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 The existing energy grid faces challenges in meeting the escalating energy demands driven 

by annual population growth and the proliferation of energy-consuming devices in the 

contemporary era. This research proposes an optimum multi-objective pelican optimization 

method for smart grid load control. The proposed algorithm effectively explores diverse 

solutions by minimizing customer energy costs and reducing peak loads for utility 

companies, identifying a Pareto front that represents optimal trade-offs among the three 

objectives: energy cost minimization, peak load reduction, and a third objective (user 

inconvenience). An ELimination ET Choix Traduisant la REalite (ELECTRE) method then 

rigorously ranks the Pareto-optimal solutions, guiding the selection of the most 

advantageous alternative that harmonizes the competing objectives. Energy bills are 

reduced by more than 42.66% using the proposed method. Additionally, the reduction in 

peak energy consumption by 20.66% has benefited the power suppliers for a sampling time 

of (30 minutes). When applied (60 minutes) sampling time, energy bills are reduced to 40.74 

% and peak load to 30% with acceptable levels of inconvenience. Furthermore, the proposed 

load management provides 42.66 % and 20.66% cost and peak savings compared to other 

work in the state of the arts. 
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1. Introduction  

The residential sector consumes over 45% of global energy, yet 

millions of dollars are squandered due to carelessness and 

ineffective management [1]. The management of energy 

consumption is a topic that needs significant attention. 

Considering the increasing number of smart devices made 

available by a wide range of consumers in the residential and 

commercial sectors [2]. Most current power grids are outdated 

and inefficient; therefore, needed to be transformed into smart 

grids. An electric power grid integrated with a communication 

network system that operates in both directions is referred to as 

a smart grid [3],[4]. The smart grid is a concept that aims to 

improve the efficiency of power use from the point of 

production to the point of end-user, effectively all generations, 

and to enable customers to participate in demand-side 

management programs (DSM) [5]. Smart grid software and 

hardware allow utilities to rapidly detect and resolve problems 

between consumers and energy producers that might 

compromise power supply consistency and quality [6],[7]. 

Demand response (DR) is an important technology that helps 

smart grids achieve a balance between supply and demand. 

Information exchange between electrical grids and power 

consumers may boost generating facility energy efficiency and 

lower power usage [8]. DSM is a key smart grid domain. It 

helps energy suppliers lower demand during peak hours and 

restructures the load profile, improving smart grid 

sustainability, energy costs, and carbon emissions  [9]. DR 

programs are classified into two types: price-based and 

incentive-based. Price-based programs encourage users to 

adjust their consumption to changing power rates. On the other 

hand, incentives-based programs seek to decrease customers' 

energy usage by offering fixed or variable incentives that 

consider periods of high stress on the power system  [10],[11].  

Scheduling and controlling household loads have been 

investigated using various methods within the past ten years. 

Ge et al. [12] focused on transactive control systems that allow 

buildings to take part in demand response for electricity. 

Experimental research on campus buildings found it possible to 

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd
https://doi.org/10.31272/jeasd.2447
mailto:hibahaider@uomustansiriyah.edu.iq
https://orcid.org/0009-0007-5081-4626
https://orcid.org/0000-0002-2569-0031


Journal of Engineering and Sustainable Development, Vol. 29, No. 02, March 2025                                              ISSN 2520-0917 

 

243 

maintain the highest building energy revenue level while 

significantly minimizing peak demand. Yousaf et al. [13] have 

proposed an improved residential electricity load forecasting 

model using a machine-learning-based feature selection 

approach and a proposed integration strategy. The proposed 

model has three main stages: feature selection and a binary 

genetic algorithm (BGA). A feedforward adaptive-network-

based fuzzy inference system (ANFIS) forecasts the residential 

electricity load. The forecasts from multiple ANFIS models are 

integrated using a proposed decision integration strategy. The 

total improvement calculated for ten buildings is 17%. Nazemi 

et al. [14] have used a nonlinear optimization model to solve 

load scheduling challenges within a community of smart 

buildings. The three main objectives are to minimize total 

energy costs, maximize the benefits given to each customer, 

and minimize inconvenience. The proposed approach is 

assessed through two case studies involving a residential and a 

commercial building community. Results illustrate reduced 

total energy costs while improving participant satisfaction, and 

peak demand was reduced by 53%. Veras et al. [15] proposed 

a multiple-objective nonlinear programming problem to find 

the most efficient schedule for home appliances within a 

specific period. It considers limitations and is solved using the 

Non-Dominated Sorted Genetic Algorithm (NSGA-II). The 

stated results saved around 8.65% on electricity costs. 

Yahia and Pradhan [16] proposed a  Mixed Integer Linear 

Programming (MILP) approach to address a multiple-objective 

deterministic optimization problem involving several 

households. The weighted sum and compromise methods 

helped to achieve a desirable solution. According to the 

findings, coordinated over-aggregated methods are more 

successful than aggregated approaches to reducing peak load. 

