjusting the receptive field of 

the network, including contextual information, being invariant 

to scale, being tolerant of variation in size and aspect ratio, and 

rectifying the issue of information loss. For all these reasons, 

SPP is essential in any object detection network, especially one 

that deals with precise small object detection. 

4.3. Prediction Head 

The YOLOv5s network can only handle down-sampling steps 

up to 32. So, a target is considered small if its resolution is less 

than 32 x 32 pixels, large if its size is more than 96 x 96 pixels, 

and medium if its resolution is in the middle. Two additional 

categories are created for targets whose resolution is less than 

32 x 32 pixels: tiny (resolution < 16 x 16 pixels) and small (16 

x 16 pixels < resolution < 32 x 32 pixels), due to the high 

number of small-scale objects in UAV images. 

The YOLOv5s network features three detection layers: P3, P4, 

and P5. These layers handle feature maps with sizes of 80 × 80, 

40 × 40, and 20 × 20, respectively. Larger feature maps are 

better suited for detecting smaller objects. The 80 × 80 feature 

map corresponds to an input size of 640 × 640; each grid has an 

8 x 8 reception area. The network has trouble identifying a small 

object's features when its height or width in the image is less 

than 8 pixels. The new P2 detection branch addresses this by 

detecting objects as small as 4 × 4 pixels, using smaller anchor 

boxes to reduce the number of missed detections for small 

vehicles significantly.  

According to Fig. 8, the initial C3 module in the Backbone 

generates a feature map with dimensions of 160 × 160 after 

undergoing two down-samplings. In contrast, the second C3 

module produces a feature map with dimensions of 80 x 80. The 

P2 detection branch is created by combining the up-sampled 

output from the second C3 module with the 160 × 160 feature 

map. The shallow convolutional layer, which contributes extra 

shape, location, and size information, is the main input source 

for P2. This enriched data helps the model better distinguish 

subtle features, thereby improving its ability to detect small 

targets more accurately. The overall EN-YOLOv5s are shown 

in Fig.8. 

(b) (a) 

Figure 6. a. SiLU, ReLU, and ELU Activation Function 

b. SiLU, ReLU, and ELU Derivative Function 

Figure 7. The Structure of The SPP Module 
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EN-YOLOv5s gains more accuracy than most other algorithms. 

However, it may still encounter limitations inherent to the 

YOLO framework, including potential challenges in handling 

complex scenarios with occlusions, variations in lighting 

conditions, and diverse object scales. Furthermore, EN-

YOLO's performance could degrade when implemented on 

datasets with different characteristics from its development 

environment. Fig. 9 shows the proposed method's flow chart 

diagram. 

 

 

 

 

(b) 

(c) 

(d) 

(e) 

(f) 

Figure 8. (a) EN-YOLOv5 Architecture (b) The CBE       

(c) The C3E-True (d) The C3E-False (e) The 

Bottleneck1 (f) The Bottleneck2 

Figure 9. The Flowchart of the proposed method 
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5. Experiment 

Experiments on two aerial picture datasets, DOTA and CarJet, 

validated the proposed model's performance.  

5.1. Experimental Environment 

The suggested model was implemented using the official 

YOLOv5 GitHub repository. The model was modified and then 

trained using Python Jupyter notebooks on the Google Colab 

Pro platform. 

5.2.  Experimental Work 

Both datasets were trained and validated for 100 epochs on the 

default YOLOv5s, YOLOv5m, YOLOv5l, YOLOv7, and the 

proposed model EN-YOLOv5s in several stages with a learning 

rate of 0.01 and optimizer SGD.  

6. The Results  

Three modifications are proposed to contribute to improving 

the detection of small objects. Firstly, a new head prediction for 

tiny object detection, and then the activation function is 

replaced with ELU. At last, replace the SPPF with the SPP 

module. The results are obtained at every step for the two 

datasets and compared with the default structure of YOLOv5 

(S, M, and L), YOLOv7, and other state-of-the-art methods. 

The training, validation, and testing results illustrate the 

efficiency of EN-YOLOv5s compared with all versions of 

YOLOv5 and YOLOv7 in both datasets. Table 1 shows the AP 

and mAP for the DOTA dataset and Table 2 for the CarJet 

dataset. 

 

Table 1. Comparison of mAP for different structures of 

YOLOv5 for the DOTA dataset 

 

The proposed model is better than the others for both metrics. 

