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1. Introduction  

Recently, massive collections of large datasets, often referred 

to as big data, changed the imperatives of data management 

across industries[1]-[4]. This paradigm shift redefined how 

information is used and used, becoming the standard method 

in science, technology, education, health, and safety. These 

cost reductions have democratized access to data storage and 

improved computing capabilities, enabling organizations of all 

sizes to engage in comprehensive data-driven efforts for the 

purpose, Web forms like Facebook attest to a relentless 

diversity of data text, images, and videos that contribute to an 

ever-expanding repository of information that is constantly 

processed and exchanged, and highlights the real-time nature 

of modern data in the 19th century [5]-[6]. Fig. 1 [1] shows 

how gigabyte prices have changed over the last 30 years. 

According to HIS market analysis1, more than 1 billion 

 
 

surveillance cameras are installed worldwide as of 2021, 

which stream petabytes worth of data continuously 

 

Figure. 1: hardware cost over the last 30 years [1] 

Certainly, the collected data, whether in health, social 

networks, or security is extremely valuable for all types of 

purposes. However, the usefulness of data is as good as its 

readiness and availability at the time when it is needed for 
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processing, rather than its being there at some storage 

network. 

Researchers have made significant strides in enhancing the 

different components of big data through a variety of 

techniques. These include efficient indexing, caching, and 

filtering [7]-[8] as well as advancements in query execution 

plans and effective data partitioning [9]-[10]. These 

approaches are designed to optimize various aspects of big 

data processing and yield improved overall performance. By 

leveraging these techniques, researchers and practitioners can 

achieve enhanced data analysis, more efficient data retrieval, 

and meaningful insights extraction from large-scale datasets 

[11]-[12]. These advancements, combined with the integration 

of cutting-edge technologies like text mining [13]-[14] and 

machine learning [15]-[16], have revolutionized the field of 

big data and enabled informed decision-making across diverse 

domains. However, one critical challenge faced in big data 

processing is the performance degradation caused by memory 

constraints. Memory constraints arise when the amount of 

memory required to store the data being referenced is 

significantly smaller than the overall size of the dataset. For 

instance, a database with a size of 100 GB may not fit entirely 

into a computer system with only 16 GB of RAM. Accessing 

data from the database involves transferring it from massive 

storage, such as networked disk space, to the computer's RAM 

at the time of data retrieval. As the program requires more 

data, the system is forced to swap data between the memory 

and the disk, resulting in expensive data transfer operations. 

These operations introduce delays as the CPU waits for the 

new data to be loaded into memory. 

To address these challenges, our proposed solution leverages 

the concept of the locality of references. Locality of references 

refers to the tendency of a processor to access the same set of 

memory locations repeatedly over a short period [9],[17]. One 

key characteristic that reduces CPU waiting time and data 

transfer between memory and disk is the quality of special and 

temporal [18]-[19] locality of reference. This means that once 

data is loaded into memory, it remains there for a relatively 

long time before being sent back to the disk. Furthermore, data 

that is removed from memory is unlikely to be reloaded 

shortly. By reducing data transfer between memory and disk 

and minimizing CPU waiting time, the performance of big 

data processing can be significantly enhanced [20]. 

The main contribution of our proposed method is its focus on 

improving the performance of big data through ontology 

analysis to discover the locality of reference within the 

dataset. We will construct a synthetic memory reference trace 

based on the behavior of database queries. This trace will 

capture the temporal and spatial relations between data 

references. To represent these relations effectively, we will 

utilize graph representation techniques. 

The paper is organized as follows: Section 2 discusses a 

review of methods to improve big data performance using the 

locality of references from previous related works. Section 3 

presents a detailed description of the proposed method. 

Finally, Section 4 presents the conclusions drawn from this 

study and makes recommendations for possible future research 

directions. 

2. Literature Review 

Several prior works have proposed different approaches to 

improve the performance of big data, generally, these 

approaches have been proposed falling into two main 

categories: system-level optimizations and reference locality 

exploitation. Our work builds upon these two approaches, for 

improving the performance of big data processing systems by 

enhancing system-level optimizations and exploiting reference 

locality more effectively. 

2.1. Methods That Improve Big Data Performance 

The most successful approach to improving the performance 

of big data is to store the primary dataset in the main memory 

of the computer instead of relying on hard disks for storage It 

is called memory database systems [21], this approach takes 

advantage of the speed advantage of memory storage. The 

concept of performance in memory (PIM) has received 

considerable attention in previous research, both in previous 

work such as [22]-[24] and more recent studies such as (e.g., 

[25]-[27], respectively. PIM revolves around performing 

computations in front of data, reducing the limitations 

imposed by off-chip bandwidth limitations. This strategy aims 

to increase the performance of the computer system in terms 

of performance and energy consumption. However, with big 

data, simply storing the entire dataset in memory is not 

practical due to its enormous size. As a result, methods for 

optimizing primary memory and disk storage emerged. 