Compared to an aggregated method, the coordinated method's 

simulation findings demonstrated a 10%–30% reduction in 

peak energy consumption. Ayub et al. [17] have proposed an 

optimal home appliance scheduling strategy to provide the 

highest level of satisfaction while minimizing energy costs. The 

multi-objective grey wolf accretive satisfaction algorithm 

(MGWASA) generates trade-off solutions for optimal load 

patterns based on the cost per unit satisfaction index and 

percentage satisfaction. The TOU price pattern is used during 

the scheduling period. The appropriate scheduling of home 

loads resulted in a 44% decrease in annual energy costs. 

Rahman et al. [18] have presented a demand-side residential 

load management system that optimizes energy consumption 

and reduces peak loads in the smart grid. Both deferred and 

curtailable appliances are thought to be highly responsive to 

real-time price changes. The results show significantly reduced 

peak loads and energy costs for customers. Specifically, the 

system reduced peak loads by 38.80% and minimized total 

energy costs by 22.55% for customers.   

A price-driven DR was proposed by Niu et al. [19] for use in a 

distributed electrical energy system. Each flexibility measure 

responds effectively to time-of-use pricing. According to the 

results, it can decrease between 1.7% and 12.9% of the system's 

operating costs. Ahmed et al. [20] have utilized two types of 

optimization methods, namely, particle swarm optimization 

(PSO) and strawberry optimization algorithm (SBY), to solve 

the DR problem for different loads (residential, commercial, 

and industrial). Time-of-use (TOU) and real-time pricing 

(RTP) can reduce cost and peak load. The results of the 

distributed RTP algorithm and the centralized RTP algorithm 

showed that the centralized algorithm provided better cost 

reduction. The findings of utilizing the SBY optimization 

algorithm in centralized RTP resulted in cost reductions of 

14.80%, 21.7%, and 21.84% for industrial, commercial, and 

residential, surpassing the performance of the PSO method. 

The SBY optimization algorithm demonstrated superior cost 

reduction. Wang et al. [21] have used a better chicken swarm 

optimization algorithm for the interruptible load scheduling 

model to lower the system's peak load and operating costs, 

taking into account the user subsidy rate. Interrupt load 

scheduling management can meet the load scheduling needs to 

reduce the peak load on the grid and save costs by 1.74%. 

Results show that this approach outperforms previous swarm 

intelligence algorithms for running speed, accuracy, and 

optimal fitness. 

Jasim et al. [22] have used two types of optimization methods, 

namely, Earth Worm Optimization Algorithm (EWOA) and  

Virulence Optimization Algorithm (VOA). The system utilizes 

Renewable electricity Resources (RERs), Renewable Energy 

Sources (RES), and electricity from the utility grid to power the 

load appliances. A time-of-use (TOU) dynamic pricing scheme 

has determined users' power bills. The performance of the 

selected optimization techniques is compared to well-known 

meta-heuristics and evolutionary algorithms (genetic algorithm 

GA, cuckoo search optimization CSO, and binary particle 

swarm optimization BPSO). The outcomes demonstrate that 

VOA performs better than the other algorithms without RES 

and provides a 59% reduction in energy use's peak-to-average 

ratio (PAR). By including RES, the EWOA and the VOA 

provide less variance and a lower PAR. VOA saves 76.19% of 

PAR, whereas EWOA saves 73.8%. Muhsen et al. [23] 

introduced a novel differential evolution method for multi-

objective optimization to provide optimal solutions by reducing 

a load's cost and peak demand. A multi-criteria decision-

making approach was utilized to arrange the optimal solutions 

in descending order to allow consumers to choose the most 

suitable time for their schedule. The final results from the 

proposed approach illustrate cost and energy reductions of 

approximately 46% and 47%, respectively. 

The aforementioned reviews indicate that most research has 

focused on combining demand-side and supply-side 

advantages. The main weaknesses of these older approaches' 

gaps are: First, commercial software was used to solve the 

majority of multi-objective models. Multiple objectives are 

often combined into a single objective using an aggregated 

weighted sum. Finally, multi-criteria decision-making is rarely 

utilized to sort all alternatives. 

Based on the mentioned research gaps for the current works of 

state of arts for load management for residential customers, the 

contributions of this paper are as follows: 

1. This research delves into the effective management of 

residential energy consumption within smart grids, 
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offering substantial advantages for utilities and 

consumers. The focus on reducing peak loads during 

high-demand periods not only diminishes the requirement 

for costly peak-hour generation infrastructure but also 

decreases consumer electricity expenses. Furthermore, 

optimized appliance scheduling minimizes 

inconvenience, creating a mutually beneficial scenario 

that aligns with the goals of a more sustainable and 

efficient energy future.  

2. The Pelican optimization algorithm (POA) is a novel and 

interesting method compared to previous algorithms like 

GA, DE, and PSO. POA is a population-based algorithm 

that can prevent being caught in local optima. It works 

well for problems such as financial optimization, 

scheduling, and engineering design. 

3. Dominance Count Method: Incorporating dominance 

count in this research fosters a more efficient and targeted 

approach to identifying solutions that effectively balance 

multi-objective peak load reduction and cost 

minimization in residential load management. 

