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Abstract: This paper presents an efficient static state estimator that is suitable for real time monitoring of
the power system. The proposed algorithm includes a weighted least square (WLS) method based on
rectangular coordinates system. A predictor-corrector iterative technique is used in solving the state
estimator model which is described by a set of nonlinear equations relating measured quantities and the
state variables. The proposed algorithm is enhanced by selecting the allocation the PMUs meters
optimally by using Particle Swarm Optimization (PSO). The proposed algorithm is applied to the IEEE-
14 bus and IEEE-30 bus test systems. The obtained results reveal the significant contribution of the
proposed algorithm in optimal estimate of the static state in terms of number of iterations for
convergence, execution time and accuracy.
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1. Introduction

Static state estimation is an essential analysis utilized in the real-time monitoring of
the power system. It is the cornerstone of the power system security analysis. State
estimation determines the optimal static state of the system (voltage magnitude and
phase angle) by processing the available measurements based on an appropriate system
model. Extensive research have been carried out which addressed the various functions
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of the state estimation since the first attempt made by Schweppe [1,2]. Different
approaches have been proposed covering network topology processing [3-10].

The improvement of the state estimator by maintaining system observability has been
demonstrated in [11-14]. Several techniques have been introduced on bad data detection
and elimination [15-19]. Optimal estimate of the state vector is attracting the attention
of many researchers. The most commonly used method in obtaining the optimal
solution vector is the weighted least square (WLS). The state estimator model is
described by a set of nonlinear equations relating measured quantities and the state
variables. Singh and Alvarado proposed a weighted least absolute value state estimator
by using interior point methods [20]. An attempt to obtain the optimum state vector
based on singular value decomposition was proposed by Madtharad [21]. State
estimation by using bilinear approach by introducing auxiliary state variables and
auxiliary measurements were presented in [22, 23]. A state estimator algorithm based
on fast decoupled WLS was presented in [24]. Abbasi and Seifi [25] suggested a
master-slave-splitting technique to estimate the state variables of global power system.
State estimator algorithm using a direct non-iterative method was given in [26]. A
probabilistic approach to power system state estimation was demonstrated in [27]. A
regularized based state estimator was developed in [28] to overcome the numerical
instability of ill-conditioned state estimation problems. Recently, it was found that the
redundancy in measurements can be achieved by incorporating the phasor
measurements unit (PMU) in power system monitoring [29-31]. Since the solution of a
WLS state estimator is based on iterative technique, it is very important to develop an
algorithm that determines the optimal state accurately in a short time and suitable for
real time application.

In this paper an efficient algorithm is proposed to obtain the optimal static state
vector by using the WLS based on the rectangular coordinates of the state vector. The
proposed algorithm deployed a predictor-corrector numerical technique in determining
the state vector. The proposed algorithm is integrated with another algorithm that
identifies the optimal placement of PMU meters and conventional meters by using an
artificial technique, namely Particle Swarm Optimization technique.

This paper is organized as follows: Section 2 reviews the traditional weighted least
square method. The state estimator model based on rectangular coordinate is presented
in section 3. Section 4 presents the elements of the proposed algorithm. In Section 5, a
discussion of the results obtained by applying the proposed algorithm on typical test
systems is presented. Finally, section 6 presents the conclusion.

2. Traditional WLS Technique

The vector of measured quantities is related to the state vector by the following non-
linear system of equation [32]:

[2] = [h] + [e] 1)

where:
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[z] : Measurement vector

[h; ()] : nonlinear function describes the i** measurement in terms of the state
variables

X : system state vector (voltage magnitudes and angles)

[e;] : the error of the it measurement

The best solution of state estimate vector x may be determined by minimizing the sum
of weighted squares of residuals

L)

min J(X) = % 2
i=1 '

where:

wil = [Ri]™ =[]

[R;]: is a diagonal matrix whose elements are the variances of the measurement error.

