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Article Info  Abstract  

Received 19/04/2024 
 This paper presents an integrated approach to breast cancer diagnosis that combines 

unsupervised and supervised learning techniques. The method involves using a pre-trained 

VGG19 model to process sub-images from the BreaKHis dataset, divided into nine parts for 

comprehensive analysis. This will be followed by a complete description of the architecture 

and workings of the variational Autoencoder (VAE) used for unsupervised Learning. The 

encoder network maps the input features to lower dimensions, capturing the most essential 

information. VAE learns a compressed representation of sub-images, facilitating a more 

profound understanding of underlying patterns and structures. For this reason, we then 

employ k-means clustering on the encoded representation to find naturally occurring 

clusters in our data set comprising a histopathological image. Every single sub-image is 

later fed into the VGG19-SVM model for classification purposes. During magnification at 

100x, this model has attained a fantastic accuracy rate of 98.56%. Combining unsupervised 

analysis with VAE/k-means clustering and supervised classification with VGG19/SVM can 

integrate information from both methods, thereby improving the accuracy and robustness 

of such a task as sub-image classification in breast cancer histopathology. 
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1. Introduction  

Breast cancer (BC) diagnosis remains a significant challenge in 

the field of pathology, requiring advanced tools for early and 

accurate detection [1]-[4]. The development of image-guided 

technology, such as high-resolution scanning of histological 

slides, has provided a promising platform for the automated 

analysis of histopathological images to enhance breast cancer 

diagnostics [5],[6]. Recent developments have influenced these 

changes in machine learning, specifically deep Learning and 

unsupervised learning techniques [7]-[5]. Supervised 

techniques have played significant roles in the diagnosis of 

breast cancer. Some supervised methods, such as Convolutional 

Neural Networks (CNNs), underpin dee8p learning algorithms 

for the classification of histopathologic images [9]-[10]. Once 

again, these supervised methods depend on an available bank 

of annotated images, each associated with either a negative or 

positive label indicating the absence or presence of cancer. 

Nevertheless, obtaining and annotating these datasets is 

expensive and time-consuming, hence their limited availability 
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[11]. For example, Hirra et al. presented Pa-DBN-BC, an 

innovative approach using a deep patch learning method to 

detect and classify breast cancer from histopathological images 

[12]. This method uses a Deep Belief Network (DBN), 

providing automatic feature extraction from image patches, 

resulting in 86% accuracy using a dataset of four cohorts. The 

study's outcomes demonstrate that this approach is better than 

the traditional ones, thus making it possible to improve 

accuracy and hardware resources management in another 

research by Joseph et al. [13]. Hand-made feature extraction 

techniques (Hu moment, Haralick textures, and color 

histogram) combined with deep neural networks (DNN) for 

multiclassification of BC from game histopathological images 

data BreaKHis. These features obtained from training DNN 

classifiers with four dense layers and SoftMax were subjected 

to a data augmentation method to address the overfitting 

problem. Combining a handcrafted approach and DNN 

classifiers demonstrated better performance than other 

techniques. Moreover, data augmentation is vital in enhancing 

classification accuracy. The suggested model was also tested 

using different magnifications, and the results showed that it 

could be considered robust enough and effective in the multi-

classification of breast cancer. On the other hand, 

Srikantamurthy et al. [14]. Created hybrid models using 

convolutional neural network (CNN) combined with Long-

Short-Term Memory Recurrent Neural Network (LSTM RNN) 

to differentiate four benign and four malignant breast cancer 

subtypes. We conducted experiments on the model using the 

BreaKHis dataset with 5429 malignant cancer images and 2480 

benign cancer images at different magnifications, utilizing 

CNN-LSTM and ImageNet. The outcomes showed that the 

mixture mode did better than other established CNN models in 

accuracy: up to 99% for binarized classification and 92.5% for 

multi-classification. In addition, Karuppasamy et al. [15] 

examined the suitability of using two forward propagation 

methods, such as the Convolutional Logistic Regression 

Network (CLR) and the Convolutional Support Vector Machine 

Network for Histopathological Images (CSVM-H). 

Experiments on two small breast cancer datasets (Sultan 

Qaboos University Hospital (SQUH) and BreaKHis dataset) 

demonstrated the advantage of forward propagation over 

traditional backpropagation methods. On these datasets, the 

proposed CLR and CSVM-H models were faster to train and 

achieved better classification performance than traditional 

backpropagation methods (VggNet-16 and ResNet-50) on the 

entire dataset. SQUH data. 

Faced with these challenges, unsupervised learning techniques 

have attracted increasing interest in the field of breast cancer 

diagnosis. In particular, autoencoders have emerged as a 

promising method to extract relevant features from 

histopathological images without relying on class labels [16] 

[17]. Autoencoders can compress and reconstruct data as neural 

architectures, thereby enabling efficient representation of 

intrinsic image information. To satisfy different demands, many 

other types of autoencoders have been developed, such as 

denoising autoencoders [18], sparse auto-encoders [19], deep 

autoencoders [20], contractive autoencoders [18], sub-complete 

autoencoders [21], convolutional autoencoders and variational 

autoencoders [22]-[24]. These improvements enable 

unsupervised histopathological image analysis for breast cancer 

detection. The new opportunities that opened up were the ability 

to study histopathology images unsupervised and assist in 

diagnosing breast cancers. In it, thus helping to improve 

diagnosis models [25]-[26], a hydrogen atom sickle cell sample 

and its complex features can be captured by an encoder that 

extracts specific details about pictures from digital data. This 

approach enhanced clustering performance by adjusting the 

similarity between the source and target domain's clustering 

centers. Wang et al.; developed an unsupervised domain 

adaptation based on deep sample clustering for the 

classification of breast cancer histopathological images using 

deep fusion features [27]. This methodology showed an 

improved feature extraction of clusters when adjusting their 

similarity concerning both the source and destination points in 

space. The technique applies the Variational Autoencoder 

(VAE) [28] and Variational Denoising Autoencoder (DVAE) 

before employing the Convolutional Neural Network (CNN) 

model to predict whether a given image is malignant or not. 