Researchers have introduced various approaches ( [28]- [30]) 

aiming to overcome this challenge, to ensure efficient use of 

memory and disk resources. Using memory database 

management along with performance in memory, using 

intelligent techniques to utilize primary memory and disk 

storage, organizations can dramatically increase big data 

processing performance this approach makes it easily strike a 

balance between speed and storage capacity, greatly 

improving the use of large amounts of data. 

 Furthermore, the columnar layout offers increased potential 

for parallel processing. Since the data is vertically partitioned, 

operations on different columns can easily be processed 

concurrently. For instance, when a query requires searching or 

aggregating multiple columns, it can be divided into smaller 

tasks, and each task can be assigned to a separate processor 

core for parallel execution. In contrast, row-based database 
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systems store complete records or rows contiguously in the 

storage media. Row-based layouts are more suitable for 

transactional workloads that involve accessing multiple 

attributes of individual records and require fast write 

operations. Employing a hybrid strategy that incorporates both 

columnar and row-based layouts, particularly for hot and cold 

data, can significantly enhance read/write operations and 

improve query performance [31]. By leveraging the strengths 

of each approach based on the specific data access patterns, 

organizations can optimize their big data processing and 

achieve more efficient performance. 

2.2. Methods that leverage the locality of references 

Methods aimed at improving the localities of references 

primarily focus on organizing data in a manner that facilitates 

easier access. This can be achieved through the utilization of 

efficient data structures like hash tables or B-trees. Caches, 

due to their limited size, are only capable of holding copies of 

recently used data or code. Typically, when new data is loaded 

into the cache, it replaces other existing data. Caches 

contribute to performance improvements solely if the 

previously loaded data is reused before being replaced. The 

significant reduction in program execution time achieved by 

caches can be attributed to the principle of locality of 

references [32]. This principle asserts that most programs do 

not uniformly access all code or data. Instead, recently used 

data and data located in proximity to the currently referenced 

data are highly likely to be accessed soon. Consequently, 

locality can be categorized into temporal locality (locality by 

time) and spatial locality (locality by space) [33].  It is worth 

noting that code optimization techniques [34] and data 

restructuring techniques [35] both aim to enhance both 

temporal and spatial locality. 

In a study conducted by [18], the phenomenon of locality was 

investigated over time and across different applications, with a 

specific emphasis on its application to computer systems and 

networks. 

Finally, previous research has shown that there is a strong 

tendency to improve big data performance. However, the best 

method for a particular application will depend on the specific 

characteristics of the application. This article focuses on 

enhancing big data performance by enhancing the locality 

characteristics of the big data and dynamic data structure 

selection to provide a more adaptive and efficient approach to 

exploiting reference locality. 

3. Proposed Model: 

Big data processing faces performance challenges due to 

memory constraints [36]. When the memory required to store 

data is much smaller than the total data size, accessing the data 

involves transferring it from massive storage to limited 

memory, commonly known as paging. This leads to expensive 

data transfers between memory and disk space, causing CPU 

waiting time. To mitigate this, the quality of the locality of 

reference plays a key role. If data remains in memory for a 

longer duration and is less likely to be reloaded, data transfer 

and CPU waiting time are reduced, resulting in enhanced 

performance for big data processing. 

The proposed model focuses on conducting ontology analysis 

to identify the locality of reference in big data and to enhance 

the quality of the locality of reference by restructuring the 

data. To achieve this, we will create a synthetic memory 

reference trace based on the behavior of database queries. 

Using a graph representation, we will capture the temporal and 

spatial relationships between data references. A clique, which 

consists of completely connected nodes, will indicate a group 

of data items forming a data locality. This group of data will 

be included in its structure, such that when a reference is made 

to any of its members, the entire block will be loaded into 

memory. The quality of big data will be evaluated based on 

the discovered characteristics of the locality of reference 

within the data. 

The procedure of the proposed model is described in the 

following steps: 

1. Generate a synthetic memory reference trace by 

analyzing the behavior of database queries. This log 

provides important insights into the access and 

reference methods used in the dataset. The reference 

string specifies the order in which data is accessed 

into the memory space, labeling each data item as 

D1, D2, D3, and so on, to determine how these data 

elements are presented in the database context as  

𝐷𝑎𝑡𝑎𝐼𝑡𝑒𝑚 (𝐷) =

𝐷𝐵(𝑑): 𝑇𝑎𝑏𝑙𝑒(𝑡): 𝑅𝑒𝑐𝑜𝑟𝑑(𝑟): 𝐹𝑖𝑒𝑙𝑑(𝑓)        (1) 

2. We will utilize a graph representation to capture the 

temporal and spatial relationships between data 

references. This graph will allow us to visually 

analyze and understand the connections between 

different data items. The concept of locality of 

references can be defined within this graph, denoted 

as G={V, L}, where V is the set of nodes and the L 

is the set of links in the graph G. The graph G is 

based on the referencing behavior of the data in the 

application. In the graph, each data item (page) 

corresponds to a node in V, while an edge in L is 

established between two pages, Di and Dj if Dj is 

referenced within a certain number of hops or time 

units from Di and the number of times Dj is 

referenced after Di is recorded as n. The lowest 

degree of locality, indicating weaker data 

referencing patterns, is indicated when the ratio of 
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hops (k) to frequency of references (n) approaches 

infinity.  