[ w;]: weighting factor is defined by the inverse of the measurements variances.
Consequently, measurements of a higher quality have smaller variances that relates to
their weights. Equation (2) can be represented in matrix form:

min J(®) = [z — h(®)] T R~ [z — h(Z)] 3)

The necessary conditions for a minimum is that :

8 = 20— T R [z - b)) = 0 @
Where, [H(X)] = [22
2 = xk —[6(x)] 7. g(xK) (5)
6() = 285 _ )] R - n(x0) ©
G(x*) = [H(x)]" R [H(xH)] )
[G (x*)][Ax*+1] = [F(x)] 8)
Where,
[F(x)] = [H&E)]"R™ [z = h(x)]
Ax**1:deviation of state factor = x**t1 — xk

[H(x)] is the measurement Jacobian matrix of dimension (m % n)
k : iteration index

x¥ : is the state vector at iteration k

[G(x)]: the gain matrix
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Equation(8) is solved iteratively for the state vector until Max |Ax*| < & where ¢ is a
very small value.
3. Formulation of the State Estimator by using Rectangular Coordinates

The rectangular coordinate system has a better conditioning of a WLS estimation
process than for the polar coordinate system. Since the polar coordinate is represented
by transcendental functions, the Taylor series expansion of these functions is an infinite
one. The rectangular coordinate system is based on quadratic terms. This leads to a
major simplification of an expansion in Taylor series for J(x) in the rectangular
coordinates [33]. The bus voltage is described by the following rectangular form:

Vi =eitif; 9)

where, e; , f;: a real and imaginary part of the voltage at bus i respectively
The state vector of the system is described as[x]” = [f>fs ... fn €162 . 5]
The real and reactive power injection at bus i :

N (10)

Z e e] ij — lf]BL] + e]le” +ﬁ.f]Gl])

j=1

(11)
= Z (—eie;Bij — eifjGij + € fiGij — fifiBij)

j=1
The real and reactive power flow from bus i to bus j :
Pij = —€ GU +€€J ij — lf) ij leGl]-I_e]lel]-I_flf}Gl] (12)
Qij = eizBl] €; e] ij lf]GU +fl Bl] + ejfl ij fiijij (13)

The structure of the measurement Jacobian [H] will be as follows :

SOV AV A
of e
op; 0P
3f  oe

1] =|5 %
of de
9Pij 0Py
of  de
9Q;; 0Qyj
57 oe

4. Proposed Algorithm

In the initial phase of the proposed algorithm, the PMU devices to be installed have
to be placed optimally by using Particle Swarm Optimization technique. This optimal
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location will maintain a redundancy in the measurements and improve the observability
of the system.

4.1 Augmentation of the PMU in the Estimator Model

Let [z,] indicate PMU measurements, which contain voltage magnitudes, voltage
angles, real and imaginary parts of current phasors. The matrix [R,] represents the
measurement error covariance matrix of [z,] . By adding the vector of PMU
measurements [z,] to the vector of conventional measurement [z,] Yields The new
measurement set [z].

Z
7 17PMU_mag
[Z] = [Zz] = | VYPMmU_ang (14)
IPMU_real
IPMU_Img

where, Vpyy mag 1S the voltage magnitude measured by PMUs and Vppyy agng is the
phase angle measured by PMUS. Ipyy reqi @Nd Ipyy mg are the real part and imaginary

part of the current measured by PMUs.
Current phasor measurements can be included in the SE model by using the rectangular
representation:

B
Ipmy_rear = €iGij — €;Gyj — fiBij + fiBij — 5 fi (15)

B
Ipmu_img = fiGij — f;Gij + eiBij — €iBi; + e (16)

Let [h(x)] and [h,(x)] be the nonlinear equations of new measurement set [z] and
PMU measurements|z,] ,respectively. The new Jacobian matrix corresponding to the
measurement set [z] will be given as follows:

dhy(x)
_[H1]_| o
[H]_[Hﬂ‘ ohs () (17)
0x

Therefore, the state solution of the WLS state estimator can be written as follows:
[xi11] = [x;] + [HT R™PH]7 [H] [R] 7z — h(x))] (18)
where, the error covariance matrix of measurement set[z] with mixing is
R, 0 ]
R] = 19
[RI=g &, (19)
4.2 Particle Swarm Optimization(PSO)

38



Journal of Engineering and Sustainable Develop t Vol 23, No.0%, July 2079 www.jeasd.org (ISSN 2520-0917)