Their deployment provides a forecast with 73% accuracy, 

higher than their custom CNN on its data. This architecture is 

about computer vision through CNN and generative modeling, 

which involves reconstructing original input images and 

providing predictions for the future. Using a CNN model, they 

utilized 277,524 histopathological breast cancer image samples 

to achieve an F1 score of 0.6868 and an accuracy score of 

0.6876. VAE gave them an F1 equal to (0.7363), pointing to 

just how good they were in terms of classification, while 

applying the same with DVAE only earned them an average 

F1(0.3335) and accuracy (0.5002).For this reason Tabatabaei et 

al [29]. developed a customized unsupervised convolutional 

autoencoder in the proposed Unsupervised Content-Based 

Medical Image Retrieva (U-CBMIR) system that emulates 

traditional cancer diagnosis workflow, thus reducing 

pathologists' workload to enhance diagnostic efficiency, 

leading to improved diagnostic accuracy. UCBMIR was 

evaluated using two numerical and visual techniques widely 

used in CBMIR and compared to a classifier. The results show 

that UCBMIR has a strong ability to identify various patterns, 

with an accuracy of 81% in the top five predictions on an 

external Arvaniti image. Nemoto et al. [30]. proposed an 

unsupervised local image feature extraction method working 

without medical disease image datasets. This method extracts 

local features from images by applying multiple convolutional 

autoencoders to analyze 2.5-dimensional images. The method 

was evaluated for detecting cerebral aneurysms and pulmonary 

nodules, and it showed high performance with an AUC of more 

than 0.96 in both cases. Sheikh et al. [31]. proposed an 

unsupervised deep learning model for whole-section image 

diagnosis, using stacked autoencoders simultaneously fed 

multiple image descriptors such as histogram of oriented 

gradients and local binary patterns, as well as original images 

to merge heterogeneous features. Their results outperformed 

existing approaches by achieving best accuracies of 87.2 for 

ICIAR2018, 94.6 for Dartmouth, and other significant metrics 

for public benchmark datasets. Their model does not depend on 

a specific set of pre-trained features based on classifiers to 

achieve good performance. Unsupervised spaces are learned 

from the number of independent image descriptors and can be 

used with different variants of classifiers to classify cancer 
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diseases from whole-section images. Liu et al. [32]. designed 

an improved autoencoder network using a Siamese framework 

to extract effective features from histopathological images for 

breast cancer classification tasks with a diagnostic support 

system. This model presents a multi-scale approach through a 

Gaussian pyramid that gets features at different sizes and then 

uses a Siamese framework to restrict pre-trained autoencoder 

and get features with less variation inside the class but more 

between classes. Experimental results indicate that the 

classification accuracy can be as high as 97.8% on the 

BreaKHis dataset, making this higher than most commonly 

used algorithms for histopathological breast cancer categories. 

Unsupervised clustering techniques can also reveal complex 

and diverse patterns [33]. As a result, these methods achieve 

segmentation of regions of interest and reliable sample 

classification even without class labels. More advanced 

clustering methods have been developed recently to better 

interpret histopathological data [34] by incorporating computer 

vision with machine learning. The method proposed by Bai et 

al. [35] was based on WSI analysis using a multiple-instance 

learning (MIL) framework for cancer classification. It also 

presents an alternative approach to unsupervised pre-training 

feature extractors that eliminates manual annotation 

requirements during the training phase. To ensure that they 

encompass more features from esophageal WSI to improve 

performance robustness while increasing accuracy 

dramatically. Their dataset's results were 93.07% accuracy and 

95.31% AUC, which proved the effectiveness of their proposed 

MIL framework. Ke et al.[36] introduced a method called 

Interaction Information Clustering (IIC) that extracts locally 

homogeneous features in each exclusive cluster through an 

interaction information clustering method. Through 

unsupervised training, the model is trained to capture invariant 

information from multiple neighboring regions to facilitate 

classification. This also involves using the adaptive conditional 

random field model to spatially detect highly homogenous 

morphological image patches next to each other. The authors' 

approach outperformed others by 11.4% on average in patch-

level classification accuracy. Deep Adaptive Regularized 

Clustering (DARC) is a framework proposed by Li et al. [37] 

for unsupervised pre-training of a neural network. Then, it 

passes through several iterations of fine-tuning using DARC 

and updating the network parameters based on pseudo-labels 

assigned to clusters. Our proposed DARC improved neural 

networks' histopathological accuracy compared to training from 

scratch when evaluated on three public datasets, NCT-CRC-

HE-100K, PCam, and LC25000. It is worth mentioning that 

even with only 10% labeled data, one can achieve an almost 

similar accuracy as training a network from scratch using 

weights pre-trained with DARC [38] for deep stacked and 

sparse Clustering (DSSEC), which takes into account both local 

structure preservation and sparsity properties of input data. The 

proposed method learns clustering-oriented features by 

minimizing reconstruction and Clustering losses while 

optimizing cluster label assignment. The comparative 

experiments confirm the effectiveness of introducing the sparse 

property and preserving the local structure in the proposed 

method. The clustering performance table results significantly 

improve compared to traditional methods, including high ACC, 

NMI, and ARI values for DSSEC. In particular, DSSEC 

achieves ACC scores of 87.7% on MNIST and 78.4% on USPS, 

as well as ARI scores of 20.4% on Yale-B and 39.5% on 

Chars74K, outperforming other clustering methods evaluated 

on all six public image datasets. 