The proposed model achieved progress of about (7.1) in terms 

of mAP (0.5-0.95) and (6.7) in terms of mAP (0.5) from 

YOLOv5s, which is the same version. Also, the proposed 

model overcomes the medium and large versions of YOLOv5, 

and the results showed that the ELU activation function and the 

SPP module are better for tiny and dense objects. 

 

Table 2. Comparison of mAP for different structures of 

YOLOv5 for the CarJet dataset 

 

Table 2 shows that the SPPF module is better for medium and 

large objects than SPP. 

Table 3 illustrates the DOTA dataset's precision and recall 

metric value and Table 4 for the CarJet Dataset. 

 

Table 3. Comparison of Precision/Recall for different      

structures of YOLOv5 for the DOTA dataset 

 

Here, the YOLOv5l model achieves gain compared to another 

approach regarding the Precision metric, and the YOLOv7 

model achieves gain compared to another approach regarding 

the Recall metric. 

The result in Table 4 also shows that the proposed approach 

with the SPPF is better than the other in terms of the precision 

metric, and the YOLOv7 model achieves a gain compared to 

another approach regarding the Recall metric. 

Table 5 compares the proposed EN-YOLOv5s model with 

state-of-the-art methods to demonstrate its effectiveness. 

 

Methods mAP  mAP   

(0. 5)% 

YOLOv5s 48.9 28.9 

YOLOv5m 49.4 31.4 

YOLOv5l 

YOLOv7 

50.5 

51.3 

33.5 

32.6 

YOLOv5s+P2+SiLU+SPPF 53.2 31.7 

YOLOv5s+P2+ELU+SPPF 53.9 34.3 

YOLOv5s+P2+ELU+SPP 

(Proposed) 

54.4 35.1 

Methods mAP  mAP 

 (0. 5)% 

YOLOv5s 95 70.2 

YOLOv5m 96.2 71.2 

YOLOv5l 

YOLOv7 

96.7 

96.6 

72.3 

72.3 

YOLOv5s+P2+SiLU+SPPF 95.3 70.3 

YOLOv5s+P2+ELU+SPPF 

(Proposed) 

96.9 72.5 

YOLOv5s+P2+ELU+SPP 94.7 68.9 

Methods Precision Recall 

YOLOv5s 80 41.1 

YOLOv5m 80.2 42.3 

YOLOv5l 

YOLOv7 

84.9 

84.5 

42.4 

48.9 

YOLOv5s+P2+SiLU+SPPF 80.1 45 

YOLOv5s+P2+ELU+SPPF 80.8 46.3 

YOLOv5s+P2+ELU+SPP (Proposed) 82.8 48.8 
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Table 4. Comparison of Precision/Recall of different 

structures of YOLOv5 for the CarJet dataset 

 

 Table 5. Validation Comparison of The Proposed model (EN-

YOLOv5s) with the five Recent Different Models for the 

DOTA dataset 

 

Table 5 shows that the proposed model outperformed the first 

four models in terms of mAP metrics. However, the 

YOLOv5improv model achieved higher accuracy than the 

proposed model. This is attributed to using YOLOv5l as a 

baseline model and an input image resolution of 1024x1024, 

which directly impacts accuracy.  

Table 6 illustrates the parameters and Giga Floating Point 

Operations (GFLOPs) of EN-YOLOv5s. Where the parameters 

refer to the weights and biases in the neural network. In the 

context of YOLOv5, these parameters are learned during 

training and are crucial for the model's ability to make accurate 

predictions. The number of parameters in a model is often used 

to measure its complexity; more parameters typically allow the 

model to capture more intricate patterns in the data but also 

require more computational resources for training and 

inference. GLOPs represent the number of floating-point 

operations (FLOPs) required to make a prediction, measured in 

billions. This metric is a measure of the computational 

complexity of the model. A higher number of GLOPs indicates 

that the model requires more computational power to process 

an input. In the context of YOLOv5, GLOPs are used to assess 

the efficiency and speed of the model during inference. 

 

 Table 6. Comparison of Parameters/GFLOPs of different 

structures of YOLOv5 

 

Table 6 shows that the parameters and GFLOPs of the proposed 

model are increased compared with the original YOLOv5s but 

still less than YOLOv5m, YOLOv5l, and YOLOv7 with better 

accuracy. 

Although the accuracy increased, the model's speed decreased, 

so when a new predicted head with a resolution of 160x160 was 

added to the model, the parameters and GFLOPs increased, too. 

Fig. 10 illustrates the curve of Precision/Recall of the proposed 

model for the DOTA dataset. 

 

  

Fig. 11 illustrates the curve of Precision/Recall of the proposed 

model for the CarJet dataset. 

