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 Evaluation of the land use/ land cover (LULC) case over large regions is very important in 

a variety of domains, including natural resources such as soil, water, etc., and climate 

change risks and LULC change has emerged as a high anxiety for the environment. 

Therefore, we tested and compared the performance of three classification algorithms: 

Support Vector Machines (SVM), Random Trees (RT), and Maximum Likelihood (MaxL) 

to derive and extract LULC information for the district of Sarayönü/ Konya across five 

distinct classes: water, plantation, grassland, built-up, and bare land. Two remote sensing 

indices, the normalized difference vegetation index (NDVI) and the normalized difference 

water index (NDWI), were used as supplementary inputs for the classification of LULC. 

To evaluate the performance of the algorithms, a confusion matrix was employed. The 

average overall accuracy of support vector machines, random trees, and maximum 

likelihood algorithms was found 85.60%, 79.20%, and 74.80%, respectively, and 82.00%, 

74.00%, and 68.50% for the Kappa coefficient. These results indicate that the support 

vector machines algorithm outperforms other algorithms in terms of accuracy. As a result 

of the research, it was determined that classification algorithms integrated with remote 

sensing in LULC change monitoring/determination could produce accurate classification 

maps that can be used as base data. This is due to the ability of machine learning 

algorithms to learn complex patterns, adapt to diverse data, and continuously improve, 

making them achieve higher accuracy compared to traditional classifiers. Therefore, their 

use was recommended for decision-makers. 
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1. Introduction  

The comprehensive understanding of LULC across various 

scales holds significant potential for advancing investigations 

into global phenomena, including but not limited to droughts, 

floods, soil erosion, natural hazards, and climate change [1]-

[3]. Precise analysis of LULC forms an integral aspect of 

sustainable development applications within any given region. 

The assessment and prediction of dynamics in LULC stand as 

practical tools for managing and comprehending landscape 

conversions [4]. The evaluation of changes in LULC proves 

indispensable for multiple objectives, including the 

management of rapid and unchecked increase in population, 

and economic and industrial progress, particularly in 

developing countries undergoing substantial alterations in 

LULC [5]-[8]. Elaborated LULC maps emerge as crucial 

inputs across various scientific domains, encompassing 

climate change, natural resource management, and land 

monitoring. These maps assist in identifying suitable lands for 

agriculture and watershed management [9]-[10]. In recent 

years, remote sensing researchers have increasingly adopted 
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machine-learning classification techniques to generate LULC 

maps [11]- [12]. Notably, relevant previous studies and 

findings related to the topic described in the next section 

underscore the enhanced accuracy and reliability of machine 

learning classifiers compared to traditional statistical 

counterparts like the Minimum Distance and Parallelepiped 

classifiers, particularly when equipped with substantial 

training data [13].  

The SVM algorithm's strong capacity to generalize 

complicated characteristics has allowed it to perform 

admirably [14]-[15]. Sentinel-2 data were used for LULC 

classification tasks in research by Abdi (2020), Four distinct 

machine learning techniques were used in the study to 

categorize eight different LULC classes. The total accuracy of 

the SVM algorithm was 0.758 ± 0.017 [11]. Similarly, RF is a 

widely known machine-learning algorithm [16]. Due to their 

adaptability to solve both regression and classification issues 

while accounting for both categorical and persistent variables 

[17]. Sentinel-2A and Planet Scope data were used by 

Aguilera in a 2020 research to classify land cover using the 

pixel classification approach, the research entailed evaluating 

six different machine learning algorithms to see how effective 

they were. The decision trees algorithm is noteworthy for 

achieving a kappa value of 65.70% and an overall accuracy of 

67.80%. Although moderate accuracy is attained, the study 

indicates that higher outcomes may be attained by refining the 

suggested models [18].  

Numerous applications have taken use of the RF algorithm's 

versatility, such as object-oriented categorization, land use 

analysis, and tree cover modeling [19]-[22]. Sentinel-2 data 

and five distinct machine learning algorithms were used in 

research by Prasad et al. (2022) to evaluate the performance of 

these algorithms in categorizing six LULC classes. The RF 

algorithm achieved an overall accuracy of 77.20% with a 

kappa coefficient of 0.727. Additionally, an overall accuracy 

of 80.60% with a kappa coefficient of 0.767 was obtained 

from the combination of Sentinel-1 and -2 data. These results 

highlight how the combination models that have been 

suggested might improve the precision of LULC maps [23].  