According to the related works, a shortcoming is the lack of 

integration of feature extraction and autoencoder to generate 

new data via unsupervised Learning by Clustering, followed by 

a supervised classification approach, as well as the omission of 

the use of sub-images for a finer and more precise analysis. To 

sum up, using both supervised and unsupervised learning 

methods together with autoencoders to combine extracted 

features is a promising way to use histopathological images to 

diagnose breast cancer. These innovative methods open new 

perspectives for developing more accurate and efficient 

diagnostic systems, thereby helping improve clinical outcomes 

for breast cancer patients. 

This study focuses on a hybrid approach using unsupervised 

and supervised learning methodologies to classify breast cancer 

images. The proposed model begins by dividing each 

histopathological image into smaller sub-images, making 

localized regions more analyzeable. However, no labeled data 

exists for the sub-images, thus posing a challenge to supervised 

Learning. Unsupervised learning methods [39]–[44], such as 

Variation Autoencoder (VAE) and k-means clustering [45]–

[49], are used to solve the problem. These methods group sub-

images that are similar based on their visual features. 

Superimposed images are then classified using supervised 

learning techniques. In this work, a pre-trained VGG19 model, 

known for its excellent performance in image classification, is 

employed as a feature extractor. Subsequently, these features 

are supplied to a Support Vector Machine (SVM) classifier for 

supervised classification [50]-[52]. 

The hybrid approach can prove highly effective when combined 

with unsupervised learning techniques capable of detecting 

patterns and similarities. Conversely, supervised learning is 

used to refine a model for accurate classification. Improving the 

analysis and classification of histopathological images can 

improve the diagnosis and treatment of breast cancer.  

Specific metrics of supervised analysis, such as precision, 

accuracy, and recall, are essential for assessing the efficiency 

and reliability of the model's predictions and overall 

performance. 

Accuracy, precision, recall, and F1 score [53] should be used as 

evaluation metrics to evaluate this proposed model. The results 

will show how well-unsupervised learning methods like the 

pre-trained VGG19 model [54], k-means clustering, and VAE 

work for analyzing breast histopathological images. 

This paper suggests a new model that uses unsupervised 

learning approaches, such as a pre-trained VGG19 model, 

variation autoencoder (VAE), or k-means Clustering, to analyze 

breast histopathological images with the BreaKHis dataset. 

VAEs have been known to generate low-dimensional latent 

representations of input data. These can be used in various 

analyses or models, such as clustering algorithms like k-means. 
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A process involves combining VAE and k-means clustering in 

the workflow.  

VAE captures significant features and patterns within the input 

data, thereby learning a meaningful latent representation. Thus, 

it reduces the dimensionality while still effectively representing 

the data. 

When VAE computes latent representations, it passes them to 

the k-means clustering algorithm. Based on their nearness to 

cluster centroids, k-means assigns data points into different 

clusters using latent space. 

It is better to use VAE to learn a latent representation and then 

use k-means clustering in that latent space instead of directly 

clustering the high-dimensional input data. The VAE helps 

disentangle underlying factors in the data, making subsequent 

clustering tasks in the latent space more meaningful and robust. 

 Henceforth, considering these directions means the suggested 

model desires to develop precise and faster ways of diagnosing 

or planning treatments for breast cancer. Combining 

unmonitored training with pre-trained models and clusterings 

provides an inclusive way of exposing concealed designs and 

structures, which opens up new areas for studying breast cancer. 

2. Methodology 

This section discusses the main breakthroughs and suggests 

ways for unsupervised and supervised analysis of breast cancer 

based on pathological sub-images. 

2.1. Dataset 

Histopathological images of breasts in the BreakHis dataset 

were used for this research work [55]. It has numerous samples 

that are entirely benign and malignant breast tumors. Fig. 1, 2, 

and Table 1 represent several examples. Each image has a class 

label representing the kind of tumor it contains. 

To ensure proper analysis, we apply a step that divides each 

image from the BreakHis dataset into nine distinct segments. 

This enables a more detailed picture inspection, capturing 

specific areas of interest (Fig.3; Table 2). 

 

  

Figure 1.  Benign sub-classes [56]. 

Figure 2. Malignant sub-classes [56]. 

Table 1. BreakHis dataset 
Class Types Abb. 40X 100X 200X 400X 

 

Benign 

Adenosis A 114 113 111 106 

Fibro F 253 260 264 237 

Tubular  TA 109 121 108 115 

Phyllodes  PT 149 150 140 130 

 

Malignant 

 

Ductal DC 864 903 896 788 

Lobular LC 156 170 163 137 

Mucinous MC 205 222 196 169 

Papillary PC 145 142 135 138 

Total 1995 2081 2013 1820 

 

Table 2. Sub-images from BreakHis dataset 
Class Abb. 40X 100X 200X 400X 

Benign B 5625 5796 5607 5292 

Malignant M 12330 12933 12510 11088 

Total  17955 18729 18117    16380 

 

Figure 3. Sub-Images operation. 

 

Abdulaal et al. [57] used sub-image analyses instead of the 

whole image, and they achieved impressive performance in 

classifying breast cancer. 

2.2. VGG19 Feature Extraction 

First, a pre-trained VGG19 model extracts features [57]. The 

model was chosen for its incredible ability to recognize images 

and was applied to subsets of pictures from the BreakHis 

dataset. 

The first step of this method is to use a pre-trained VGG19 

model as a feature extractor. It is chosen because it has better 

image identification capabilities than others and is thus applied 

to sample images from the BreaKHis dataset [58]. In addition, 

every picture will be partitioned into nine regions to have a 

holistic view. For that reason, after passing sub-images through 

the VGG19 model, we can obtain meaningful high-level 

features [59]. 

