

467

Journal of Engineering and Sustainable Development

Vol. 28, No. 04, July 2024

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd

ISSN 2520-0917

Research Article

https://doi.org/10.31272/jeasd.28.4.5

Work of This Research is
Licensed under CC BY

Enhancing Big Data Performance Through Graph Coloring-

Based Locality of Reference
Methaq Kadhum1*, Mohammad Malkawi2, Enas Rawashdeh3

1Electrical Engineering Department, College of Engineering. Mustansiriyah University, Baghdad, Iraq
2Software Engineering Department, Information and Computing College, Jordan University of Science and Technology Irbid,

Jordan
3Management information system, Amman College, AlBalqa Applied University, Amman, Jordan

1https://orcid.org/0009-0003-3096-3000
2https://orcid.org/0000-0003-0109-8196
3https://orcid.org/0000-0002-4810-543X
*Email: methaq@uomustansiriyah.edu.iq

1. Introduction

Recently, massive collections of large datasets, often referred

to as big data, changed the imperatives of data management

across industries[1]-[4]. This paradigm shift redefined how

information is used and used, becoming the standard method

in science, technology, education, health, and safety. These

cost reductions have democratized access to data storage and

improved computing capabilities, enabling organizations of all

sizes to engage in comprehensive data-driven efforts for the

purpose, Web forms like Facebook attest to a relentless

diversity of data text, images, and videos that contribute to an

ever-expanding repository of information that is constantly

processed and exchanged, and highlights the real-time nature

of modern data in the 19th century [5]-[6]. Fig. 1 [1] shows

how gigabyte prices have changed over the last 30 years.

According to HIS market analysis1, more than 1 billion

surveillance cameras are installed worldwide as of 2021,

which stream petabytes worth of data continuously

Figure. 1: hardware cost over the last 30 years [1]

Certainly, the collected data, whether in health, social

networks, or security is extremely valuable for all types of

purposes. However, the usefulness of data is as good as its

readiness and availability at the time when it is needed for

Article Info Abstract

Received 19/09/2023
 Efficiency is a crucial factor when handling the retrieval and storage of data from vast

amounts of records in a Big Data repository. These systems require a subset of data that

can be accommodated within the combined physical memory of a cluster of servers. It

becomes impractical to analyze all of the data if its size exceeds the available memory

capacity. Retrieving data from virtual storage, primarily hard disks, is significantly slower

compared to accessing data from main memory, resulting in increased access time and

diminished performance. To address this, a proposed model aims to enhance performance

by identifying the most suitable data locality structure within a big data set and

reorganizing the data schema accordingly; by locality, it has been referred to as a

particular access pattern. This allows transactions to be executed on data residing in the

fastest memory layer, such as cache, main memory, or disk cache.

Revised 14/04/2024

Accepted 21/04/2024

Keywords: Big Data; Graph Representation; Locality of References; Performance; Synthetic Memory

https://doi.org/10.31272/jeasd.28.4.5
https://orcid.org/0009-0003-3096-3000
https://orcid.org/0000-0003-0109-8196
https://orcid.org/0000-0002-4810-543X

Journal of Engineering and Sustainable Development (Vol. 28, No. 04, July 2024) ISSN 2520-0917

468

processing, rather than its being there at some storage

network.

Researchers have made significant strides in enhancing the

different components of big data through a variety of

techniques. These include efficient indexing, caching, and

filtering [7]-[8] as well as advancements in query execution

plans and effective data partitioning [9]-[10]. These

approaches are designed to optimize various aspects of big

data processing and yield improved overall performance. By

leveraging these techniques, researchers and practitioners can

achieve enhanced data analysis, more efficient data retrieval,

and meaningful insights extraction from large-scale datasets

[11]-[12]. These advancements, combined with the integration

of cutting-edge technologies like text mining [13]-[14] and

machine learning [15]-[16], have revolutionized the field of

big data and enabled informed decision-making across diverse

domains. However, one critical challenge faced in big data

processing is the performance degradation caused by memory

constraints. Memory constraints arise when the amount of

memory required to store the data being referenced is

significantly smaller than the overall size of the dataset. For

instance, a database with a size of 100 GB may not fit entirely

into a computer system with only 16 GB of RAM. Accessing

data from the database involves transferring it from massive

storage, such as networked disk space, to the computer's RAM

at the time of data retrieval. As the program requires more

data, the system is forced to swap data between the memory

and the disk, resulting in expensive data transfer operations.