4. Assigning Weights: CRITIC assigns weights to each 

objective, reflecting their relative importance in decision-

making. 

5.  MCDM: the compromise alternatives are rated using a 

multi-criteria decision-making method that integrates 

both objectives and employs the ELECTRE method to 

choose the optimal solution considering pre-determined 

priorities. 

6. Time-of-Use (ToU) is a dynamic pricing model that 

applies varying electricity rates depending on the time of 

day. This system analyzes and compares the effectiveness 

of different pricing approaches. 

 

2. Problem formulation 

Cost, peak load, and customer inconvenience are the primary 

objectives of this paper. Every customer uses a variety of 

appliances connected to the power grid. A smart meter 

connected to a central utility is installed in every residence. The 

smart meter sends all relevant data about customer usage to the 

central scheduler via a Neighborhood Area Network (NAN), 

operating within a Home Area Network (HAN) framework. 

Household appliances are connected to smart meters and 

managed within a home network using Internet of Things (IoT) 

technology. This paper aims to optimize household appliance 

scheduling to minimize energy costs for users while 

simultaneously reducing peak load on the power grid. 

However, shifting appliance usage to off-peak hours can 

inconvenience users.  

The following subsections utilize objective mathematical 

formulas to improve the system. 

2.1 Energy cost 

The utility supplies the price of power (electricity)  Prts for 

each ts = [1, 2., T], time slot. End-user appliances can have 

optimal load control by reducing energy bills and using less 

power at peak hours. The formula below is used to determine 

energy cost (ENC) [24]: 

𝐸𝑁𝐶 = ∑ ∑ 𝑃𝑟𝑡𝑠  𝑃𝑎   𝑁𝐹𝑜
𝑎,𝑡𝑠   ∗ ∆𝑡

𝑇

𝑡𝑠=1

𝐴𝑎

𝑎=1

         (1)  

Whereas Aa refers to the total count of household appliances 

(loads), a is the value of each item, and Pa is the power 

consumption value in (Kw). NFo
a,ts represents the best 

ON/OFF status for ath   appliance at tsth  (time slot). ∆ts 

represents sampling time. 

2.2 Peak load  

Reducing peak demand saves money for both the utility 

company and its customers. The peak energy demand has to be:  

𝑃𝐿 = ∑   𝑃𝑎

𝐴𝑎

𝑎=1

 𝑁𝐹𝑜
𝑎,𝑡𝑠    ; ∀ 𝑡𝑠 ∈ [1, 𝑇]    (2) 

PL indicates how much electricity is utilized during a specific 

time. 

2.3 Customer's inconvenience 

The consumer desires to reduce the cost of their energy 

bill without changing their preferences. Any deviation 

from the usual consumption pattern of the consumer 

will result in inconvenience for the customer. The 

customer's inconvenience may be expressed as follows: 

𝐼𝑁𝐶𝑂𝑁 = ∑ ∑ |𝑁𝐹𝑜
𝑎,𝑡𝑠− 𝑁𝐹𝑏

𝑎, 𝑡𝑠 | 

𝑇

𝑡𝑠=1

𝐴𝑎

𝑎=1

(3) 

Where NFb
a,ts   and NFo

a,ts  are the state of ath  appliance at 

tsth  time slot for baseline (preferred scheduling from 

customer) and optimal scheduled, respectively. 

 

3. Theoretical Background 

To manage the objective function properly, the optimization 

method known as POA should be applied. This method allows 

for the best load scheduling solution while lowering peak load, 

customer inconvenience, and cost. 

3.1    Pelican Optimization Algorithm (POA) 

Pelicans often work together as a group, actively participating 

in cooperative hunting strategies [25]. Based on pelicans' 

natural behavioral patterns, the POA consists of exploitation 

and exploration phases to find the most optimal solution. The 

mathematical model of the Pelican Optimization Algorithm 

(POA) has two phases: an exploration phase where pelicans 

move towards prey and an exploitation phase where they skim 

the water's surface [26]. 

3.1.1 Initialization 

The POA is a population-based method that considers all 

members of the pelican population as a potential solution. An 
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initial population POP comprised of np solutions is created at 

the start of the optimization process. The search area of each 

vector in the set includes DV decision variables that are evenly 

distributed. The range of possible solutions is defined by its 

minimum (lower) and maximum ( upper) limits, expressed as 

𝑋𝑙 and Xh. The process begins by generating the initial solution 

as follows:  

XG
J,I  = XlJ,I + rand ∗ (XhJ,I− XlJ,I )                                   (4) 

Where 𝑟𝑎𝑛𝑑  represents a random number between 0 and 1 

while G ranging from 1 to Gmax, represents the current 

generation. 

Whereas the index I relates to the solutions I = [1, 2,3, ..…np]. 

The vector variables are indexed as J = [1, 2, DV].  

3.1.2 Advancing towards Food Source (Exploration Phase) 

The pelican identifies its target during this stage and swiftly 

dives to capture it. The random distribution of prey enhances 

the pelican's search capabilities. Equation (5) models the 

pelican's position and how it changes with each iteration. 