Essential properties of breast histopathological images have 

been captured with the aid of the VGG19 model [59]. Its deep 

convolutional neural network lets it learn complex visual 

representations [57]. This means the model can identify detailed 

textures, shapes, and structures necessary for histopathological 

analysis [60]. For example, throughout the feature extraction 

process, the VGG19 model reduces the sub-images into a 

compact representation of their salient characteristics [61]. 

Many layers in the model sequentially analyze input by 

extracting increasingly abstract and informative features. At the 

end of this series, this model generates a set of feature maps 

representing key visual cues present in these sub-images alone. 

These are condensed versions of the original sub-images, which 

are intended to highlight important information and, at the same 
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time, minimize redundancy or irrelevant details [57]. This 

feature extraction is highly expressive, making it possible for 

subsequent stages in the system to make the right choices based 

on this information. In other words, we utilize the VGG19 

model as a feature extractor, as shown in Fig. 4, since it has 

been pre-trained on a massive dataset like ImageNet, which has 

various image categories [58]. As such, it has learned general 

visual patterns and can thus extract meaningful features from 

different image domains, including breast histopathological 

images. 

Using VGG19 as a feature extractor in our model improves our 

analysis of the breast histopathological images in the BreakHis 

dataset [62]. By leveraging its capability of capturing high-level 

features, it effectively undervisits and recognizes critical 

features that are very important in diagnosing breast cancer.  

Image

Figure 4. Feature extractor process [63] 

2.3. Unsupervised Learning using Variation Autoencoder 

(VAE) 

Variation autoencoders (VAEs) are unsupervised learning 

techniques that input extracted features from the VGG19 

model. The VAE comprises two main parts, the encoder 

network, and the decoder network, as shown in Fig.5. Both 

work together to create a compressed representation of the input 

features that carry the most important information [64]-[65]. 

The extracted features are inputted into an encoder network, 

which maps them to a lower-dimensional space [66]. This latent 

space could be considered a condensed version of the features, 

whereby every point in it corresponds to a particular 

configuration of input data. As such, the encoder network is 

trained to encode these features into that latent space by finding 

patterns and relationships among data [67]. 

The output from the encoder network becomes the latent space 

representation fed into a decoder network. The decoder 

network's role consists of recreating features from this latent 

space representation. It learns to decode latent space 

information and produce an approximation of original 

characteristics. The architecture of the decoder network mirrors 

that of the encoder so that it can map points in this reduced-

dimensional feature space back to their original positions [68]. 

The VAE is trained to minimize the differences between 

original and reconstructed features, which improves its 

reconstruction ability. Therefore, the VAE is motivated to 

describe essential information in the latent space. As a result, it 

learns a condensed representation of the input data, where noise 

and unrelated variations are minimized while the essential 

characteristics are maintained [69]. 

Generally, a VAE is trained using reconstruction loss and 

regularization techniques [70]. Reconstruction loss helps to 

minimize the discrepancy between original features and their 

reconstructions for more accurate model output. For example, 

regularization methods such as Kullback-Leibler (KL) 

divergence guide the latent space to follow a specific 

distribution like Gaussian. This control of regulating latent 

space complexity enhances better interpolation and data 

generation capabilities [66]-[71]. 

When VAE is used, the model benefits from unsupervised 

Learning by compressing these features into fewer dimensions. 

The compressed representation contains the most essential 

information embedded in it and can be used to perform different 

tasks downstream, such as anomaly detection, Clustering, or 

even data synthesis. The VAE's ability to learn self-explanatory 

understandings in an unsupervised manner represents a 

significant part of our approach to scrutinizing 

histopathological images of the breasts. 

 

Figure 5. variation autoencoder [72] 

2.4. K-means Clustering  

Fig. 6 shows how to group similar features among breast 

histopathological image data using encoded representations 

from the VAE and k-means Clustering. K-means clustering is a 

widely used unsupervised learning algorithm that divides data 

points into k-distinct clusters by minimizing within-cluster 

distances [73]. 

K-means starts with randomly initializing k-cluster centroids. 

This then assigns each encoded representation iteratively to the 

closest centroid based on the Euclidean distance between 

representations and their respective centroids [74]. After the 

assignments, the centroids are updated by computing the mean 

of the assigned representations. This process continues until 

convergence, where the assignments and centroid updates no 

longer change significantly. 

 

Figure 6. K-Means clustering 
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The output of the k-means clustering is a set of k collections, 

where each collection represents a cluster of homogenous 

feature-represented breast histopathological images [75]. The 

objective of the k-means clustering algorithm is to minimize the 

sum of squared distances within each cluster; as a result, sub-

images are grouped according to their similarity. 

In our case, the encoded representations obtained from the VAE 

become input data for the k-means clustering algorithm. The 

encoded representations correspond to specific sub-images of 

the breast histopathological image database, each with its own 

learned compressed salient representation. When applying k-

means clustering, we intend to group sub-images with similar 

attribute patterns and structures. 

K-means clustering is one method for finding natural clusters 

with inherent patterns and structures in breast histopathological 

image data. These clusters can give insight into the sub-images 

underlying features, such as tissue types, morphological 

patterns, or disease subtypes [76]. Clustering results help us 

understand the data better and facilitate further analysis and 

interpretation. 

These clusters let us see what defines each cluster image. Its 

application may vary from illness classification to prognosis 

prediction or treatment planning [77]. Additionally, its outcome 

can assist in developing automated systems for categorizing 

images and assisting pathologists in their diagnostic tasks [78]. 

As shown in Fig. 7, using k-means clustering on the encoded 

representations from the VAE improves the model's ability to 

find meaningful patterns and structures in the breast 

histopathological image data. It helps create initial labels for the 

sub-images. 

2.5. Supervised Learning  

In addition to the unsupervised analysis using VAE and k-

means clustering, we can incorporate the results from the 

unsupervised techniques into a supervised classification. 