Eberhart and Kennedy presented a Particle swarm optimization (PSO) in 1995 as a
good substitute to genetic algorithm (GA). PSO is one of the population based artificial
intelligence (Al) algorithms. PSO concept was used to graphically simulate the smart
and unforeseeable choreography of a bird flock, with the aim of detecting patterns that
govern the ability to fly synchronously, and to suddenly alternate direction with a
regrouping in an optimal formation. With this in consideration, it was realized that the
conceptual model was, indeed a simple and efficient optimization algorithm. Each
particle(individual) in the population can be considered as candidate solution. The
location of each particle is symbolized by xy-axis site. The symbol v, (the velocity of
x-axis) represents velocity (displacement vector) while v,, represents (the velocity of y-
axis). The location and the velocity information of the individual are used in modifying
the location of the individual[34].

This modification can be expressed by the concept of velocity. The velocity of each
individual is adjusted by the following equation:

v =w; v;¥ + ¢, rand; X (Pbest; — s;*) + ¢, rand, x (gbest; — s;*) (20)

where v;* is present velocity of individual i at iteration k, rand, and rand, are
random numbers between 0 and 1, s;* is present site of individual i at iteration K,
Pbest; is Pbest of individual i, gbest is gbest of the group, w; is weight function for
speed of individual i, generally, the variation of the value of w; is assumed to be linear
from 0.9 to 0.4 as the iterative process continues. ¢; is weight constants for cognitive
and neighboring term.

Typically ,the weighting function is used in following equation (20):

W = Wnax — Wm?;cer—mzml X iter (21)
where w4, 1S the initial weight, w,,;,, is final weight, iter,,,, IS maximum iteration
number, iter is iteration index. Using the above equation (21), diversification
characteristics is progressively reduced. Based on equation (20), a specific velocity that
progressively obtains close to pbests and gbest can be calculated. The present site
(searching point in the solution space) can be adjusted by the following formula:

Sik+1 — Sik + Uik+1 (22)

4.3 Optimal Placement Algorithm of PMU

Stepl: Inputting traditional SCADA measurements which include bus voltages, line
flows and power injections. Also inputting PMUs Measurements which include voltage
magnitude, angle, real and imaginary parts of current. Inputting bus limit.

Step2: Initializing the PSO parameters. Setting up the set of PSO parameters such as,
number of individuals (Number of variables (N)), acceleration constants (C1 and C2),
maximum number of iteration, maximum and minimum of Inertia weight (W) and
Population size .
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Step3: Calculating the state estimation by using the traditional method (WLS).

Step4: Randomly creating an initial population of individuals (locations of PMU) ,and
the positions and the velocities of the individuals. Setting the iteration counter = 0 .
Step5: For each individual (location of PMU), if the bus number is within the limits, the
state estimation is calculated using WLS method. Otherwise, that individual (location of
PMU) is not feasible.

Step6: Recording and updating the best values. The two best values are stored in the
searching process. Each individual moves in the direction related to its previously best
solution it has reached so far which is stored as Py.; . Another best value to be stored is
the Gpest , Which accounts for the global best value achieved by neighboring
individuals. Py, and Gy, are the minimum value of the objective function. This step
also updates Py.s: and G.q: - Initially, the fitness of each individual is compared with
its Ppos:. If the current solution is better than its Pp,.g; , then Py, is replaced by the
current solution. Then, the fitness of any particle is compared with Gy, . If the fitness
of any individual is better than G,.; , then G, is replaced .

Step7: Updating the velocity and position of the location of PMU. Equation (20) is
applied to update the velocity and position of the individual (location of PMU). A
movement in the direction of chosen bus is represented by the velocity of an individual.
Meanwhile, the position of the individuals is updated by applying Equation (22).

Step8: Checking End criterion. The end criterion is checked, if it is satisfied, the
algorithm is stopped; otherwise, step 3-7 is repeated until the end criterion is satisfied.

In this work, the individuals are locations of PMUs as shown below:

Pparticle =[X; Xz Xyl (23)

where,

n : is the number of PMU with selected bus, which limits according to the system size
and limitations.

X : location of PMU.

The Constraints

The PSO procedures must comply with certain constraints: (i) each location of PMU
is tested to verify if location number is between 2 and N bus in general (ii) only one
PMU can be placed at each bus; (iii) 2 PMU cannot be located at buses at the edges of
the same power line. Since PMU also gives information about current phasors in the
lines connected to one bus, there is enough information to determine the voltage phasor
at the other bus.