These operations introduce delays as the CPU waits for the

new data to be loaded into memory.

To address these challenges, our proposed solution leverages

the concept of the locality of references. Locality of references

refers to the tendency of a processor to access the same set of

memory locations repeatedly over a short period [9],[17]. One

key characteristic that reduces CPU waiting time and data

transfer between memory and disk is the quality of special and

temporal [18]-[19] locality of reference. This means that once

data is loaded into memory, it remains there for a relatively

long time before being sent back to the disk. Furthermore, data

that is removed from memory is unlikely to be reloaded

shortly. By reducing data transfer between memory and disk

and minimizing CPU waiting time, the performance of big

data processing can be significantly enhanced [20].

The main contribution of our proposed method is its focus on

improving the performance of big data through ontology

analysis to discover the locality of reference within the

dataset. We will construct a synthetic memory reference trace

based on the behavior of database queries. This trace will

capture the temporal and spatial relations between data

references. To represent these relations effectively, we will

utilize graph representation techniques.

The paper is organized as follows: Section 2 discusses a

review of methods to improve big data performance using the

locality of references from previous related works. Section 3

presents a detailed description of the proposed method.

Finally, Section 4 presents the conclusions drawn from this

study and makes recommendations for possible future research

directions.

2. Literature Review

Several prior works have proposed different approaches to

improve the performance of big data, generally, these

approaches have been proposed falling into two main

categories: system-level optimizations and reference locality

exploitation. Our work builds upon these two approaches, for

improving the performance of big data processing systems by

enhancing system-level optimizations and exploiting reference

locality more effectively.

2.1. Methods That Improve Big Data Performance

The most successful approach to improving the performance

of big data is to store the primary dataset in the main memory

of the computer instead of relying on hard disks for storage It

is called memory database systems [21], this approach takes

advantage of the speed advantage of memory storage. The

concept of performance in memory (PIM) has received

considerable attention in previous research, both in previous

work such as [22]-[24] and more recent studies such as (e.g.,

[25]-[27], respectively. PIM revolves around performing

computations in front of data, reducing the limitations

imposed by off-chip bandwidth limitations. This strategy aims

to increase the performance of the computer system in terms

of performance and energy consumption. However, with big

data, simply storing the entire dataset in memory is not

practical due to its enormous size. As a result, methods for

optimizing primary memory and disk storage emerged.

Researchers have introduced various approaches ([28]- [30])

aiming to overcome this challenge, to ensure efficient use of

memory and disk resources. Using memory database

management along with performance in memory, using

intelligent techniques to utilize primary memory and disk

storage, organizations can dramatically increase big data

processing performance this approach makes it easily strike a

balance between speed and storage capacity, greatly

improving the use of large amounts of data.

 Furthermore, the columnar layout offers increased potential

for parallel processing. Since the data is vertically partitioned,

operations on different columns can easily be processed

concurrently. For instance, when a query requires searching or

aggregating multiple columns, it can be divided into smaller

tasks, and each task can be assigned to a separate processor

core for parallel execution. In contrast, row-based database

Journal of Engineering and Sustainable Development (Vol. 28, No. 04, July 2024) ISSN 2520-0917

469

systems store complete records or rows contiguously in the

storage media. Row-based layouts are more suitable for

transactional workloads that involve accessing multiple

attributes of individual records and require fast write

operations. Employing a hybrid strategy that incorporates both

columnar and row-based layouts, particularly for hot and cold

data, can significantly enhance read/write operations and

improve query performance [31]. By leveraging the strengths

of each approach based on the specific data access patterns,

organizations can optimize their big data processing and

achieve more efficient performance.