XJ,I
P1 = { 

XJ,I     
+ rand ∙ (PJ − Ip ∙ XR,J ) FP < FI

   XJ,I+ rand ∙ ( XJ,I − PJ)  else         
                       (5) 

Here, XJ,I
P1Here, IP1 denotes the updated position of the Ith 

pelican in the Jth dimension, calculated during the first phase. 

PJ  represents the prey's location in the Jth dimension, and FP is 

the function's value. The Ip  Parameter's value is randomly 

selected 1 or 2. 

In the proposed POA (Pelican Optimization Algorithm), a 

pelican's new position is accepted only if the objective 

function's value improves at that location. This type of 

updating, known as effective updating, keeps the algorithm 

from moving to less-than-ideal areas. 

𝑋𝐼 = {
 𝑋𝐼

𝑃1  ,                 𝐹𝐼
𝑃1 < 𝐹𝐼

𝑋𝐼                             𝑒𝑙𝑠𝑒
                                          (6) 

Variable XI
P1 represents the updated status of the  Ith pelican, 

whereas  FI
P1 denotes the value of the desired function obtained 

from step one. 

3.1.3 Winging on the water surface (exploitation phase) 

In the exploitation phase, pelicans glide across the 

water's surface, utilizing their wings to guide fish 

toward shallower regions, making them more accessible 

for catch. Equation (7) is a possible mathematical 

representation of this behavior: 

𝑋𝐽,𝐼
𝑃2 = 𝑋𝐽,𝐼+ 𝑅 ∙ (1 −

𝐺

𝐺𝑚𝑎𝑥
) ∙ (2 ∗ 𝑟𝑎𝑛𝑑 − 1) ∙ 𝑋𝐽,𝐼        (7) 

Where XJ, I
P2 represents the updated status of the Ith pelican in 

the Jth  dimension, considering phase two. Gmax is the 

maximum number of iterations, while R is a constant with a 

value of 0.2. 

Equation (8) implements an effective update mechanism to 

determine whether the new pelican position should be accepted 

or rejected. 

𝑋𝐼 = {
 𝑋𝐼

𝑃2                   𝐹𝐼
𝑃2 < 𝐹𝐼

𝑋𝐼                     𝑒𝑙𝑠𝑒        
                                              (8) 

In this context,  XI
P2 represents the pelican's updated position, 

while FI
P2  represents the corresponding objective function 

value calculated during the second phase. 

Algorithm 1: Pseudo-code for the Pelican Optimization 

Algorithm (POA) 

1. Input information related to the optimization problem. 

2. Initialize the positions of pelicans and compute the 

objective function. 

3. For each iteration (G) from 1 to 𝐆𝐦𝐚𝐱: 

4.  

5. Randomly generate the position of the prey. 

6. Calculate the new status of the  𝐉𝐭𝐡  dimension using 

Equation (5). 

7. End the exploration phase. 

8. Update the 𝐈𝐭𝐡 population member using Equation (6). 

9. Phase 2: Glide on the water surface (exploitation phase). 

10. For each dimension (J) in the solution space. 

11. Calculate the updated state of the 𝐉𝐭𝐡 dimension using the 

specified equation (7). 

12. End the exploitation phase. 

13. Update the 𝐈𝐭𝐡 population member by applying Equation 

(8). 

14. End. 

15. Update the best candidate solution. 

16. End iteration. 

17. Provide the optimal solution obtained through POA. 

3.2 An Introduction to Dominance-Based Methods 

In a multi-objective optimization problem (MOOP), multiple 

objective functions must be minimized or maximized 

simultaneously.  As in a single-objective optimization problem, 

all feasible solutions, including all optimum solutions, must 

meet a set of constraints [27].  

The existence of multiple objectives in a problem results in 

Pareto-optimal solutions, which cannot be definitively ranked 

as better or worse than one another without further context. To 

handle this, dominance-based ranking methods—such as 

dominance rank, dominance depth, and dominance count—are 

frequently employed. This research uses dominance count to 

evaluate and compare solutions in each generation by analyzing 

their dominance relationships. In multi-objective optimization 

problems (MOOP), dominance count measures the 



Journal of Engineering and Sustainable Development, Vol. 29, No. 02, March 2025                                              ISSN 2520-0917 

 

246 

effectiveness of a solution by determining how many 

alternative solutions are inferior to it across all objectives [28].  

For example, as seen in Fig. 1, solution A seems to dominate 

solution B if it outperforms B in every criterion without being 

inferior. Numerous alternative solutions in the population are 

inferior to those with a high dominance count. 

3.3 The Criteria importance through inter-criteria  method 

(CRITIC) 

This CRITIC method was first introduced by Diakoulaki et al. 

(1995), as cited by Mohamadghasemi [29]. The decision-

making process in this method does not include any weights 

represented by decision-makers preferences. This method's 

weight is called the objective weight. It is based on the intensity 

with which one criterion contrasts with the others and how 

conflicts between criteria are measured using standard 

deviation and correlation coefficient, respectively [29]. 