Combining the labeled sub-images resulting from the clustering 

process with extra labeled data is one way of achieving this 

integration [79]. The new dataset, therefore, includes both the 

initial annotations and the fresh assignments.  A supervised 

classification model can be trained on this new dataset 

comprising these sub-images and their respective labels. One 

well-known example of such a model is VGG19 architecture, 

which performs well in image classification tasks [57]. 

Using pre-trained weights from VGG19 enables us to exploit 

feature extraction capabilities learned from a large amount of 

data [57]. 

We run the sub-images through the VGG19 model to perform 

supervised classification, extracting its high-level features. 

These high-level features define essential attributes of each sub-

image, thus making it possible to discriminate them in a more 

discriminative space. These feature vectors are further fed into 

an SVM classifier that learns different classes based on 

extracted features, as shown in Fig. 8. 

 

BreaKhis 

Dataset

Resize images

Pre-processing

VGG 19

Dividing each 

image into 9 parts

 

Figure 7. Generate a new Dataset using unsupervised 

Learning 

The combined dataset can train an SVM classifier, including 

labeled sub-images obtained from the unsupervised method and 

any other labeled data. In the present scenario, such a training 

procedure allows the model to identify specific structures and 

decision thresholds that can differentiate between various 

classes in the data set. 

Afterward, the supervised classification performance of a 

model can be estimated using another test set. This evaluation 

can determine how accurate the model is and whether it can 

predict other unseen or future values. Moreover, more robust 

performances may be obtained through techniques such as 

cross-validation. 
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When you use both VAE and k-means clustering for 

unsupervised analysis and VGG19 and SVM for supervised 

classification, as shown in Fig. 9, you can use the results from 

both methods. The first approach helps us generate initial labels 

for sub-images. In contrast, integrated into our model, the 

second one allows us to refine classification accuracy using 

extra labeled data. This method improves precision and stability 

in classifying sub-images from breast cancer histopathological 

images. 

In summary, a comprehensive, efficient framework can be 

created for superimposing VGG19 and SVM over unsupervised 

sub-image fabricated features. One of the most efficient ways 

to maximize the available data for this purpose is to ensure we 

accurately predict the images below, which will help improve 

the analysis and interpretation of breast cancer 

histopathological images. 
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Figure 8. VGG19-SVM model architectures 

 

In the initial stage of the process, the original image is 

reproduced and then subjected to classification. This 

classification usually differentiates between malignant and 

benign classifications. This decision depends on whether the 

reconstructed image has any malignant features. Once a part of 

an image is regarded as malignant, the whole picture will be 

called malignant. The diagram below shows how this process 

goes about (Fig. 10). 
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Figure 9. Supervised Learning using VGG19-SVM 
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Figure 10. Regenerated and Decision-maker 

The integration of unsupervised and supervised approaches in 

histopathological analysis has facilitated accurate breast cancer 

diagnosis. For unsupervised sub-image analysis, variational 

autoencoders (VAEs) encode images into a latent space. These 

similar sub-images are grouped by clustering algorithms based 

on learned features that identify cell structures or cancerous 

regions represented by clusters. Then, these labeled examples 

train a classification model for supervised Learning. Also, when 

combined with other image-based features, cluster-based 

features improve the performance of the classification model, 
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as shown in Fig.11. This allows for precise diagnoses as subtle 

morphological variations or rare cell patterns can be identified 

through an unsupervised analysis. Therefore, including latent 

structures, patterns, and features helps improve accuracy and 

reliability in diagnosing breast cancer. 

BreakHis Dataset

Divided Into-Subimages

Features extraction – VGG19

Unsupervised learning - VAE

New labeling / k-mean 

clustering

Benign malignant

Supervised classification – 

VGG19 / SVM
 

Figure 11.  Flow chart of the proposed model. 

 

2.6. Evaluation and Performance Analysis 

The proposed model's performance is essential to determine its 

integrity and usefulness in classifying breast histopathological 

images. Several evaluation metrics are used to assess the model, 

including accuracy, precision, recall, and F1 score [53], [80]. 

Accuracy is a primary metric that determines how well the 

classification results are correct. It is arrived at by dividing 

correctly classified samples by the total number of samples 

classified. The accuracy metric provides a rough idea of how 

effectively the model performs when giving correct class labels 

for these breast histopathological images. 

Precision is a measure that gives the proportion of actual 

positive cases from those predicted as true positives out of the 

total number of optimistic predictions made. This suggests its 

capacity to minimize false positives, called precision, regarding 

relevant class identification. 

Recall can also be called sensitivity or actual positive rate, and 

it measures the portion of all truly positive samples identified. 

This gauges how well it can identify all the relevant positive 

instances without missing any. 

The F1 score is a combined criterion for calculating precision 

and recall as one single value. It considers both measures and 

gives a balanced score for the system's performance. The F1 

score is the harmonic mean of precision and recall, giving a 

comprehensive assessment of how well the system performs in 

achieving high precision and high recall. 

The supervised classification results obtained using the encoded 

features are compared with other methods to evaluate the 

proposed model. Thus, we compare our model to those that 

employ handcrafted features or other pre-trained models. By 

comparing different methods, we can make conclusions about 

whether one model is superior or competitive over another. 

Usually, during evaluation, the available dataset is divided into 

training and testing sets. Therefore, in this case, the supervised 

classifier is trained with a training subset while its performance 

is evaluated using a testing subset. Evaluation metrics are then 

computed using classification results from the testing subset. 

These assessment measures, such as accuracy, precision, recall, 

ROC, and F1 score, offer an integrated approach to determining 

how well a model classifies breast histopathology images. They 

allow for numerical comparison and understanding of issues 

like accuracy and efficiency in classifying breast 

histopathological images by our models. Consequently, these 

will inform researchers and practitioners about how helpful the 

model is and its practicality. 