The Fitness Function (objective function)

In this work, PSO is implemented to find the optimal locations of PMUs through
minimizing the following objective function:

FFin = [R] — [H][G]™" [H]" (24)
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The process will be continued until the maximum iteration and number of population
reaches a prescribed value. Figure (1) shows the procedure of PSO technique. Table (1)

illustrates parameters of technique used.

Initialize the PSO parameters

Start

: No. of

variables,C1,C2 ,W, Population size and
maximum No. of iteration

Termination
condition acquired?

Yes i

Assign the
best locations
of PMUs in
SE program

|

No

g

pr—————————

Run SE program by using
WLS for each particle

Assign fitness value to
each particle (location of
PMU)

Update pbest and gbest
v

Calculate velocity of the
particles(movement of
the selectedfus)

Update position of the
particles

Figure 1. Flowchart of optimal PMUs location

Table 1. Parameter of PSO for Optimal PMUs Location

For Optimal PMUs Location (Parameter of PSO)

Number or Value

Number of variables (n) (Number of PMUs)
Maximum Inertia weight (wmax)

Minimum Inertia weight (wmin)

Cognitive acceleration factor (C1)

Social acceleration factor (C2)

Population size (nPop)

Maximum number of iteration(Maxite)

3 PMUs
0.9
0.4
15
15
25
100

4.4 Predictor-Corrector Iterative Technique

In a previous paper [35], the author applied successfully a predictor—corrector
iterative technique in obtaining load flow solution. A brief description of the predictor
—corrector iterative technique is given in Appendix A. The predictor —corrector iterative
technique can be applied to equation (8) as follow:

-1
[xiv1] = [%:] + 12[Gexyy + 10Gg,) + G| [F(x))]

Where,

(25)

[Gexp] : the gain matrix calculated at initial point.

[Gwy] : the gain matrix calculated at mid point.
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[Giypl :the gain matrix calculated at prediction point.

Equation(25) is solved iteratively for the state vector until Max |Ax¥| < & where ¢ is a
very small value.

5. Results and Discussion

The algorithms are examined and tested on IEEE-14, IEEE-30 bus standard test
system. In order to assess the performance of the state estimator, a power flow solution
of each system is set as a benchmark for comparison. The Mean Square Error (MSE) is
used as index to illustrate the accuracy of the proposed algorithm. MSE is defined in
equation (26) as follows:

1w, ) (26)
MSE = Nz(lAi v — 4;%2)

=1

Where, N: number value of measurement.
A;""™€: true value of measurement i.
A;#": estimated value of measurement i.

5.1 IEEE-14 bus

The proposed algorithm is applied to determine the best estimate vector of IEEE-14
bus test system with a set of 41 conventional meters[36]. An additional three PMU
meters have to be installed in the system to improve the observability.

By applying the PSO optimal placement algorithm to the system to select the
optimal locations of the PMU meters, it is found that the best location of the meters are
buses : 11, 12 and 14. The results of applying the proposed algorithm to the IEEE-14
bus test system are given in Tables (2,3) and Figures (2,3).

There is a clear discrepancy between the true bus bar voltages and the estimated
voltages obtained by using traditional WLS, while the estimated voltages vector
obtained by using the proposed algorithm is similar to the true voltages. It can be seen
that the accuracy of proposed method is better as compared with conventional method
(WLS). The MSE for voltage estimates in proposed method (0.000005) is less than
WLS (0.00311) as shown from Table (6). Also from Table (7) it can be seen that MSE
for bus angle in proposed method (0.00000004) is less than WLS (0.000655).

