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Abstract: The number of cancer diagnoses and deaths 
worldwide is rising every year despite technological 
advancements in diagnosing and treating multiple forms 
of cancer. An oncolytic virus is a type of tumour-killing 
virus that can infect and analyze cancer cells while mostly 
preserving normal cells. The oncolytic Vesicular-Stomatitis 
Virus therapeutic's cell cycle-specific action 
mathematically investigated. An optimal Proportion 
Integral-Derivative (PI-D) controller is introduced in this 
paper based on a suggested Improved Crow Search 
Algorithm (ICSA) to enhance the outcome of oncolytic 
virotherapy. The control technique was tested in a 
computer using MATLAB simulation. The suggested ICSA 
is used to tune the parameters of the PI-D controller. The 
ICSA used the inertia factor and boundary handle 
mechanism in the position update equation to balance 
exploration and exploitation. The simulation results show 
that decrease in total dose, tumour cells to 30%, the 
tumour remain in the treatment area from day 30 
onwards. Furthermore, the ICSA algorithm outperforms 
the CSA and PSO algorithms by 34.5497×10-6 and 
15.2573 ×10-6, respectively, indicating the robustness of 
treatment methods that can accomplish tumour 
reduction through biological parameters ambiguity. 
 

Keywords: Oncolytic virotherapy, feedback mechanism, 

biotherapy, PI-D control, robust control, ICSA, PSO 

algorithm.  

1. Introduction 

The number of cancer cases and deaths is 

increasing worldwide every year despite medical 

advances in diagnosing and treating many types 

of cancer [1]. Chemotherapy and radiation 

therapy kills cancer cells and damages the body's 

cells simultaneously [2]. An oncolytic virus is a 

type of tumour-killing virus that can infect and 

analyze cancer cells while leaving normal cells 

largely intact [2]. When oncolytic viruses are 

given to patients or directly injected into a 

tumour, these viruses spread through the tumour 

and infect cancer cells. These viruses can 

replicate in infectious cancer cells. When 

infectious cancer cells degenerate, their 

explosion can lead to new viruses that can infect 

more neighbouring cancer cells [3]. 

Mathematical models trained on clinical trial 

data can generate hypotheses and answer the 

question of "what if" testing performance is 

verified in silico to guide and validate future 

trials and analyze and simulate complex 

biological systems dynamics at low cost [4]. 

Therefore, it is vital to use a reliable 

mathematical model with sufficient descriptive 

power and predictability to perform such 

theoretical analyses. Selection of medication, 

dosage, and treatment schedule has become a 
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bewildering issue due to the complexity and 

heterogeneity of the disease. 

All over the world, cancer scientists and 

clinicians are looking to use the available 

treatment options in a more effective way to 

improve treatment outcomes and the quality of a 

patient's life [5]. Different treatment protocols are 

followed in cancer treatment, for example, 

controlling a low dose for a long time or a high 

dose followed by a low dose [5]. Depending on 

the system model and the objective function, the 

optimal controller is used to derive the optimal 

solution [5]. 

Many control goals can define according to the 

required conditions. For example, the common 

goal-directed is to reduce the number of cancer 

cells at the end of the treatment. With this 

primary goal, there are many conditions, such as 

maintaining the drug level within a specific 

concentration or less than the permissible limit 

and the number of normal cells and immune cells 

[5]. 

Optimization is a method of determining the right 

set of variables to accomplish the intended goal 

(s) precisely or approximately, probably by trial 

and error. Nature-inspired optimization 

algorithms are metaheuristic algorithms focused 

on biological principles, swarm behaviour, and 

chemical or physics processes [6]. For example, 

the Crow Search Algorithm, inspired by crow 

nature, was first published in [7], with its primary 

use in engineering problems with constraints. 

Interactions between virotherapy and control 

theory have illustrated in many previous studies. 

For instance, Yongmei et al. in [8] used Optimal 

control, virotherapy with targeted control to 

reduce the tumour size. Still, the model they used 

didn't have an equilibrium point, so the tumour 

could strongly return. On the other hand, Joseph 

et al. in [9] use an ideal control for chemotherapy 

in combination with virotherapy to improve the 

results of chemotherapy and virotherapy. So that 

reduced the total tumour size was appropriate, the 

results showed the treatment program's success, 

and the amount of optimal medication for 

chemotherapeutic and virus combination is half 

of the respective maximum tolerated doses. 