Several research works have underscored the significance of 

the MaxL algorithm in the process of categorization [24]-[25]. 

There are two concepts for the MaxL algorithm. First, it 

assumes that the multidimensional space's sample class pixels 

have a normal distribution. Second, it makes decisions by 

applying Bayes' theorem. When allocating each pixel to a 

class represented in the classification, this algorithm considers 

both the covariances and variances of the class signatures [24]. 

Salih and Salih (2015) conducted a study employing three 

different machine learning algorithms to classify seven classes 

of LULC using a method of image fusion of optical multi-

source remote sensing data. Notably, the MaxL algorithm 

achieved an overall accuracy of 71.09% [26]. 

Unsupervised learning models tend to have less accurate 

results, as unsupervised classifiers rely on similarity measures 

such as color information and pixel distances, potentially 

introducing imprecision [27]. Conversely, the model approach 

proposed in this study utilizes supervised learning models, 

resulting in higher accuracy for classification maps. 

Performance in classification is influenced by several factors, 

including the type of satellite imagery used, band 

combinations, and proper parameter selection or training data 

usage [28]. Sentinel-2 optical data have been pivotal in 

classification, segmentation, plant species identification, 

agricultural product assessment, and water quality studies 

[29]-[33]. Based on this, the preference for Sentinel-2 data in 

this study stems from its high spatial resolution, multiple 

spectral bands, and open data policy. Increasing training 

sample sizes for machine learning algorithms improves the 

model's understanding of data diversity and complexity, 

enhancing robustness and reliability for more accurate results, 

this indicates that many training samples are needed for 

accurate categorization [21]. Consequently, this study used 

1250 samples to classify five LULC classes to achieve 

maximum accuracy compared to state-of-the-art models. The 

major objective of this study is to use three distinct machine 

learning algorithms (SVM, RT, and MaxL) integrated with 

NDVI and NDWI indices for LULC classification using 

multispectral satellite imagery from Sentinel-2. In this regard, 

this manuscript seeks to identify the machine learning 

algorithm that achieves the highest overall accuracy and kappa 

coefficient in a five-category LULC classification scenario 

(water, plantation, grassland, built-up, and bare land) for the 

Sarayönü district. As a result, this novel approach offers a 

systematic means to evaluate the actual situation of LULC 

through the integration of remote sensing indicators and 

machine learning algorithms, rendering this study both 

original and a valuable resource for decision-makers. The 

results gleaned from this study will aid decision-makers and 

interested parties in advancing sustainable development and 

the optimal management of natural resources in the region. 

2. Material and Methods 

2.1. Materials 

2.1.1. Study Area 

The study area occupies a geographical extent delineated by 

latitude 38°5'58" N to 38°42'51"N and longitude 32°17'37"E 

to 32°36'39"E, which represents Sarayönü district within 

Konya province/ Turkey Fig.1 This locale spans an area of 

approximately 1555.28 square kilometers. Situated at a 

distance of 48 kilometers from the city center, the district's 
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average elevation stands at 1068 meters above sea level. The 

district's terrain predominantly comprises limestone 

formations, nestled on the plains that extend from the southern 

reaches of the Cihanbeyli plateau. These plains, unmarred by 

extensive river incisions, exude a distinct topographical 

simplicity in essence, the region constitutes a closed basin in 

terms of its hydrological characteristics, devoid of major 

surface watercourses within the district. Significant inputs to 

subterranean aquifers consist of rain-driven infiltration from 

Beşgöz and Buharcalı, which slowly seep from specific 

slopes, thus the emergence of Beşpınar spring water. 

However, it's worth noting that these water sources are 

vulnerable to evaporation and absorption. Despite the 

aforementioned hydrological characteristics, the district hosts 

a considerable expanse of agricultural land, evidence of the 

district's fertile soil quality .

 

Figure 1. Location of the study area.  

 

2.1.2. Satellite Data 

A quantities of earth monitoring data for the prior years 

including satellite images such as Sentinel-2 are stored in the 

ESA (European Space Agency) platform and this data can be 

accessed free of charge. In this study, multispectral Sentinel–

2A images with low cloud cover between (0 - 9.4) percent 

dated May/ 2023. Fig. 2 presents the properties of the bands 

for the Sentinel-2 images. 
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Figure 2. Spatial resolution for multispectral instrument (MSI) of Sentinel-2 (image credit: ESA). 