It is found that the proposed algorithm is converged within 7 iterations, while the
traditional WLS algorithm is converged within 13 iterations. On the other hand, the
execution time for proposed method less than WLS and that shown in Table (8).
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Table 2.Actual voltages, estimated voltage, and errors for the 14 Bus system

Bus Voltage Voltage Voltage Abs. Abs.
No. Actual WLS Proposed Error error
(p.u) Polar Algorithm WLS Proposed
Form Polar Algorithm
Form
1 1.06 1.0068 1.0621 0.0532 0.0021
2 1.045 0.9899 1.0459 0.0551 0.0009
3 1.01 0.9518 1.0093 0.0582 0.0007
4 1.01423  0.9579 1.0145 0.05633 0.00027
5 1.01724  0.9615 1.0179 0.05574  0.00066
6 1.07 1.0185 1.07 0.0515 0
7 1.05034  0.9919 1.0482 0.05844  0.00214
8 1.09 1.0287 1.0826 0.0613 0.0074
9 1.03371  0.9763 1.0335 0.05741 0.00021
10 1.03256  0.9758 1.0325 0.05676 0.00006
11 1.04748  0.9932 1.0474 0.05428 0.00008
12 1.0535 1.0009 1.0534 0.0526 0.0001
13 1.04711  0.9940 1.047 0.05311 0.00011
14 1.02131  0.9647 1.0212 0.05661 0.00011
MSE 0.00311 0.000005
No. of 5 13 7
iter.
H Voltage
Actual
m Voltage
WLS polar
o Form
Voltage
Proposed
Algorithm
1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bus No.

Figure 2. Comparison between actual and estimated values of the bus voltage magnitude

Table 3.Actual voltage angles, estimated angles, and errors for the 14 Bus system

Bus Angle Angle Angle for Abs. Abs.
No. Actual WLS Proposed error Error for
(rad.) (rad.) Algorithm ~ WLS Proposed
(rad.) Algorithm

1 0 0 0 0 0
2 -0.08705 -0.09646 -0.08667 0.00941 0.00038
3 -0.2224  -0.2479 -0.22199 0.0255 0.00041
4 -0.17901 -0.19922 -0.17859 0.02021 0.00042
5 -0.15297 -0.17031 -0.15279 0.01734 0.00018
6 -0.25164 -0.28065 -0.2516 0.02901 0.00004
7 -0.23129 -0.25745 -0.23113 0.02616 0.00016
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8 -0.23129 -0.25743 -0.23119 0.02614 0.0001
9 -0.25887 -0.2882 -0.25878 0.02933 0.00009
10 -0.26252  -0.2923 -0.26247 0.02978 0.00005
11 -0.25914 -0.28867 -0.2591 0.02953 0.00004
12 -0.26648 -0.29706 -0.26644 0.03058 0.00004
13 -0.26718 -0.29772 -0.26712 0.03054 0.00006
14 -0.28038 -0.31235 -0.2803 0.03197 0.00008
MSE 0.000655 0.00000004
Bus No.
1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 -
H Angle
=0IE 4 Actual
Q 01
e
\: 015 B Angle
2D WLS
4: 0.2
-0.25
Angle for
03 Proposed
Algorithm

-0.35 -
Figure 3.Comparison between actual and estimated values of the bus phase angle

5.2 IEEE-30 bus System

The set of measurement of the IEEE-30 bus system consists 93 conventional meters
[36]. An additional three PMU meters have to be installed in the system to improve the
observability . By applying the PSO optimal placement algorithm to the system to select
the optimal locations of the PMU meters, it is found that the best locations of the meters
are buses: 13, 26 and 30.

From the results of IEEE-30 bus test system in Tables (4,5) and Figures (4,5) reveal
that the proposed method is more accurate than the conventional method (WLS). From
Table (6) it can be seen that MSE for voltage estimates in proposed method (0.0000068)
is less than WLS (0.00553). The MSE for bus angle in proposed method (0.0000017) is
less than WLS (0.00185) as shown from Table(7). The number of iteration for proposed
method (7 iter.) is less than WLS (12 iter.). On the other hand, the execution time for
proposed method is less than WLS and that shown in Table(8).