 

Methods Precision Recall 

YOLOv5s 95.4 94.2 

YOLOv5m 96.5 94.3 

YOLOv5l 

YOLOv7 

96.9 

95.7 

94.7 

96.1 

YOLOv5s+P2+SiLU+SPPF 95.6 94.4 

YOLOv5s+P2+ELU+SPPF 

(Proposed) 

97.9 95.1 

YOLOv5s+P2+ELU+SPP 94 93.9 

Methods mAP  mAP  

(0. 5)% 

ClusDet (ResNet50)[21] 

ClusDet (ResNet101)[21] 

ClusDet (ResNeXt101)[21] 

MKD-NET[22] 

YOLOv5imprv[23] 

47.6 

47.8 

47.1 

53.8 

60.3 

32.0 

31.7 

32.0 

31.8 

38.6 

EN-YOLOv5s (Proposed) 54.4 35.1 

Methods Parameters GFLOPs 

YOLOv5s 7025023 16 

YOLOv5m 20875359 47.9 

YOLOv5l 

YOLOv7 

46143679 

37200095 

108.2 

105.4 

YOLOv5s+P2+ELU+SPP 

(Proposed) 

8396820 40 

Figure 10. Precision/Recall carve for DOTA dataset 

Figure 11. Precision/Recall carve for CarJet dataset 
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Fig. 12 shows a sample image for the test of EN-YOLOv5s. 

 

Fig. 12 shows a good detection of small objects using the 

proposed model. 

The result illustrates that the proposed model is better than 

others for the DOTA dataset. Although the SPP module 

consumes more resources, it is better for tiny clustered objects 

than SPPF modules. This is in contrast with another dataset, 

which contains larger objects. The ELU activation function is 

better than others, and adding a prediction head helps improve 

the detection of tiny objects.   

Fig. 13 shows a sample image for the failed detection of two 

planes on EN-YOLOv5s.  

                    

 

7. Conclusions  

This work is based on the modified YOLOv5s architecture, 

significantly improving object detection, especially for small 

and clustered objects. The results show substantial 

advancements in detecting challenging objects, with a 

remarkable increase in the overall accuracy of mAP scores for 

small object classes in the DOTA dataset. Additionally, 

detection performance improves when using the SPPF module 

on the CarJet dataset. This work illustrates the efficiency of the 

proposed model compared with YOLOv7 and most state-of-

the-art algorithms. 

The work findings strongly support the effectiveness of the 

proposed model improvements in enhancing object detection 

accuracy. Although these modifications led to some unexpected 

slowdowns in model speed, the trade-offs are valid as they 

significantly advance detection performance. 

The broader implications of this work include progress in aerial 

image analysis for surveillance and traffic management 

applications, addressing practical problems by improving 

object detection accuracy. 

However, the work has limitations, such as potential sample 

size and methodology challenges. Additional studies with 

various datasets and scenarios are necessary to validate our 

findings further. Future work should aim to optimize model 

architectures for a better balance between accuracy 

and efficiency and explore different methods of object 

detection in aerial images. 

8.  Future Work 

In future work, the focus will include computing the capacity of 

parking areas and airports to build an effective IoT light model. 

By integrating the enhanced object detection algorithms into 

IoT frameworks, we can develop systems for real-time 

monitoring and management of parking spaces, airport 

logistics, traffic control, and surveillance. This will involve: 

• Parking Capacity Computation: Developing algorithms to 

accurately detect and count vehicles in parking lots,  

• enabling real-time updates on available parking spaces 

and efficient parking management. 

• Airport Capacity Management: Applying object detection 

techniques to monitor airplane positions and movements 

within airport premises, optimizing ground operations, 

and enhancing safety protocols. 

• IoT Light Model Integration: Designing lightweight IoT 

systems that leverage the improved object detection 

capabilities to provide real-time data and analytics for 

smart city applications, including traffic management and 

surveillance. 

• Traffic Control and Surveillance: Enhancing traffic 

control systems by providing accurate real-time data on 

vehicle movement, congestion patterns, and potential 

incidents, thereby improving response times and traffic 

flow management. 

These advancements aim to contribute to the development of 

smart infrastructure and enhance the efficiency and 

effectiveness of urban management systems. Improving data 

collection methodologies and analytical techniques will ensure 

robust and reliable object detection algorithms. This work 

contributes valuable insights into aerial surveillance and traffic 

control through advancements in object detection algorithms. 

Its objective is to guide future work and applications in aerial 

image analysis. 
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