 

2.2. Methods 

This study employs pixel-based classification using machine 

learning algorithms integrated with remote sensing indicators. 

This amalgamation enhances precision in (LULC) 

characterization. Fig. 3 illustrates the methodology of the 

study in the form of a flowchart.  

 

 

Figure 3. Flowchart of the methodology.  
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2.2.1. Processing of Satellite Data 

The classification process began with obtaining corrected 

satellite images with low cloud cover between (0 - 9.4) percent 

of the datasets. These images served as primary inputs for the 

classification process, the image processing chain was 

performed using ArcGIS Pro software (Version 2.5) and the 

open-source SNAP software (Version 9.0.0). Training 

polygons were generated for five land use categories and these 

polygons were evenly distributed across the study area. The 

initial dataset, comprising 1250 samples (samples are 

segmented polygons from the image according to categories, 

as shown in Table 1), was divided into two subsets: 80% of 

the dataset, equivalent to 1000 polygons, was allocated for 

training purposes, while the remaining 20%, or 250 polygons, 

was reserved for testing [34]. Validation work was executed 

using ground truth points (GTP) for surveys of ground truth. 

In addition, supplementary data were acquired from NDVI and 

NDWI maps of the study area to recognize the LCLU classes 

and to validate the proposed methodology, the NDVI, and 

NDWI were calculated by following Equations (1) and (2): 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝐸𝐷)/(𝑁𝐼𝑅 + 𝑅𝐸𝐷)                              (1) 

𝑁𝐷𝑊𝐼 = (𝐺 − 𝑁𝐼𝑅)/(𝐺 + 𝑁𝐼𝑅)                                       (2) 

Equation (1) symbolizes the NDVI index, a measure of the 

density and health of vegetation. It is computed by dividing 

the difference in reflectance levels between the red (RED) and 

near-infrared (NIR) sections of the electromagnetic spectrum 

by their total. Typically, NDVI values fall between -1 and 1. 

High positive values (close to 1) indicate healthy and dense 

vegetation. Conversely, low or negative values (close to -1) 

represent non-vegetated surfaces, such as water bodies or 

barren land. Values (around 0) suggest the presence of soil, 

rocks, or built-up areas. 

Equation (2) refers to the NDWI index, an additional measure 

for remote sensing that is used to identify water bodies in 

satellite images. The near-infrared (NIR) and green (G) 

spectral bands are where NDWI is most sensitive to the 

absorption and reflection properties of water. The values of 

NDWI range from -1 to 1. High positive values (close to 1) 

indicate the presence of water bodies. Low or negative values 

(close to -1) are associated with non-water features, such as 

land surfaces. Values (around 0) in this range may indicate 

mixed pixels or transitional areas between land and water. 

 

Table 1. Description of the LULC classes identified 

Class Name Class 

Description 

Example of class 

Water 
Area covered 

by water 

 

Plantation 

Area covered 

by crops, 

forest 

 

Grassland 

Area covered 

by sparse 

grass 

 

Built-up 

Area covered 

by buildings, 

roads 

 

Bare land 

Area without 

vegetation, 

bare soil 

 

 

2.2.2. Machine Learning Algorithms 

Support Vector Machine (SVM): SVM, a supervised learning 

method widely utilized in a variety of remote sensing 

applications, was first introduced by Cortes and Vapnik (1995) 

[35], according to Vapnik's findings (1982) [36]. It is an 

alternate method for classifying images that enables precise 

classifications to be made using a collection of condensed 

training examples [37]-[38], to distinguish types in the training 

data, the algorithm iteratively searches for the best hyperplane 

boundary in an n-dimensional classification space. It then 

applies the same arrangement to a different evaluation dataset. 

The number of spectral bands in this context represents the 

dimensions, and the individual pixels in a multiband 

composite serve as the vectors [39]. According to Buddhiraju 

and Rizvi (2010) [40] and Mather and Tso (2016) [41], the 

fundamental benefit of SVM is its capacity to reduce 

classification errors by building a hyperplane between every 

pair of classes that maximizes the distance between the 

support vectors of every class. Cortes and Vapnik (1995) [35] 

provide a thorough mathematical explanation of this 

algorithm. 