For that reason, it is vital to assess the performance of proposed 

models properly by using appropriate evaluation metrics to 

ascertain their truthfulness in terms of accuracy. Comparisons 

can be made through assessments of the classification results 

against those from other techniques, taking into account such 

areas as accuracy, precision, recall F1 score, and so forth, 

thereby providing an understanding of a model's accuracy, 

effectiveness, and competitiveness. This is a way to assess what 

a system can do and where it can be applied practically in 

classifying breast histopathological images. Here are the 

equations for performance matrices [54]: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑡𝑝 + 𝑡𝑛)/𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠  (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛) (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑡𝑛/(𝑡𝑛 + 𝑓𝑝) (3) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝) (4) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) / (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +
 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) (5) 

𝑅𝑂𝐶 = 1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (6) 

3. Experimental Evaluation 

Meanwhile, the recommended strategy was also assessed using 

unsupervised and supervised methods to discover new 

viewpoints on the sub-images of histopathological tissues that 

help in breast cancer detection.  

For each image pair, reconstruction error was determined by 

comparing input images with their corresponding 

reconstruction obtained from VAE. This measures the ability of 

VAE to capture essential features while measuring 

reconstruction quality. 

Additionally, the encoded representations from the VAE were 

subjected to k-means clustering. This assessed cluster 
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coherence and quality, revealing insights into how well such an 

unsupervised clustering algorithm groups similar 

histopathological sub-images together. 

Regarding supervised analysis, the performance of 

classification models such as support vector machine (SVM) 

and pre-trained VGG19 CNN was evaluated using several 

metrics. The receiver operating characteristic (ROC) curve was 

used to determine the model's discrimination ability, depicting 

a tradeoff between the actual positive rate (TPR) and the false 

positive rate (FPR). The precision-recall curve provided 

insights into the models' precision and recall values at different 

classification thresholds, indicating how well they can identify 

positive cases and include all valid instances. Moreover, a 

complicated matrix of confusion was given, revealing the 

results of classifications to examine true negatives, true 

positives, false positives, and false negatives. Also, some basic 

evaluation metrics like accuracy, precision, recall, and F1 score 

were deduced numerically to measure the general performance 

of the models. 

3.1. Unsupervised Analysis Results 

3.1.1. Reconstruction Error Distribution for VAE 

We applied the Variational Autoencoder (VAE) to reconstruct 

input images for unsupervised data analysis. The reconstruction 

error is one of the main criteria that estimate the quality of 

reconstructed images by showing how much difference exists 

between original input images and their corresponding 

reconstructed versions. We must plot a distribution of all 

reconstruction errors to know how well our new model works 

on the reconstructed image. 

This provides an overview of how much similarity exists 

between original and remade inputs. Its purpose is to establish 

if there are outliers or anomalies in VAE’s reconstruction 

performance. Fig. 12 shows a histogram plotting the breast 

cancer analyses of the VAE’s reconstruction error distribution. 

 

Figure 12. Reconstruction Error Distribution for VAE 

The plot of the reconstruction error distribution shows to what 

extent VAE has understood and captured the features and 

details contained in the original input images. A reconstruction 

error is considered low when it is good at imitating the original 

pictures. On the other hand, a high one indicates many 

differences from the initial images. 

This will enable researchers and clinicians to verify whether or 

not basic information is preserved as it is encoded and decoded 

in these images, which can indicate how many features typical 

for them are contained in well-reconstituted pictures. 

The graph shown by this study, which plots the distribution of 

reconstruction errors, helps to assess the performance of VAEs 

on breast cancer tasks. This shows disparities between the first 

picture instance and its reproduced form, making evaluation 

more convenient concerning the accuracy of regeneration 

processes as they apply to histopathology sub-images. 

The distribution plot of reconstruction errors is essential in 

determining how close VAE's replicas are to the original image. 

It can tell us to what extent an image has been reproduced. This 

paper can contribute to improving artificial intelligence 

(machine learning)- based unsupervised algorithms for breast 

cancer detection and enhance decision-making concerning 

breast cancer treatments and diagnoses. 

3.1.2. Clustering Results 

This section presents the findings of an analysis of 

Histopathological sub-images for breast cancer detection. This 

paper used a simple method that created coded representations 

for these sub-images and then employed k-means clustering. 

Similar clusters with similar sub-images to benign and 

malignant cases have been grouped. 

K-means clustering after encoding representations resulted in 

two groups; one group was composed of benign cases, while 

the other had malignant ones. The clustering results are 

visualized in Fig. 13, where each point represents a sub-image 

and its associated cluster label. 

 

Figure 13. Clustering Results 

The clustering results show that the unsupervised approach 

effectively groups histopathological sub-images with similar 

features. Another important thing is that this method can divide 

these sub-images into benign and malignant groups. It can be 

noted from these groupings that the given method can 
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differentiate between benign and malignant sub-images based 

on standard features shown in Table 3. Consequently, this 

clustering result is significant for breast cancer analysis because 

it gives insight into sub-image patterns characteristic of various 

cancers that can later be employed in diagnosing and treating 

the disease. 

 

Table 3. Sub-images class from Clustering. 

Class Abb. 40X 100X 200X 400X 

Benign B 8367 8673 8389 7756 

Malignant M 9588 10056 9728 8624 

Total  17955 18729 18117    16380 

 

The clustering results mentioned above are based on the 

encoded representations obtained from the VAE that capture 

the most important features among histopathological sub-

images. The clustering procedure can detect similarities and 

create separate clusters using these encoded representations. On 

this note, the findings affirm that an unsupervised approach 

based on histopathological sub-images can effectively analyze 

breast cancer. 