Table 4.Actual voltages, estimated voltage, and errors for the 30 Bus system

Bus | Voltage Voltage Voltage Abs. Abs. Error
No. Actual WLS polar Proposed Error WLS  Proposed
(p.u) Form Algorithm Polar Form  Algorithm
1 1.06 0.9865 1.0556 0.0735 0.0044
2 1.043 0.97 1.0429 0.073 0.0001
3 1.01964 0.9474 1.0214 0.07224 0.00176
4 1.01041 0.9384 1.013 0.07201 0.00259
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5 1.01 0.9335 1.009 0.0765 0.001
6 1.00958  0.9395 1.0143 0.07008 0.00472
7 1.00197  0.9287 1.004 0.07327 0.00203
8 1.01 0.9449 1.0194 0.0651 0.0094
9 1.03925 0.9667 1.04 0.07255 0.00075
10 1.02147  0.9472 1.0224 0.07427 0.00093
11 1.082 1.0093 1.0798 0.0727 0.0022
12 1.04959 0.9746 1.0495 0.07499 0.00009
13 1.071 0.9954 1.0709 0.0756 0.0001
14 1.03202 0.9559 1.0321 0.07612 0.00008
15 1.02508 0.9491 1.0254 0.07598 0.00032
16 1.03042 0.9555 1.0307 0.07492 0.00028
17 1.01876  0.9441 1.0194 0.07466 0.00064
18 1.01145 0.9352 1.012 0.07625 0.00055
19 1.00656  0.9306 1.0073 0.07596 0.00074
20 1.0095 0.9339 1.0102 0.0756 0.0007
21 1.00819 0.9328 1.009 0.07539 0.00081
22 1.01196 0.9372 1.0129 0.07476 0.00094
23 1.00855 0.9331 1.0093 0.07545 0.00075
24 0.99908 0.9231 0.9999 0.07598 0.00082
25 1.00318 0.927 1.0033 0.07618 0.00012
26 0.98525 0.907 0.9853 0.07825 0.00005
27 1.01445 0.9395 1.0146 0.07495 0.00015
28 1.00779  0.9398 1.0148 0.06799 0.00701
29 0.99442 0.9176 0.9946 0.07682 0.00018
30 0.98284  0.9051 0.983 0.07774 0.00016

MSE 0.00553 0.0000068

No. 6 12 7

of

iter.

11 B Voltage

Actual
1.05 1

[

m Voltage
WLS polar

045 -+
Form

=
io

Voltage
Proposed
Algorithm

Voltage Magnitude

2
=]
]

038 7
1234567 8 9101112131415161718192021222324252627282930

Bus No.

Figure4.Comparison between actual and estimated values of the bus voltage magnitude
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Table 5.Actual voltage angles, estimated angles, and errors for the 30 Bus system

Bus Angle Angle Angle Abs. Abs.
No. Actual WLS Proposed  Error Error
(rad.) (rad.) Algorithm  WLS Proposed
(rad.) Algorithm
1 0 0 0 0 0
2 -0.09345 -0.1093  -0.0941 0.01585  0.00065
3 -0.13144 -0.1543  -0.1329 0.02286  0.00146
4 -0.16204 -0.1903  -0.1636 0.02826  0.00156
5 -0.24738 -0.2879  -0.2477 0.04052  0.00032
6 -0.193 -0.2269  -0.1951 0.0339 0.0021
7 -0.22453 -0.2626  -0.2258 0.03807  0.00127
8 -0.20629 -0.2437  -0.2096 0.03741  0.00331
9 -0.24547 -0.2877  -0.2472 0.04223  0.00173
10 -0.2735  -0.3202  -0.275 0.0467 0.0015
11 -0.24547 -0.2877  -0.2472 0.04223  0.00173
12 -0.26397 -0.3088  -0.2643 0.04483  0.00033
13 -0.26397 -0.3088  -0.2643 0.04483  0.00033
14 -0.27928 -0.3266  -0.2797 0.04732  0.00042
15 -0.2794  -0.3269  -0.2801 0.0475 0.0007
16 -0.27271  -0.319 -0.2737 0.04629  0.00099
17 -0.27696 -0.3241  -0.2784 0.04714  0.00144
18 -0.28984 -0.3389  -0.2906 0.04906  0.00076
19 -0.29262 -0.3422  -0.2936 0.04958  0.00098
20 -0.28886 -0.3379  -0.2899 0.04904  0.00104
21 -0.28305 -0.3313  -0.2845 0.04825  0.00145
22 -0.27892 -0.3266  -0.2804 0.04768  0.00148
23 -0.28326  -0.3315  -0.2847 0.04824  0.00144
24 -0.2845  -0.333 -0.2857 0.0485 0.0012
25 -0.28051 -0.3277  -0.2807 0.04719  0.00019
26 -0.28805 -0.3361  -0.2882 0.04805 0.00015
27 -0.27325 -0.3193  -0.2734 0.04605  0.00015
28 -0.20449 -0.2407  -0.207 0.03621  0.00251
29 -0.29509 -0.3449  -0.2952 0.04981  0.00011
30 -0.31079 -0.3633  -0.3109 0.05251  0.00011
MSE 0.00185  0.0000017

Bus No.
123456 7 8 910111213 14151617 1819 20 21 22 23 24 25 26 27 28 29 30

H Angle
Actual

H Angle

Angle (rad.)