Random Trees (RT): RT is a machine-learning algorithm 

based on decision trees (DT). RT belongs to a type of machine 

learning algorithm that does group classification. The term 

"group" denotes a technique that averages the forecasts of 
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various base models to provide predictions. The Random 

Forest (RF) algorithm, later referred to as RT for trademark 

reasons, was originally conceived by Breiman (2001) [16] as a 

technique for merging several Classification and Regression 

Trees (CART). Since its introduction by Breiman (2001) [16], 

the RF framework has been considerably successful as a 

general-purpose classification and regression method [42]. 

Various studies have shown satisfactory performance by using 

the RT algorithm for LULC classification and other fields of 

remote sensing applications [43]-[45]. The number of 

parameters, which can be elucidated by 'm-try.' and trees, 

which can be elucidated by 'n-tree', are the two most crucial 

input variables for Random Forest (RF) algorithm. According 

to the literature, the best number of trees to count is between 

100 and 500, and the best number of variables to count is the 

square of the set of variables [46]. This technique uses a large 

number of trees to improve accuracy in the land use modeling 

and image classification fields [47]. Breiman (2001) [16] 

stated that utilizing more trees than necessary is a waste of 

time and effort, and the overall performance of the model is 

not affected. In addition, Feng et al. (2015) [48] highlighted 

that the performance of Random Forest was precise by using 

200 decision trees in their study. 

Maximum likelihood (MaxL): The MaxL algorithm has been 

frequently used in supervised classification due to its 

accessibility and the lack of a lengthy training process [49]-

[51]. MaxL algorithm is dependent on the likelihood that a 

pixel belongs to a particular class, for calculating the 

likelihood D of unknown measurement vector X, or weighted 

distance, belongs to one of the established categories, Mc, that 

is dependent on the Bayesian Equation [52]. 

𝐷 = ln(𝑎𝑐) − [0.5 ln(|𝐶𝑜𝜐𝑐|)] − [0.5(𝑋 −

𝑀𝑐)𝑇(𝐶𝑜𝜐𝑐
−1)(𝑋 − 𝑀𝑐)]                                                     (3) 

Where (D) is the weighted distance (likelihood), (X) is the 

measurement vector of the nominee pixel, (c) is a particular 

class, (Mc) is the sample's mean vector for class c, (ac) is the 

percentage chance that each potential pixel belongs to class c, 

(|Coυ_c |) is the covariance matrix's determinant for the class c 

sample's pixels, (Coυc
-1) is the inverse of Coυ_c (matrix 

algebra) ln = natural logarithm function, (T) is the 

transposition function (matrix algebra).” 

2.2.3. Accuracy Assessment 

Following the completion of the classification process, an 

evaluation of accuracy was conducted to gauge the precision 

of the LULC maps. It is essential to determine whether the 

resulting map aligns with, surpasses, or falls short of 

predetermined classification accuracy criteria, which serves as 

a basis for assessing the correctness of the classification.  

Researchers commonly employ an error matrix, often referred 

to as a confusion matrix or contingency table [34], [53], as a 

widely accepted technique to evaluate classification accuracy. 

In this matrix, known reference data is compared to the results 

of the related classification [54]. The confusion matrix, 

presented in a square format organized with rows and 

columns, quantifies the extent to which sample units, such as 

pixels, clusters of pixels, or polygons, have been accurately 

assigned to specific classes compared to their actual ground-

based classifications, as elucidated by [55]. In this study, 

validation was performed using an error matrix, and the three 

algorithms used were validated, as depicted in Tables 2, 3, and 

4 (see Results and Discussion section). It's worth noting that 

the ArcGIS Pro 2.5 program includes an integrated algorithm 

for generating the confusion matrix, computing the process of 

validating and assessing the accuracy of image classification. 

The overall accuracy (OA) and kappa coefficient (KC) are 

computed using the equations provided below: 

O A = (
𝑃𝑐

𝑃𝑛
) × 100                                                                       (4) 

Where )Pc) is the number of pixels that are correctly 

categorized, and (Pn) is the overall number of pixels. 

K C =
𝑁 ∑ 𝑥𝑖𝑖−∑ (𝑥𝑖+×𝑥+𝑖)𝑟

𝑖=1
𝑟
𝑖=1

𝑁2−∑ (𝑥𝑖+×𝑥+𝑖)𝑟
𝑖=1

                                                  (5) 

Here (N) the overall number of observations, (r) the count of 

columns and rows in the confusion matrix, (xii) the count of 

observations in column i and row i, (x+i) the marginal sum of 

column i, (xi+) the marginal sum of row i. 