Let DM= [Yij]m x n
be the decision matrix that is clear and 

concise for an MCDM in which there are M various alternatives 

Ai( i= 1, …, M) in terms of N criteria Cj( j= 1, …, N) and 
yij stands for the evaluation scale for alternative i about 

criterion j. The representation of the DM is as follows: 

𝑌 = [

𝑦11 ⋯ 𝑦1𝑛

⋮ ⋱ ⋮
𝑦𝑚1 ⋯ 𝑦𝑚𝑛

]                                                 (9) 

 

Figure 1. Number of bi-objective space solutions 

 

The objective weights determined by the CRITIC method are 

shown in the following steps: 

1. Normalized a decision matrix  yi,j  used to evaluate  ith 

alternative in relation to jthcriteria using equations (10) 

and (11). 

  

                𝑃𝑖,𝑗   =    
    𝑦𝑖,𝑗 −  𝑦𝑗

𝑚𝑖𝑛

   𝑦𝑗
𝑚𝑎𝑥   −  𝑦𝑗

𝑚𝑖𝑛
                   i = 1,.., m ; 

            j=1,..,n   for  benefit criteria                                     (10) 
  

         𝑃𝑖,𝑗   =    
  𝑦𝑗

𝑚𝑎𝑥  −  𝑦𝑖,𝑗 

   𝑦𝑗
𝑚𝑎𝑥   −  𝑦𝑗

𝑚𝑖𝑛
                       i = 1,..., m ; 

            j = 1,..., n   for    cost criteria                                   (11) 

2. Calculate the standard deviation 𝜎𝑗 for the 𝑗𝑡ℎ criterion's 

vector. 

           𝜎𝑗  = √
∑ (𝑃𝑖,𝑗− 𝑃𝑗)2𝑚

𝑖=1

𝑚−1
                                        (12) 

         Where      𝑃𝑗 =
∑ 𝑃𝑖,𝑗

𝑚
𝑖=1

𝑚
                                         (13)                           

3. Calculate the coefficient of linear correlation 𝜌𝑗𝑗
 

between the criteria values in the matrix.  

4. Compute the quantity of information by combining the 

aforementioned two quantities using the subsequent 

formula for multiplicative aggregation: 

              𝐿𝐶𝐶 = 𝜎𝑗 ∑ (1 − 𝜌𝑗𝑗)                                   (14 )𝑛
𝑗    

5. The objective weights are calculated according to the 

following equation: 

           𝑊𝑗 =
𝐿𝐶𝐶𝑗

∑ 𝐿𝐶𝐶𝑘
𝑛
𝑘=1

                                                   (15) 

3.4 The ELECTRE (ELimination Et Choix Traduisant la 

REalite) method  

The ELECTRE is a method of multi-attribute decision-making 

(MADM) that does not include compensation and operates 

based on comparing alternatives while considering individual 

criteria. In 1966, Ben,ayoun, et al. first proposed the ELECTRE 

evaluation method. The method works by selecting a desired 

choice from a set of alternatives that fulfill separate demands 

[30]. The ELECTRE technique may be explained via the 

following steps: 

1. Normalizing the Decision Matrix DM =    [Yij]m x n
 to 

create the normalized decision matrix (r), by which each 

member is normalized.   

           𝑟𝑖𝑗 =
𝑦𝑖𝑗

∑ 𝑦𝑢𝑗𝑚
𝑢=1

                                                (16) 

2. Construction of the weighted normalized decision matrix 

to include the impact of weight, which was already 

determined by the CRITIC method, into the decision 

matrix: 

          𝑣𝑖𝑗 = 𝑟𝑖𝑗 × 𝑊𝑗                                        (17) 

3. Determine the concordance and discordance sets to divide 

the choice criterion matrix into two independent subsets 

( 𝐶𝐾𝑙  (concordance) and 𝐷𝐾𝑙  (discordance):l ≠ 𝐾  ) for 

every pair of choices. When two options are considered, 

they are compared based on the category of criteria (cost 

or benefit types). Then, the concordance and discordance 
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sets are determined based on which alternative is better or 

worse.     Consequently, the concordance and discordance 

sets can be shown as: 

       𝐶𝐾𝑙 = {𝑗 ,   𝑣𝐾𝑗 ≥ 𝑣𝐿𝑗}                             (18) 

              For     j = 1, 2,… n               

  

   𝐷𝐾𝑙 = {𝑗 ,   𝑣𝐾𝑗 < 𝑣𝐿𝑗}                               (19) 

      for j = 1, 2, … n                             

 

4.   The construction of the concordance matrix. After 

identifying concordance and discordance sets, the total of 

the weights linked to the criteria in the concordance set is 

the concordance index   𝑐𝐾𝐿    

𝑐𝐾𝐿 = ∑
𝑊𝑗

 
𝑛
𝑗∈𝐶𝐾𝐿

                                        (20) 

The concordance index estimates the relative significance 

of alternative AK compared to alternative Al. Define the 

concordance matrix C as follows: 