Anita et al. in [10] use state-dependent algebraic 

Riccati equation (SDARE) (similar to linear 

LQR while SDARE is a nonlinear approach used 

with nonlinear control) to extract the optimal 

infusion rate for virotherapy using robust and 

optimal control virotherapy, the number of 

cancer cells is reduced almost to 60%. 

In this paper, the same mathematical model in 

[10] investigated and an optimal Proportion 

Integral-Derivative (PI-D) controller based on an 

improved crow search algorithm for its 

parameters used to manage the amount of 

medication given to patients.  

The remaining sections of this paper organized as 

follows; the mathematical model reviewed in the 

second section and the improve crow search 

algorithm shown in the third section. The fourth 

section discusses the PI-D controller's 

architecture. The fifth part addresses the 

simulation results and analysis of the proposed 

controllers, and six provides the conclusion. 

 

2. Cell Cycle-Specific Model 

Various models for cancer therapy using 

oncolytic virotherapy suggested, and all models 

are novel due to variations in the underlying 

virus. A mathematical model for cell cycle-

specific activity of the oncolytic Vesicular-

Stomatitis Virus (VSV) therapeutic will depend 

in this paper. VSV is an RNA virus that shows 

anti-tumour efficacy in many human cancer cell 

lines, including the breast,  prostate, cervical, 

https://arxiv.org/search/math?searchtype=author&query=Malinzi%2C+J
https://ieeexplore.ieee.org/author/37087405245
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and hematologic cancers [11]. It has distinct 

characteristics as it can only be transmissible 

when the tumour cells are in the active stages of 

the cell cycle [12]. 

During the decomposition process of breaking 

the membrane of cancer cells next to destroy the 

cancer cells, the virus can activate the immune 

system of the human body, where this device will 

be responsible for removing the virus later after 

the process of decomposition [13]. Joseph et al. 

in [11] developed an age structure ordinary 

differential equations (ODEs) mathematical 

model for VSV virus.  

VSV cannot attack cancer cells in the resting 

stage G0, but it can attack them in the rest of the 

stages, so the tumour is divided into two groups 

[11]. 𝑄 is the volume of cancer cells in the resting 

phase of the cell cycle, 𝑆 size of cancer cells in 

the rest of the stages of the cell cycle, including 

the growth cycle, DNA analysis, and mitosis [11]. 

Another group is 𝐼 cancer cells are infectious by 

the virus and  𝑉 virus. According to Anita et al. 

in [10], the model developed by Joseph et al. in 

[11] can regard as a control system with the virus 

as input. As seen below, the model can express 

as a set of differential equation systems [10]: 

�̇� = 𝑏1 + 2𝑎1𝑆 − 𝑎1𝑄 − 𝑑1  

�̇� = 𝑏2 + 𝑎1𝑄 − 𝑎2𝑆 −
𝑘𝑆𝑉

𝑁
− 𝑑2𝑆  

𝐼̇ =
𝑘𝑆𝑉

𝑁
− 𝛿𝐼  

�̇� = 𝛼𝐼 −
𝑘𝑆𝑉

𝑁
− 𝑑3𝑉  

(1) 

where 𝑁  is the number of cells and viruses in 

mm3, assume to be 𝑁(𝑡) = 𝑄(𝑡) + 𝑆(𝑡) + 𝐼(𝑡) + 

𝑉(𝑡), 𝑎1The rate of change of silent cells into 

active cells (day-1), 𝑎2The rate active cell 

division (day-1), 𝑏1The number of 𝑄 cells 

increased,𝑏2 The number of 𝑆 cells increased, 𝑑1 

The natural death rate of cell 𝑄 (day-1), 𝑑2 The 

natural death rate of cell 𝑆 (day-1), 𝑑3 Free Virion 

decay (day-1), α Virion production (day-1), δ 

Infected cell elimination (day-1), 𝑘 Kinetic 

coefficient (day-1) [11]. 

Because of the ability of leukocytes, which 

function as antibodies, to recognize the virus as a 

foreign target and destroy it, immunological 

responses in the human body regarded as system 

disruptions [10]. As a result, the virotherapy 

model can be thought of as a three-dimensional 

structure, as seen below[10]: 

�̇� = 𝑏1 + 2𝑎1𝑆 − 𝑎1𝑄 − 𝑑1 + 𝑒1𝑊  

�̇� = 𝑏2 + 𝑎1𝑄 − 𝑎2𝑆 −
𝑘𝑆𝑉

𝑁
− 𝑑2𝑆 + 𝑒2𝑊             

𝐼̇ =
𝑘𝑆𝑉

𝑁
− 𝛿𝐼 + 𝑒3𝑊  

(2) 

where 𝑒i for i = 1,2,3 are weighting for 

disturbance, result from the body's immune 

reaction to the infection, there is a disruption in 

the system's 𝐼 compartment. 