User's accuracy (UA) for each class is calculated as the 

proportion of correctly classified pixels within that class 

relative to the total number of classified pixels. Conversely, 

the producer's accuracy (PA) is computed as the ratio of 

correctly classified pixels to the overall number of pixels in 

the reference data for each class [34],[56]. 

User′s Accuracy =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑟𝑜𝑤 𝑡𝑜𝑡𝑎𝑙)
×

100%                                                                                  (6)                                             

Producer′s Accuracy =

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑒𝑣𝑒𝑟𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 (𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑜𝑡𝑎𝑙)
×

100%                                                                                  (7) 

 

The equalized stratified random method was employed to 

create and generate the ground truth points (GTP) in ArcGIS 
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Pro 2.5 software on the Sentinel-2 image from analysis tools ˃ 

image analyst tools ˃ create accuracy assessment points Fig. 4. 

 

Figure 4. Overview of the ground truth points. 

 

Fig. 5. demonstrates the widely employed indices that were 

used as additional inputs for the LULC classification, which 

are NDVI and NDWI for the study area which reflect the 

condition of vegetation and water respectively. 

 

Figure 5. NDVI and NDWI of study area.  

 

3. Results and Discussion 

This study examines the effectiveness of three machine 

learning algorithms in the classification of LULC using 

Sentinel-2 Level-2A data at a 10-meter resolution. These 

algorithms utilize corrected images, incorporating atmospheric 

corrections that address Rayleigh scattering, as well as the 

absorbing and scattering effects of atmospheric gases, along 

with corrections for absorption and scattering caused by 

aerosol particles. Fig. 6, 7, and 8 illustrate the application of 

these three machine learning algorithms (SVM, RT, and 

MaxL) in mapping LULC. To ensure fairness, an equal 

number of training and assessment samples were employed for 

all five LULC classes, preventing an overall accuracy bias 

toward classes with more extensive training samples [57]. 

 

Figure 6. LULC map by SVM.  

 

Figure 7. LULC map by RT.  
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Figure 8. LULC map by MaxL.  

 

 

The overall accuracy of the three algorithms was relatively 

different from each other. These precisions were deduced from 

the error matrix shown in Tables 2, 3, and 4. The most 

significant overall accuracy was produced by SVM (85.60%), 

closely followed by RT (79.20%), and finally MaxL (74.80%). 

While kappa coefficient was 82.00%, 74.00%, and 68.50%, 

respectively, as showed by other studies [14, 18, 26]. All three 

algorithms produced somewhat comparable maps that had an 

attractive appearance and represented the study area fairly well 

Fig. 5, Fig. 6, and Fig.7. However, relative to the other two 

algorithms, the MaxL overestimated class of built-up, and 

undervalued the classes that were left such as plantation 

except bare land Fig. 8. Despite of using 10 m resolution 

Sentinel-2 images, it is risque to recognize between bare land 

and built-up classes due to mixed pixels, especially in cases of 

closely-related categories, prior probability estimates can have 

a significant impact on classification results. Whereas when 

the land cover classes are well detached, using prior 

probability estimates produces unpretentious effects [58]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Error matrix for SVM algorithm. 

 Water Plantation Grassland Built-up Bare land Total UA Kappa 

Water 48 2 0 0 0 50 0.96 0 

Plantation 0 47 1 0 2 50 0.94 0 

Grassland 0 1 49 0 0 50 0.98 0 

Built-up 0 0 11 21 18 50 0.42 0 

Bare land 0 0 1 0 49 50 0.98 0 

Total 48 50 62 21 69 250 0 0 

PA 1 0.94 0.790 1 0.710 0 0.856 0 

Kappa 0 0 0 0 0 0 0 0.82 
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Table 3. Error matrix for RT algorithm. 

 Water Plantation Grassland Built-up Bare land Total UA Kappa 

Water 29 1 14 0 6 50 0.58 0 

Plantation 0 49 1 0 0 50 0.98 0 

Grassland 0 1 50 0 0 50 1 0 

Built-up 0 0 2 21 27 50 0.42 0 

Bare land 0 0 0 1 49 50 0.98 0 

Total 29 50 67 22 82 250 0 0 

PA 1 0.98 0.746 0.954 0.597 0 0.792 0 

Kappa 0 0 0 0 0 0 0 0.74 

 

Table 4. Error matrix for MaxL algorithm. 