2.2. Methods that leverage the locality of references

Methods aimed at improving the localities of references

primarily focus on organizing data in a manner that facilitates

easier access. This can be achieved through the utilization of

efficient data structures like hash tables or B-trees. Caches,

due to their limited size, are only capable of holding copies of

recently used data or code. Typically, when new data is loaded

into the cache, it replaces other existing data. Caches

contribute to performance improvements solely if the

previously loaded data is reused before being replaced. The

significant reduction in program execution time achieved by

caches can be attributed to the principle of locality of

references [32]. This principle asserts that most programs do

not uniformly access all code or data. Instead, recently used

data and data located in proximity to the currently referenced

data are highly likely to be accessed soon. Consequently,

locality can be categorized into temporal locality (locality by

time) and spatial locality (locality by space) [33]. It is worth

noting that code optimization techniques [34] and data

restructuring techniques [35] both aim to enhance both

temporal and spatial locality.

In a study conducted by [18], the phenomenon of locality was

investigated over time and across different applications, with a

specific emphasis on its application to computer systems and

networks.

Finally, previous research has shown that there is a strong

tendency to improve big data performance. However, the best

method for a particular application will depend on the specific

characteristics of the application. This article focuses on

enhancing big data performance by enhancing the locality

characteristics of the big data and dynamic data structure

selection to provide a more adaptive and efficient approach to

exploiting reference locality.

3. Proposed Model:

Big data processing faces performance challenges due to

memory constraints [36]. When the memory required to store

data is much smaller than the total data size, accessing the data

involves transferring it from massive storage to limited

memory, commonly known as paging. This leads to expensive

data transfers between memory and disk space, causing CPU

waiting time. To mitigate this, the quality of the locality of

reference plays a key role. If data remains in memory for a

longer duration and is less likely to be reloaded, data transfer

and CPU waiting time are reduced, resulting in enhanced

performance for big data processing.

The proposed model focuses on conducting ontology analysis

to identify the locality of reference in big data and to enhance

the quality of the locality of reference by restructuring the

data. To achieve this, we will create a synthetic memory

reference trace based on the behavior of database queries.

Using a graph representation, we will capture the temporal and

spatial relationships between data references. A clique, which

consists of completely connected nodes, will indicate a group

of data items forming a data locality. This group of data will

be included in its structure, such that when a reference is made

to any of its members, the entire block will be loaded into

memory. The quality of big data will be evaluated based on

the discovered characteristics of the locality of reference

within the data.

The procedure of the proposed model is described in the

following steps:

1. Generate a synthetic memory reference trace by

analyzing the behavior of database queries. This log

provides important insights into the access and

reference methods used in the dataset. The reference

string specifies the order in which data is accessed

into the memory space, labeling each data item as

D1, D2, D3, and so on, to determine how these data

elements are presented in the database context as

𝐷𝑎𝑡𝑎𝐼𝑡𝑒𝑚 (𝐷) =

𝐷𝐵(𝑑): 𝑇𝑎𝑏𝑙𝑒(𝑡): 𝑅𝑒𝑐𝑜𝑟𝑑(𝑟): 𝐹𝑖𝑒𝑙𝑑(𝑓) (1)

2. We will utilize a graph representation to capture the

temporal and spatial relationships between data

references. This graph will allow us to visually

analyze and understand the connections between

different data items. The concept of locality of

references can be defined within this graph, denoted

as G={V, L}, where V is the set of nodes and the L

is the set of links in the graph G. The graph G is

based on the referencing behavior of the data in the

application. In the graph, each data item (page)

corresponds to a node in V, while an edge in L is

established between two pages, Di and Dj if Dj is

referenced within a certain number of hops or time

units from Di and the number of times Dj is

referenced after Di is recorded as n. The lowest

degree of locality, indicating weaker data

referencing patterns, is indicated when the ratio of

Journal of Engineering and Sustainable Development (Vol. 28, No. 04, July 2024) ISSN 2520-0917

470

hops (k) to frequency of references (n) approaches

infinity.