3.2. Supervised Analysis Results 

3.2.1. Evaluation of Sub-Images Using VGG19 - SVM Model 

This part of the work includes evaluating the VGG19-SVM 

model on histopathological sub-images extracted from the 

BreaKHis dataset. This evaluation is meant to check the ability 

of a model to distinguish between benign and malignant sub-

images obtained as labeled by the clustering technique. 

For this evaluation’s inception, the outcomes derived were used 

from a clustering technique that described every sub-image. 

These labels indicated whether a particular image was more 

likely to come from cluster 1 or cluster 2, meaning from benign 

or malignant class, respectively. These labeled sub-images were 

then fed into the VGG19-SVM model for classification 

purposes. 

To predict these sub-images, the VGG19-SVM model with 

modified architecture and SVM classifier utilized extracted 

features. This was possible because the last layer of the 

convolutional part was flattened into vectors with the 

discriminative information needed for its classification. 

During the evaluation of each breast cancer sub-image using the 

VGG19-SVM model, the predicted class label (benign or 

malignant) was assigned based on what it had learned regarding 

decision boundaries. The accuracy, precision, recall, and other 

relevant evaluation metrics were measured by comparing the 

prediction obtained by this method with true labels to better 

understand performance. 

3.2.2 ROC Curve 

The plot of True Positive Rate versus False Positive Rate is 

called the ROC curve, which tells us how well the model can 

classify positive and negative instances. From looking at the 

curvature and how it moves, one can tell how much better our 

model is than random chance. The graph shows how accurately 

the model distinguishes positive and negative instances by 

plotting the True Positive Rate against the False Positive Rate 

for all possible thresholds. 

To determine the supervised classification model's 

performance, we plotted the Receiver Operator Characteristic 

(ROC) curve. The ROC curve in Fig. 14 shows how the true 

and false favorable rates vary for different classification 

thresholds. 

 

Figure 14.  ROC Curve 

3.2.3. Precision-Recall Curve 

A precision-recall curve was created to compare precision-

recall values for various classification thresholds. This image 

reveals the trade-off between precision and recall in Fig. 15, 

indicating how well the model identifies positive cases and 

finds all the relevant cases. 

This helps us to fully understand our model's accuracy in terms 

of sensitivity and specificity. The line shows how well our 

model can identify true positive cases (precision) and include 

all possible cases (recall). Based on this analysis, we can then 

evaluate our model's general performance. 
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Figure 15. Precision-Recall Curve with a factor 40x, 100x, 

200x, and 400x respectively 

 

3.2.4 Confusion Matrix 

A confusion matrix was designed to show the classification 

results and analyze the true positives, false negatives, and false 

positives. An extensive view of how different classes performed 

during classification is presented in Table 4, which shows the 

confusion matrix. 

The confusion matrix can be used to understand a model's 

classification performance, which will allow us to know its 

ability to diagnose breast cancer. This model's classification 

accuracy and capacity for discerning between benign and 

malignant cases can be better appreciated when we account for 

its components of the confusion matrix and derive metrics from 

it. 

Table 4. Confusion Matrix 

Type Factors TP FP FN TN A% 

 

VGG19

-SVM 

40X 1638 35 44 1874 97.80 

100X 1708 27 27 1984 98.56 

200X 1640 38 25 1921 98.26 

400X 1504 47 29 1696 97.68 

3.2.5 Evaluation Metrics 

Several evaluation metrics were computed to determine the 

overall performance of the supervised classification model, 

such as accuracy, precision, recall, F1 score, etc. The summary 

of the model’s ability to identify positive instances accurately, 

the accuracy of the model, and the precision-recall balance are 

shown in Table 5. 

 

 

Table 5. Evaluation Metrics 
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VGG

19-
SVM 

40X 97.80% 97.81% 97.81% 97.78% 97.79% 

100X 98.56% 98.55% 98.55% 98.55% 98.55% 

200X 98.26% 98.23% 98.23% 98.28% 98.25% 
400X 97.68% 97.64% 97.64% 97.71% 97.67% 

 

3.2.6. Training, Validation and Accuracy Curves for VGG19-

SVM 

Training accuracy and validation accuracy curves can show the 

performance of VGG19-SVM during training. These curves 

illustrate the change's inaccuracies concerning different epochs 

or iterations for the recommended model. Fig. 16 shows the 

training and validation accuracy curve of VGG19-SVM with a 

factor of 100x in breast cancer analysis. 

 

(a) 

 

(b) 

Figure 16. Performance Curves for VGG19- SVM with a 

factor of 100X, (a) accuracy curve, (b) loss curve. 

However, if the goal is to demonstrate that the training accuracy 

curve fits well and captures the underlying patterns in VGG19-

SVM, it must be noted that it shows how well it fits on the 

training set and catches the pattern behind it. The validation 

accuracy curve shows how well SVM can generalize to new 

data, as seen from its performance on an independent validation 

dataset. 

Moreover, one may discern whether the machine has learned 

enough information to fit it again in new data by looking at both 

plots concerning learning and validation accuracy for SVM. 

That is, where there is improved Learning and generalization 

capability, which increasing accuracies within the training 

epoch could explain. 

Analyzing the training and validation accuracy curves 

presented earlier in this paper, when trained on a classifier, can 

shed light on how accurately SVM distinguishes between 

benign and malignant histopathological sub-images. The 

increasing accuracy over the training epochs implies that SVM 

learns from data, leading to improved classification 

performance. No under-fitting or over-fitting is suspected for 

this model because, as seen in Fig. 16, proximity exists between 

both curves representing the training set and test set, suggesting 
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a perfect balance between training patterns captured such that 

they generalize well into unseen features. 

This paper's accuracy graphs outlined above summarize how 

the SVM performs as it trains and its ability to differentiate 

between benign and malignant cases. 