 

The virus 𝑉 in the growth model (1) controls the 

growth of cancer cells. So system (2)  can be 

handled as a control system with a control input 

𝑉 and three states 𝑄, 𝑆 and 𝐼. Parameters and 

their values included in Table 1. 

Table 1. Parameter's value [11] 

Parameter Value Unit 

a1 0.6 day-1 

a2 0.5 day-1 

b1 0.07 day-1 

b2 0.005 day-1 

d1 1×10-5 day-1 

d2 0.2 day-1 

d3 0.3 day-1 

α 4 day-1 

δ 0.8 day-1 

k 4 day-1 

[e1 e2 e3] [0 0 0.5] day-1 

https://ieeexplore.ieee.org/author/37087405245
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3. Control Structure 

The PID algorithm is one of the most common 

feedback controller algorithms used in industrial 

processes and has been used successfully for 

more than 50 years [14]. When PID  applied to a 

specific function, the efficiency of the controller 

depends on the tuning parameters. Tuning refers 

to the best adjustment of controller parameters, 

i.e., 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 for a PID controller. There 

are various performance parameters to adjust the 

performance of a controller, such as settling time, 

overshoot rise time and error steady-state and 

integral indices [15]. PIDs require less 

information about the process than full 

mathematical models, and it tries to reduce the 

error by adjusting the controller's input [16]. P, I, 

and D, three different constant parameters, have 

been used in the calculation formulas (3). These 

parameters can interpret in terms of time, with P 

referring to the current error, I to the 

accumulation of previous errors, and D to 

impending errors [14]. The specific process can 

only need one function to achieve proper control 

action by setting all other variables to zero. 

"Since the absence of an integral term can 

prevent the device from reaching its target range" 

[14], "the derivative function is sensitive to 

measurement noise" [14], and avoid derivative 

pick the PI controller with the derivative D in 

feedback used. The controller law became: 

𝑢(𝑡) = 𝐾𝑝 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝛼)𝑑𝛼
𝑡

0

− 𝐾𝑑
𝑑

𝑑𝑡
 𝑄(𝑡) 

(3) 

where 𝐾𝑝 stands for proportional gain, 𝐾𝑖 for 

value integral gain, 𝐾𝑑 for derivative gain, 𝑒 for 

error, 𝑡 for sudden time (the current), and  𝛼 are 

the integration parameters (takes value from (0 -

𝑡)). The block diagram of the proposed controller 

describes in Figure 1. The control signal's upper 

and lower limits set by the saturation block, 

which outputs the signal but only up to a certain 

magnitude until capping the output at the 

threshold. The controller appointed to administer  

three high doses at varying intervals of two days 

between one quantity and another using switch. 

Since cell cycle-specific activity of the oncolytic 

(VSV) is a nonlinear system, the traditional 

methods like Zeigler-Nichols (Z-N) and Cohen 

Coon (C-C) can't use to tune the parameters of 

the PI-D.  The current popular approach is to use 

algorithms inspired by nature to overcome 

difficulties and find an optimal solution that is 

surprisingly effective[17], Improved Crow 

Search Algorithm (ICSA) is proposed in this 

paper to obtain optimal values for PI-D 

parameters (𝐾𝑝, 𝐾𝑖, and 𝐾𝑑). 

 

Figure 1. Block diagram of the suggested PI-D controller 

based on optimization algorithm 

4. Improve Crow Search Algorithm (ICSA) 

The Crow search algorithm (CSA) algorithm 

inspired by the intelligent behaviour of crows in 

hiding food. It has been widely used to solve 

many optimization problems and has proven 

itself compared to many modern optimization 

algorithms available in the litterateurs [17]. 

Generally, the adjustable parameters of CSA are 
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population (flock) size (𝑁), Flight length (𝐹𝐿) 

(Large values lead to global search while small 

values lead to local search), awareness 

probability (𝐴𝑃) (control the balance between 

exploration and exploitation) and the maximum 

number of iterations (Maxiter). Therefore, the 

following steps can implement CSA: 

1. Define the optimization problem and 

initialize the decision variables and any 

constraints needed. 

2. Each crow initialized the position and 

memory (each crow represents a viable 

solution to the optimization problem). 

3. Evaluate the position of each crow using a 

fitness function. 