𝑘/𝑛 → (𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒)                               (2) 

In other words, the larger the distance between 

pages and the lower the frequency of being 

referenced together, the lower the locality of 

reference. Furthermore, a clique in the graph, 

representing a set of completely connected nodes, 

signifies a group of data items that exhibit strong 

locality characteristics of data. 

3. The quality of the big data can be assessed by 

examining the characteristics of the identified 

locality of reference. One measure used to quantify 

the level of locality in a big data system is the ratio 

of L (locality measure index) to S (data size) [37]. L 

is calculated as the sum of individual locality 

measures (Li) multiplied by a weighting factor (q), 

according to equation (3). 

𝐿 =  (𝛴𝐿𝑖) ∗ 𝑞                                                               

(3) 

To demonstrate the process of our approach, we will 

use a practical case. Let's imagine we have a 

program that interacts with a substantial database 

containing tables, records, and fields. To analyze the 

program's memory behavior, we monitor its memory 

references and generate a reference string that 

represents the order in which data items are 

accessed. This reference string captures the 

sequence of data item references made by the 

program. 

4. Use-Case:  

In the following case sequence, we refer to a data item 

labeled as Di, assuming it represents a virtual page: 

D1,D1,D1,D2,D3,D1,D1,D2,D3,D4,D1,D5,D2,D3,D3,D5,D

6,D5,D6 

We define the distance between two items as the number of 

hops between Di and Dj. For example, the distance d1,2 

between D1 and D2 = 1; and d1,3 = 2; Table 1 is built to 

show the distances between the data items (pages) as 

follows. 

 Table 1: Trace Data Item Matrix 

 D1 D2 D3 D4 D5 D6 

D1 0 12, 2 22,3 3 1,5 6 

D2  0 13,2 2 4,3 4 

D3   0 1 1,2 2 

D4    0 2 7 

D5     0 12 

D6      0 

 

The index 12 means that page 2 is referenced two times at a 

distance of 1 from page 1. Using this table, we can extract the 

locality of reference characteristics for the program. We build 

a graph for this case as shown in Fig 2. 

 

 

 

 

 

 

Figure. 2: Data item Reference Behavior Graph 

 

As can be seen from Fig 2, we build an edge between two 

nodes if the distance is less than 3 and the frequency of the 

distance is more than one. This means that the two connected 

pages are referenced within a short time and referenced 

frequently. 

In the graph, pages D1, D2, and D3 are referenced within 

close distance to each other and referenced more than once 

within each other. This indicates that nodes D1, D2, and D3 

form a locality of reference. The same for pages D5, and D6. 

Node D4 does not belong to any locality.  

The concept of locality of reference is a fundamental aspect of 

data quality, especially in the context of big data. To identify 

the locality characteristics of the data, our approach focuses on 

the ontology part. This process involves creating a memory 

reference graph by monitoring the program's interactions with 

advanced data sets. By constructing a graph that reflects the 

reference pattern and identifying the overlapping groups 

(called cliques) in the graph, we can accurately characterize 

the data at the local level.  

This research aims to increase temporal and spatial locality by 

ways to reorganize the data. While many approaches focus 

only on improving location, such as using in-memory 

technologies, our approach also addresses temporal regions 

separately moreover vertical separation and a mixture of 

vertical ones are used, distinguishing our approach from those 

typically used for column-based databases. Let's differentiate 

the number of jobs based on vertical segmentation 

D1 D2 

D3 

D5 

D6 

D4 



Journal of Engineering and Sustainable Development (Vol. 28, No. 04, July 2024)                                                ISSN 2520-0917 
 

471 

5. Conclusion 

In summary, the ongoing challenge of increasing big-data 

performance remains a major focus in the field. This study 

addresses this challenge by emphasizing the importance of the 

concept of context as an important factor. Through ontology 

analysis, we identified specific spatial attributes that are well 

embedded in big data, which we created by creating simulated 

memory reference records from database query patterns The 

use of graph representations allowed us to interpret them 

visually so we examined temporal and spatial relationships 

between data references. Creating local groups in a graph and 

finding overlapping data objects allows us to greatly simplify 

data processing. This approach enables transactions to be 

executed on data residing in the fastest memory layer, leading 

to enhanced performance. In future work, it would be valuable 

to explore the potential integration of machine learning 

techniques to automatically detect the most efficient locality 

structure in big data, further improving performance and 

scalability. 
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