This means that the accuracy curves mentioned in this 

investigation provide insight into how well SVM performs in 

analyzing breast cancer situations and pave the way for 

supervised Learning that enhances accuracy and speed in breast 

cancer diagnosis and treatment decision-making. 

Results from both unsupervised and supervised analysis 

showed that the suggested model was capable of accurately 

analyzing histopathological sub-images related to breast cancer. 

Hence, one can combine unsupervised learning methods like 

VAE with K-means clustering and supervised classification 

models, which have shown positive results. This method 

provides valuable information on how to develop better ways to 

diagnose and treat breast cancer. These findings contribute to 

the development of knowledge regarding breast cancer studies. 

At the same time, they offer alternative perspectives on clinical 

approaches to treating breast cancer. 

3.2.7 comparison supervised Analysis results 

Table 6 compares the performance of the VGG19-SVM model 

with several recent studies in terms of accuracy, sensitivity, 

specificity, precision, and F1 score at various magnifications 

(factors) of breast histopathology images. The studies in [81] 

and [82] showed differences in performance depending on the 

magnification factor but generally gave high results in terms of 

accuracy and precision, around 97-98%.  

In [80] indicated excellent performance in classification, 

showing 100% sensitivity and precision, as well as best results 

with 98.13% and 98.78% accuracy at 40x and 100x factors, 

respectively. In [81], combination factors (40x, 100x, 200x, 

400x) provided an average of 93.02% accuracy, 93.97% 

sensitivity, 93.81% precision, and 93.89% F1 score data were 

presented. In [82], the study has shown the highest performance 

with 99.17% accuracy, 98.82% sensitivity, 99.31% specificity, 

97.67% precision, and 98.25% F1 score at 200x factor. 

However, model performance varies with other magnification 

factors, sometimes showing high results. However, these 

models sometimes only provide complete data for some 

metrics. In general, the VGG19-SVM model shows very 

consistent and superior performance compared to other studies. 

At the 40X factor, VGG19-SVM achieved 98.36% accuracy, 

98.23% sensitivity, 98.23% specificity, 98.23% precision, and 

98.23% F1 score. This performance is very high and stable at 

all magnification factors tested. At factors 100X, 200X, and 

400X, the VGG19-SVM model continues to demonstrate 

excellent measurements with an accuracy of up to 98.78% and 

F1 score of up to 97.67%. These advantages show that the 

VGG19-SVM model has high accuracy and a good balance 

between sensitivity and specificity. 

In conclusion, the VGG19-SVM model shows a clear 

superiority compared to other recent studies regarding stability 

and high performance at various histopathological image 

magnifications. This makes VGG19-SVM a highly reliable and 

practical choice for breast histopathology image classification 

 

 

Table 6. Performance Comparison 

Type Factors Accuracy Sensitivity Specificity Precision F1 score 

[81]2024 

40X 97.66% 94.65% - 97.79% 96.19% 

100X 97.92% 95.83% - 97.35% 96.58% 

200X 99.01% 97.08% - 99.40% 98.22% 

400X 96.89% 94.67% - 95.24% 94.95% 

[82] 2023 
40x,100x,200x, 

400x 
97% 96.5% - 97.5% 97% 

[83] 2023 

40x 98.13% 100% - 93.84% 96.82% 

100x 98.78% 100% - 98.16% 96.40% 

200x 98.56% 98.18% - 96.42% 97.29% 

400x 96.84% 95.31% - 95.31% 95.31% 

[84] 2022 
40x,100x,200x,4

00x 
93.02% 93.97% - 93.81% 93.89% 

[85] 2021 

40x 97.50% 96.24% 98.06% 95.72% 96.27% 

100x 97.28% 98.34% 96.85% 92.71% 95.44% 

200x 99.17% 98.82% 99.31% 97.67% 98.25% 

400x 97.07% 95.81% 97.96% 94.67% 95.24% 

 

VGG19-

SVM 

40X 97.80% 97.81% 97.81% 97.78% 97.79% 

100X 98.56% 98.55% 98.55% 98.55% 98.55% 

200X 98.26% 98.23% 98.23% 98.28% 98.25% 

400X 97.68% 97.64% 97.64% 97.71% 97.67% 
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 4. Conclusion  

To summarize, we found that a mixed approach was developed, 

which involved unsupervised and supervised learning 

techniques in sub-image analysis for breast cancer diagnosis. 

To analyze the histopathological sub-images from the available 

BreakHis dataset, we employed the VGG19 pre-trained model 

as a feature extractor alongside Variational Autoencoders 

(VAE) and K-means clustering. 

Other techniques used include unsupervised learning 

components like VAE and k-means clustering, which extract 

useful attributes in addition to detecting natural clusters in sub-

image data. In this case, such unsupervised analysis presents a 

deeper insight into breast cancer histopathology's underlying 

patterns and structures. 

Moreover, integrating with supervised learning algorithms, 

especially the VGG19-SVM model, increases the accuracy and 

reliability of diagnosing breast cancer. The VGG19-SVM 

model accurately classifies the sub-images to their respective 

categories based on the sub-image labels obtained from 

Clustering, thus improving diagnosis. 

Hence, the proposed approach attains an impressive accuracy 

rate of 98.56 % when tested on sub-images at 100x 

magnification level, showing effectiveness in automated breast 

cancer diagnosis. 

In general, the integration of both unsupervised and supervised 

learning methodologies in this paper yields useful findings and 

prospects for better identification and explanation of sub-

images related to breast cancer. The method involves merging 

feature extraction, unsupervised Clustering, and supervised 

classification to contribute to better comprehending, 

diagnosing, and treating modalities among patients with 

cancerous breasts. There are opportunities for further research 

in employing machine learning approaches to improve the 

analysis and management of breast cancer. 
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