4. Generate a new position in the search space 

based on Eq. (4). 

5. Determine the viability of new positions. 

6. Evaluate the new position's fitness feature. 

7. Update the crow memory by the new 

position. 

8. Verify the termination criterion. 

 

𝑃i
𝑡+1 =

{
 
 

 
 𝑃i

𝑡 + 𝑟𝑖 × 𝐹𝐿𝑖
𝑡 × (𝑀𝑗

𝑡 − 𝑃i
𝑡),

 𝑖𝑓 𝑟𝑗 ≥ 𝐴𝑃i
𝑡

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,             
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (4) 

 

where 𝑃i
𝑡 Position matrix representing the 

position of each crow i at iteration t, 𝑀𝑗
𝑡 Memory 

matrix where hiding places positions are stored, 

𝑟𝑖 and 𝑟𝑗 are random numbers with a uniform 

distribution between 0 and 1. 

In the original CSA, "the constraints are directly 

handled. It means that each solution that cannot 

satisfy the conditions altogether will be 

considered as infeasible and abandoned "[7]. The 

rejection of impossible solutions may be severe 

flaws to the design space problems and 

dominated by constraints. Hence, creating a 

possible design for such problems may take an 

enormous number of successive trials [7]. To 

maintain a good balance between exploration and 

exploitation, the following additions propose: 

First, multiply the current position equation by 

the inertia factor 𝛽 [18].𝛽’s value would decline 

over time. The linear regression of factor 𝛽 is 

determined as follows in general [19]: 

 

𝛽(𝑡) = 𝛽𝑚𝑎𝑥 − (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛)

∗
𝑖𝑡𝑒𝑟

Maxiter
 

(5) 

 

where iter represents the number of repetitions, 

𝛽𝑚𝑎𝑥 and 𝛽𝑚𝑖𝑛 are upper and lower limits of 𝛽 

factor. Equations of position update become: 

 

𝑃i
𝑡+1 =

{
 
 

 
 𝛽 × 𝑃i

𝑡 + 𝑟𝑖 × 𝐹𝐿𝑖
𝑡 × (𝑀𝑗

𝑡 − 𝑃i
𝑡),

 𝑖𝑓 𝑟𝑗 ≥ 𝐴𝑃i
𝑡

𝑎 𝑟𝑎𝑛𝑑𝑜𝑚 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛,             
 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

 

Secondly, adding a treatment to the new position 

produced before determining the viability of new 

positions. The pseudo-Code of the proposed 

algorithm: 

Input: 

 Number of iterations (Maxiter) 

 Flock size (𝑁) 

 Dimension (𝑃𝑑) 

 Awareness probability (𝐴𝑃) 

 Flight length (𝐹𝐿) 

 Inertia weight (𝛽𝑚𝑎𝑥 − 𝛽𝑚𝑖𝑛) 

 Tolerances 

Initialization: 

 Randomly scatter the position (𝑥) of 𝑁 

crows in the search space. 

 Put these Initialize positions in the 

memory (𝑀) of crows. 

 Evaluate the fitness value for 𝑁 different 

crows and save it in f0. 
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 Save the minimum value of fitness in 

fmin0. 

 Save the values of a crow which give the 

best fitness in the fitmin. 

 While iter ≤ Maxiter and tolerance >10-

12. 

 Calculate inertia factor using Eq. (5). 

 Generate random conduct crow for 

chasing. 

 For i =1: 𝑁 

 If rand ≥ 𝐴𝑃 

generation of a new position for crow 

Eq. (6). 

else 

generation of a new position for crow 

Eq. (6) 

end 

Calculate: 

 Handling boundary violations. 

 Evaluating fitness and save it in f. 

 Updating memory and fitness if the f < 

f0. 

 Save the minimum value of fitness in 

fmin. 

 Updating gbest and best fitness if fmin < 

fmin0. 

 Calculating tolerance. 

 displaying iterative results. 

 iter=iter+1. 

end 

 

5. Simulation Results and Analysis  

The MATLAB v.2018 program used to simulate 

the suggested PI-D based on ICSA. Error at 

steady-state measured to choose the dominant 

parameters by the ICSA and the CSA PSO 

algorithms for comparison. The parameters used 

in optimization algorithms listed in Table 2 (the 

initial value of 𝑄, 𝑆, 𝐼, 𝑊 selected as: 0.7, 0.3, 0, 

0.01). 