 Water Plantation Grassland Built-up Bare land Total UA Kappa 

Water 25 2 22 0 1 50 0.5 0 

Plantation 0 41 7 0 2 50 0.82 0 

Grassland 0 0 50 0 0 50 1 0 

Built-up 0 0 4 22 24 50 0.424 0 

Bare land 0 0 1 0 49 50 0.98 0 

Total 25 43 84 22 76 250 0 0 

PA 1 0.953 0.595 1 0.644 0 0.748 0 

Kappa 0 0 0 0 0 0 0 0.685 

 

The lowest producer's accuracy across all three algorithms was 

for grassland and bare land Fig. 9, which demonstrates how 

difficult it is to identify these classes from the other classes. 

Grassland was composed primarily of areas covered by sparse 

grass and was visually similar to plantations, especially those 

with regrown shrubs and crop cover. Thus, it is complicated to 

classify due to the similar spectral characteristics of the 

vegetation found in the study area [59]. On the other hand, the 

study area's bare land was covered with suburban elements 

like small towns and villages that were dotted with trees and 

sparse grass. In addition to that may be some similarities in the 

spectral properties of rooftops of buildings (Such as buildings 

that have tile roofs with spectral characteristics common to 

bare land) and some types of soils in the bare land in the study 

area. However, it is challenging to separate these two types of 

surfaces based on their spectral signatures alone. Multispectral 

imagery and other techniques such as artificial surface index 

(ASI) may be used to classify built-up classes based on their 

unique spectral properties [60]. Therefore, there was an 

overlap in the classification of the built-up class and the bare 

land class, and this was evident in the results of the MaxL 

logarithm classification. The addition of land surface 

temperature (LST) in this study [61] could have enhanced the 

detection of bare land and built-up classes but the MSI 

instrument in Sentinel-2 does not contain a thermal band 

therefore it is not possible to derive the land surface 

temperature. 
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Figure 9. The producer's accuracy for SVM, RT, and MaxL algorithms. 

 

 

4. Conclusions 

Within this study, the analysis encompassed the utilization of 

three distinct machine learning algorithms for the delineation 

of LULC conditions during May 2023. Anchored in Sentinel-2 

data and GIS program tools, this endeavor specifically focused 

on the Sarayönü district of Konya province, situated in Central 

Anatolia, Turkey. The distinctive attributes of the Sentinel-2 

multispectral satellite, which include three red-edged bands 

enabling the capture of plant chlorophyll content, a spatial 

resolution of 10 meters, and unfettered access to its data, set it 

apart from other Earth observation satellites. 

The machine learning algorithms that underscored this 

investigation were subject to meticulous evaluation. Of these, 

two, namely SVM and RT, hold prominence within the realm 

of remote sensing. The third algorithm, MaxL while chiefly 

employed in statistical science, also finds application in the 

domain of remote sensing. The empirical results demonstrated 

that the SVM algorithm outperformed the other two 

algorithms RT and MaxL when it came to categorizing 

different categories within the study area, with an overall 

accuracy rate of 85.60% and a Kappa coefficient of 82.00%.  

The implications derived from this manuscript are 

encapsulated as follows: Firstly, it substantiates the efficacy of 

leveraging open-source data, channeling it through diverse 

classification algorithms implemented via various programs, 

to yield a robust framework for characterizing the intricate 

nuances of LULC dynamics. Secondly, it proffers a strategic 

vision with the potential to guide planners in their decision-

making processes, facilitate ecosystem preservation, and 

promote sustainable land development strategies across 

analogous conditions. Thirdly, the study achieved 

commendable classification accuracies across all algorithms, 

except the MaxL algorithm which exhibited a relatively lower 

performance. 

In subsequent investigations, we envisage a comparative 

analysis between the outcomes derived from Sentinel-2 data 

and analogous data from other temporal times, aimed at 

comprehensively monitoring LULC transformations within the 

study area. Such insights are envisioned to serve as a practical 

guide for effective land management decisions. Furthermore, 

the proposed methodology is poised for broader application 

across expansive regions, augmenting the inclusive monitoring 

and cartography of LULC dynamics within Central Anatolia, 

Turkey, and similar geographical conditions. 
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