𝐶 = [

0 𝑐12 …           𝑐1𝑚

𝑐21 0     …            𝑐2𝑚

𝑐𝑚1 ⋯ 𝑐𝑚(𝑚−1)    …
]                  (21) 

 

5.  Constructing a discordance matrix.  

 Most of the focus in this step is on how much an 

alternative is even worse than the others. To compute the 

discordance index, use the following equation:   

𝑑𝐾𝐿 =
max

𝑗∈𝐷𝑅𝐾𝐿
  |𝑣𝐾𝑗−𝑣𝐿𝑗|

max
𝑗∈1,..𝑛

  |𝑣𝐾𝑗−𝑦𝐿𝑗|
                                   (22) 

It is possible to define the discordance                matrix 

as follows: 

𝐷 =    [

0 𝑑12 …           𝑑1𝑚

𝑑21 0     …            𝑑2𝑚

𝑑𝑚1 ⋯ 𝑑𝑚(𝑚−1)   … 
]              (23) 

 

The matrix indicates that greater values of  𝑑𝐾𝑙  indicate 

𝐴𝐾 is less favorable than  𝐴𝑙 in terms of the discordance 

criterion. The range of  𝑑𝐾𝑙values is from 0 to 1. 

6. Calculating the dominance matrix for the concordance 

index. A threshold value is applied to the concordance index 

to generate the concordance dominance matrix.  

An alternate AK can only dominate alternative Al if its 

concordance index cKl surpasses a threshold value cth.  

𝑐𝐾𝑙  ≥ 𝑐𝑡ℎ                                                            (24) 

The value of 𝑐𝑡ℎ may be found using multiple ways. The 

calculation can be determined using the following equation. 

𝑐𝑡ℎ =
1

𝑚(𝑚 − 1)
∑ ∑ ckl

m

l=1
l≠k

𝑚

𝑘=1
𝑘≠𝑙

                     (25) 

The concordance dominance matrix (F) members are 

calculated based on the threshold value. 

𝑓𝑘𝑙 = {
1         𝑖𝑓    ckl ≥ cth                         (26)    
0         𝑖𝑓    ckl < cth                                      

 

Each "one value" assigned to an element in the matrix 

denotes "the degree of dominance one alternative has over 

another alternative." 

7. Calculating the dominance matrix for the discordance 

index. In the same way, a threshold valued 𝑑𝑡ℎ is used to 

determine the discordance dominance matrix G. Where  𝑑𝑡ℎ 

could be defined as follows: 

𝑑𝑡ℎ =
1

𝑚(𝑚 − 1)
∑  ∑ dkl

m

l=1
l≠k

𝑚

𝑘=1
𝑘≠𝑙

       (27) 

And 

            𝑑𝑘𝑙 = {
1     𝑖𝑓    dkl ≥ dth          
0     𝑖𝑓    dkl < dth         

                 (28) 

8. Determine the aggregate dominance matrix. This step aims 

to merge the matrices f and G and compute the aggregate 

dominance matrix, which is the product of the F and G 

matrices. The dominance matrix E is defined below. 

    𝑒𝑘𝑙 = fkl   × 𝑔𝑘𝑙                                         (29) 

9.  Eliminate the Less Favorable Alternatives. The partial 

preference ordering of alternatives can be derived from the 

aggregate dominance matrix. If  ekl = 1=1, it indicates that 

alternative AK is better than alternative Al based on the 

concordance and discordance factors. 

Fig. 2 shows the proposed POA optimization and hybrid 

MCDM methods for residential load scheduling. 
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Figure 2. Integrated MOPOA– CRITIC – ELECTRE method for solving residential load scheduling. 
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4. Case Study 

The end-user energy use profile data from [31] is used in this 

research. The optimum scheduling model for a normal 

residential home is used to choose the twenty appliances. An 

electrical provider has established the ToU pricing, as shown 

in Table 1 [31]. The hours of 11:00 to 14:00 and 18:00 to 

23:00 are the highest (peak). Valley timings are from 0:00 to 

7:00, and flat periods from 8:00 – 10:00 and 15:00 – 17:00. 

Table 2 presents the details of home appliances, including 

each device's power rating, start times (St) and end times 

(Et), and the duration required for normal operation. 

.                      Table 1. The TOU Pricing [31] 

Loads Power price ($/Kwh) Time ranges 

Peak 

 

0.84 11:00 to 14:00 

18:00 to 23:00 

Valley 

 

Flat 

0.31 

 

0.61 

 

00:00 to 07:00 

 

8:00 to 10:00 

15:00 to 17:00 

 

5. Results and Discussion  

A novel methodology that combines MCDM methodologies 

with a multi-objective optimization algorithm is proposed to 

achieve optimal load scheduling for different appliances. The 

MATLAB software is used to execute the proposed algorithm. 