Table 2. Optimization algorithms parameters 

Parameters Value Algorithm 

population size (𝑁) 25 

CSA, 

PSO 

 

Max iteration (Maxiter) 50 

Problem dimension (𝑃𝑑) 5 

Awareness probability 

(𝐴𝑃) 
1.2 

Flight length (𝐹𝐿) 0.3 

Inertia weight (𝛽max-

𝛽min) 
(0.9 – 0.4) 

Learning rates (𝑐1, 𝑐2) 2 PSO 

 

If the system (1) simulation over time, the cell 

counts 𝐼 and 𝑉 are zero because the virus 

treatment has not yet given; And that both cells 

𝑄 and 𝑆 grow exponentially, and the rate of 

growth of 𝑆 cell is more than 𝑄 cells. It is 

undesirable because the number of cancer cells 

becomes uncontrollable and poses a risk to the 

patient’s body. The proportion of cells in each 

group without being control shown in Figure 2.  

 

The same procedure as in [20] used to enhances 

treatment outcomes and decreases dosage 

concentration (where a high dose may be 

hazardous). In addition, it observed that giving 

high doses at the beginning of treatment provides 

better results than several low doses[20].  

Figure 2. System (1) as growth model proportion of 

cells in each group without control 
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5.1 Simulation Of System (2) Based ICSA With 

Feedback From Different State 

The effect of state feedback on the controller's 

performance also tested; Figure 3 shows the 

impact of feedback from the various state on total 

output.  

The results show that feedback from state 𝑄 is 

most effective in reducing peak tumour size (pts) 

at the beginning of treatment as it represents the 

cells that make up the tumour core; Table 3 

shown the peak tumour size (pts) when feedback 

comes from various states. Furthermore, the 

result shows the possibility of eliminating 

quiescent cells to reduce the size of the tumour in 

general, as these cells can turn into proliferating 

cancer cells (proliferate aggressively) or necrotic 

cells (removed by phagocytosis) depending on 

the availability of nutrient and oxygen [16]. 

Table 3. Effect of the feedback on pts 

Feedback P I D pts 

𝑸 (a) 8.7341 2.2862 3.0854 1.022 

𝑺 (b) 6.5468 11.3831 4.3585 1.245 

𝑰 (c) 4.9729 1.0515 5.0539 1.247 

 

5.2 Comparison Simulation Of System (2) With 

Different Optimization Algorithms  

The system's response (2) when PI-D controller 

applied based on ICSA for parameter optimization, 

and feedback takes from state 𝑄 Shown in Figure 4. 

 
Because "Studies of a broad array of human solid 

tumour types revealed that cell cycle progression 

lasts two days, on average" [11]. The 

performance of the proposed control based on 

different optimization algorithms follows the 

Figure 4. States 𝑄, 𝑆 and 𝐼 when PI-D applied and 

ICSA used for parameter optimization 

 

(a) 

 

 

Figure 3. Effect of feedback from various state on 

total output where a, b and c refer to feedback from 

𝑄,𝑆, and 𝐼 respectively 

(b) 

 
(c) 
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protocol of injection a high dose at days 0, 2, 4 

and calculate the error at a steady-state used for 

the comparison between them shown in Figures 

5 and 6.  

 

 
 

The   ICSA   outperforms the   CSA   and   PSO 

algorithms by 34.5497×10-6 and 15.2573 ×10-6 

respectively. Simulating the injection at 

separated days contributed to reducing the total 

dose, and enhancing total output and maintaining 

tumour size to approximately less than 30%. 

 

6. Conclusion 

This paper recommends that ICSA be used in 

conjunction with a PI-D controller to limit the 

number of viral particles injected to minimize 

tumour cell numbers. The mathematical model of 

age structure has considered, which is crucial in 

cancer modelling since taking into account the 

time cells spend in the cell cycle. The efficiency 

of the proposed controllers improves by using 

optimization algorithms. According to 

simulation results, the ICSA algorithm 

outperforms the CSA and PSO as it let the 

tumour stable at minimum error steady-state. The 

PI-D controller reduces the tumour's size to a 

low-risk level, so it would be easier to suppress it 

later by surgery and allow affected patients to 

survive as long as possible. The simple PI-D 

controller shrinks the tumour more than the 

control used on the same mathematical model in 

the literature. 

Furthermore, there are no recurrences of the 

tumour after therapy completed. Further 

statistical and experimental research is needed to 

understand better the relationship between cell 

cycle phases and the number of viral injection 

doses. However, these findings may help develop 

virus therapies and control strategies that ensure 

tumour regression with minimal side effects. 
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