031 Angle for
035 - Proposed
Algorithm

Figure 5.Comparison between actual and estimated values of the bus phase angle
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Table 6. Comparison of the estimation accuracy in bus voltage magnitude

Mean Square Error (MSE) in bus voltage magnitude

Test System WLS in Polar Form Proposed Algorithm
IEEE-14 bus test 0.00311 0.000005
System
IEEE-30 bus test 0.00553 0.0000068
System

Table 7. Comparison of the estimation accuracy in bus phase angle
Mean Square Error (MSE) in bus phase angle

Test System WLS in Polar Form Proposed Algorithm
IEEE-14 bus test 0.000655 0.00000004
System
IEEE-30 bus test 0.00185 0.0000017
System

Table 8. Execution time in seconds
Test System CPU time in (Sec.)
WLS in Polar Form Proposed Algorithm

IEEE-14 bus test 0.039422 0.021803
System
IEEE-30 bus test 0.15386 0.063552
System

6. Conclusions

An algorithm to obtain the optimal estimate of the state vector has been presented.
The formulation of estimator model was based on rectangular coordinates of the state
variables. A predictor-corrector technique has been used for solving the nonlinear model
of the estimator. The proposed algorithm was enriched by placing the PMU meters
optimally. The applications of the proposed algorithm on test systems are given in the
paper. The results obtained reveal the superiority of the developed algorithm compared
to the conventional algorithm in terms of the execution time, accuracy and the number
of iterations for the system to be converged. The proposed algorithm is very promising
for real time monitoring application.

7. Abbreviations

SCADA Supervisory Control and Data Acquisition

PSO Particle Swarm Optimization
WLS Weighted Least Square
PMUs Phasor Measurement Units

GA Genetic Algorithm

SE State Estimation

Al Artificial Intelligence

FF Fitness Function
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IEEE Institute of Electrical and Electronic Engineers
MSE Mean Square Error
WLAV Weighted Least Absolute Value
LMS Least Median of Squares
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Appendix A

iterations as compared with the traditional numerical methods. For the following

nonlinear algebraic equation:

F(x)=0 Al

Assuming that x be the simple zero of this equation. Equation (A.1) can be written
as[37,38] :

(x) = F(x;) + f;‘i F'(t)dt A2
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The second term of equation (A.2) involves multiple integrals and can be approximated
with average of midpoint and Simpson quadrature formulas, then we have:

X _X—=Xj oy (Xitx X—%i [/ ; (xi+x ' A.3

[} F'(tdt =2 F (¥ )+ 4 () + 4F (T)+ F'(x)]

Substituting (A.3) into (A.2) we have:

F(x) = FOr) + 22 F (505) + 2 () + 4F (25) + F'(x) A4

- l 2 2 12 l 2
Since, F(x) = 0 then
-1

[x] = [x:] + 12[G(x;) + 106Gy + Giyp] [F(x)] AS
Wy y1tx; X1 Y1 A.6
w +x X y

wil =" =227 2L = 2] v = |7
Wn Yn +Xn Xn n

It is an implicit way since [x;, 1] occurs on both sides of the equation. To carry out this
implicit way, one has to calculate the approximate solution implicitly, which is itself a
difficult problem. To overcome this defect, the prediction and correction method is
typically used. By using formula (A.6), a two-step iterative method for solving the
system of nonlinear equation (A.1) can be obtained. For a given x,, the approximate
solution [ x;,4] is calculated by iterative scheme as follows:

o F() A7
yl - xl F’(xl-)

_ 12 F(x;) A8
F () +10F (FE20) 4/ (y)

Xit+1 = Xi
In a compact form, equation A.9 can be written as:

-1
[xi+1] = [x:] + 12[G(x,y + 10Ggy,) + G| [F(x))] A.9
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