As the operating time taken into consideration in this research 

is one day, the complete day could be divided into 48 slots if a 

sample period of thirty minutes is used. Twenty decision 

variables (DV), equal to the total number of household 

devices, must be optimized using the POA approach in the 

optimization algorithm. POA was applied to the target 

functions for 50- and 100 individuals. The algorithm's 

exploratory capability has increased due to population growth, 

and more desirable solutions have been found. It tested 50, 

100, and 200 iterations of the algorithm and found that 

increasing iterations beyond 50 did not significantly improve 

the finding of optimum solutions while reducing both 

objectives. This suggests that 50 iterations strike a good 

balance between computational efficiency and achieving 

optimal solutions. An MOPOA algorithm minimizes cost, 

peak, and user inconvenience as a third objective to shift load 

to minimize peak times to provide best sets within a Pareto-

front and reduce average energy costs. The Pareto optimal 

front, comprising 300 values representing different trade-offs 

between objectives, is illustrated in Fig 3. Minimum cost, peak 

value, and end-user dissatisfaction are 29.786 $, 4.45 kW, and 
42, respectively. Upon completion of the MOPOA algorithm, 

a set of optimal solutions (Pareto front) is generated.  

Consequently, a multi-criteria decision-making method ranks 

the alternatives from best to worst. 

 

Figure 3. The Pareto optimal front using the MOPOA algorithm. The "*" refers to the solutions in objective space. 
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Table 2. Deferrable Load Data for Household Appliances [31] 

Appliance        power rating(Kw)                    Starting time(St)   and    Ending time(Et) Duration (h) 

  Dishwasher               0.73                                    8:00           to                12:00 1 

  Dishwasher                0.73                                   20:00         to                23:00 1 

  Dishwasher                0.73                                   6:00           to               7:30 1 

  Rice cooker                0.8                                    15:00          to               17:00 1 

 Rice cooker                 0.8                                    6:00            to               9:30 1 

 Washing machine       0.38                                  18:00          to              20:30  2 

 Washing machine       0.38                                  00:00          to              9:00 2 

  Humidifier                  0.15                                 14:00          to             20:30         4 

  Humidifier                  0.15                                 9:00           to             12: 00       4 

  Laundry drier             1.26                                 20:00          to              23:00 1.5 

  Laundry drier             1.26                                 4:00            to              8:00 1.5 

  Water heater               1.85                                16:00          to              20:00 2 

  Water heater               1.85                                21:00          to               24:00 2 

  Electric kettle             1.5                                  6:00            to               7:30 0.5 

  Electric kettle             1.5                                 20:00           to               23:30 0.5 

  Electric kettle             1.5                                 9:00             to               12:30 0.5 

  Electric oven               1.3                               15:00            to               17:00 1 

  Electric oven               1.3                                19:00           to               22:00 1 

Air conditioner              2.2                               11:00            to             15:00 4 

Air conditioner              2.2                               17:00            to             23:00 4 

 The CRITIC method was utilized to determine the weights for 

three criteria. The weights of the MCDM problem's criteria are 

presented in Table 3. The weights indicate the relative 

importance of one criterion compared to another. 

Table 3: Criteria's weight via CRITIC Method 

weight (Cost) weight (Peak) Weight(INCON) 

0.32132      0.30313           0.37555 

 

Following this, the ELECTRE method, renowned for its 

effectiveness in decision-making processes, was applied to 

fine-tune the selection of optimal solutions by comparing and 

ranking alternatives based on multiple criteria, considering 

objective weights. First, it normalizes the decision matrix to 

ensure the requirements are comparable. Then, it calculates 

concordance and discordance indices to assess how well one 

alternative outperforms another. Based on these measures, it 

establishes outranking relationships, identifying which 

alternatives generally "outrank" others. Finally, it creates a final 

ranking of alternatives. 

Fig. 4 illustrates the cost breakdown before implementing our 

scheduling method, revealing a total cost of $51.95. This 

analysis underscores the potential for significant savings. 

Additionally, Fig. 4 emphasizes the peak load before 

scheduling, exceeding 6 kW. This high peak load strains the 

grid and can potentially increase energy costs. 
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Figure 4. Daily power consumption before scheduling  

 

Implementing our load scheduling approach resulted in 

substantial enhancements in both cost and peak load, as shown 

in Fig. 5. This figure demonstrates a reduction in cost to 

$29.786 and a reduction of 4.760 KW in peak load, indicating 

improved grid stability and cost savings. 

Therefore, the savings increase to 42.66% for costs and around 

20.66% for peak load. All these savings are for the first-rank 

solution. These solutions show the significance of weights. 

Table 4 shows a summary of Cost and Peak Savings for the 

five best-ranking solutions obtained using the ELECTRE 

method. 

According to the findings in Table 4, the first-ranking solution 

emerges as highly promising based on the weight obtained. 
Therefore, the savings increase to 42.66% for costs and around 

20.66% for peak load. All these savings are for the first rank 

solution. These solutions show the significance of weights. 

Table 4 shows a summary of Cost and Peak Savings for the 

five best-ranking solutions obtained using the ELECTRE 

method. According to the findings in Table 4, the first-ranking 

solution emerges as highly promising, based on weight 

obtained through the CRITIC method. This ranking signifies 

optimal performance in terms of cost reduction (42.66%) and 

peak load management (20.66%) with user inconvenience 50. 

All the best-ranked solutions achieved overall cost savings 

ranging from 42.56-42.66% and peak load reductions of 

20.66% due to the scheduling process. While the top solutions 

achieved significant cost and peak load improvements, they 

also introduced moderate user inconvenience (INCOV 50 or 

49). This suggests a trade-off between energy optimization and 

user comfort, which warrants careful consideration in 

implementation. Notably, the total energy consumption 

remained unchanged before and after scheduling, indicating 

that the savings were not due to reduced energy usage but 

rather to more efficient load distribution. This highlights the 

ability of the scheduling to optimize energy patterns without 

compromising overall energy needs. 
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Figure5. Daily power consumption after scheduling  

Table 4: Summary of Cost and Peak Savings for Top 5 Ranking Solutions 

Before  Scheduling  After Scheduling 

Rank Total 

energy 

(kWh) 

Peak 

load 

(kW) 

Total 

cost 

($) 

  Total 

energy 

(kWh) 

Peak 

load 

(kW) 

Total            

cost ($) 

 

INCON Cost 

saving 

% 

Peak 

saving 

% 

1 80.28 6 51.95 80.28 4.760 29.786   50 42.66 20.66 

2        80.28 6 51.95 80.28 4.760 29.786   50 42.66 20.66 

3 80.28 6 51.95 80.28 4.760 29.838   49 42.56 20.66 

4 80.28 6 51.95 80.28 4.760 29.838   49 42.56 20.66 

5 80.28 6 51.95 80.28 4.760 29.821   49 42.59 20.66 

 

These MCDM techniques played a pivotal role in enhancing 

our decision-making process, ensuring a thorough assessment 

of alternatives, and contributing to the overall success of the 

study by offering nuanced insights into the trade-offs and 

benefits associated with each solution. 

For evaluating the proposed scheduling of loads algorithm's 

effectiveness and performance, a comparison is made with 

[31]. All methods use the same consumer data and pricing 

system (ToU). A comparison of different methods is shown in 

Table 5. Before scheduling, Rong et al. [31] indicated a 

maximum peak load was 6 kW, the total electricity 

consumption was 80.28 kWh, and the overall cost was $51.95. 

Without considering inconvenience, the optimized cost and 

peak load reduction achieved a 25.71% cost reduction and an 

8.3% peak load reduction. 

The suggested load scheduling algorithm was implemented 

using sample times of 60 and 30 minutes to reduce peak 

demand and increase cost savings. The 30-minute sampling 

interval results in a significant cost reduction of 42.66% and a 

peak energy load reduction of 0.66%. However, the same 

sample period (60 minutes) is used for fairness compared to 

the prior research. 

Based on the findings from the proposed schedule, the peak 

load drops to 4.2 kW (the overall peak is lowered by 30%), and 

the total cost is lowered to 30.7848$ (the whole bills are 

reduced by 40.74% through the DR). with an end-user 

inconvenience of 19 slots. Considering that the same utility 

income is assumed for all methods, the suggested method 

delivers a larger decrease in expenses and peak demand than 

the previous work. 
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Table 5. Comparison results 

Before Scheduling  After Scheduling 

References Total 

energy 

(kWh) 

Peak 

load 

(kW) 

Total 

cost 

($) 

Total 

energy 

(kWh) 

Peak 

load 

(kW) 

Total 

cost ($) 

 

INCON Cost 

saving 

% 

Peak 

saving 

% 

[31] 80.28 6 51.95 80.28 5.5 38.59 ------ 25.71 8.3 

Proposed method 

(60 minutes) 

80.28 6 51.95 80.28 4.2 30.78 19 40.74 30 

Proposed method 

(30 minutes) 

80.28 6 51.95 80.28 4.76 29.786 50 42.66 20.66 

6. Conclusions  

The MOPOA-CRITIC-ELECTRE optimization algorithms 

provide a multi-objective home load scheduling method that 

provides optimum load scheduling, which lowers peak load 

demand for utility companies and assists end customers in 

reducing their energy bills. 

For a fair and comparative evaluation of the proposed load 

scheduling method, analyses were carried out with both 60-

minute and 30-minute samples since the previous study utilized 

a 60-minute sampling period. A 30-minute sample duration was 

added to test if a shorter interval might enhance scheduling 

results. The results revealed a cost reduction of 40.74%, a peak 

load reduction of 30% within 60 minutes, a cost decrease of 

42.66%, and a peak reduction of 20.66% within 30 minutes. 

Reducing the sample duration from 60 to 30 minutes 

substantially enhanced the solutions. These methods' 

advantages coincide with end-user economic objectives and 

overall resilience and efficiency by limiting load demand 

oscillations. 

The drawback of our proposal is the potential for data privacy 

concerns, especially when collecting and utilizing sensitive user 

data for optimization purposes. We will address this issue by 

outlining safeguards for user privacy, such as anonymization 

techniques. 
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