𝑘/𝑛 → (𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒) (2)

In other words, the larger the distance between

pages and the lower the frequency of being

referenced together, the lower the locality of

reference. Furthermore, a clique in the graph,

representing a set of completely connected nodes,

signifies a group of data items that exhibit strong

locality characteristics of data.

3. The quality of the big data can be assessed by

examining the characteristics of the identified

locality of reference. One measure used to quantify

the level of locality in a big data system is the ratio

of L (locality measure index) to S (data size) [37]. L

is calculated as the sum of individual locality

measures (Li) multiplied by a weighting factor (q),

according to equation (3).

𝐿 = (𝛴𝐿𝑖) ∗ 𝑞

(3)

To demonstrate the process of our approach, we will

use a practical case. Let's imagine we have a

program that interacts with a substantial database

containing tables, records, and fields. To analyze the

program's memory behavior, we monitor its memory

references and generate a reference string that

represents the order in which data items are

accessed. This reference string captures the

sequence of data item references made by the

program.

4. Use-Case:

In the following case sequence, we refer to a data item

labeled as Di, assuming it represents a virtual page:

D1,D1,D1,D2,D3,D1,D1,D2,D3,D4,D1,D5,D2,D3,D3,D5,D

6,D5,D6

We define the distance between two items as the number of

hops between Di and Dj. For example, the distance d1,2

between D1 and D2 = 1; and d1,3 = 2; Table 1 is built to

show the distances between the data items (pages) as

follows.

 Table 1: Trace Data Item Matrix

 D1 D2 D3 D4 D5 D6

D1 0 12, 2 22,3 3 1,5 6

D2 0 13,2 2 4,3 4

D3 0 1 1,2 2

D4 0 2 7

D5 0 12

D6 0

The index 12 means that page 2 is referenced two times at a

distance of 1 from page 1. Using this table, we can extract the

locality of reference characteristics for the program. We build

a graph for this case as shown in Fig 2.

Figure. 2: Data item Reference Behavior Graph

As can be seen from Fig 2, we build an edge between two

nodes if the distance is less than 3 and the frequency of the

distance is more than one. This means that the two connected

pages are referenced within a short time and referenced

frequently.

In the graph, pages D1, D2, and D3 are referenced within

close distance to each other and referenced more than once

within each other. This indicates that nodes D1, D2, and D3

form a locality of reference. The same for pages D5, and D6.

Node D4 does not belong to any locality.

The concept of locality of reference is a fundamental aspect of

data quality, especially in the context of big data. To identify

the locality characteristics of the data, our approach focuses on

the ontology part. This process involves creating a memory

reference graph by monitoring the program's interactions with

advanced data sets. By constructing a graph that reflects the

reference pattern and identifying the overlapping groups

(called cliques) in the graph, we can accurately characterize

the data at the local level.

This research aims to increase temporal and spatial locality by

ways to reorganize the data. While many approaches focus

only on improving location, such as using in-memory

technologies, our approach also addresses temporal regions

separately moreover vertical separation and a mixture of

vertical ones are used, distinguishing our approach from those

typically used for column-based databases. Let's differentiate

the number of jobs based on vertical segmentation

D1 D2

D3

D5

D6

D4

Journal of Engineering and Sustainable Development (Vol. 28, No. 04, July 2024) ISSN 2520-0917

471

5. Conclusion

In summary, the ongoing challenge of increasing big-data

performance remains a major focus in the field. This study

addresses this challenge by emphasizing the importance of the

concept of context as an important factor. Through ontology

analysis, we identified specific spatial attributes that are well

embedded in big data, which we created by creating simulated

memory reference records from database query patterns The

use of graph representations allowed us to interpret them

visually so we examined temporal and spatial relationships

between data references. Creating local groups in a graph and

finding overlapping data objects allows us to greatly simplify

data processing. This approach enables transactions to be

executed on data residing in the fastest memory layer, leading

to enhanced performance. In future work, it would be valuable

to explore the potential integration of machine learning

techniques to automatically detect the most efficient locality

structure in big data, further improving performance and

scalability.

Acknowledgment

The authors would like to acknowledge and thank Dr. Umaiya

Murad –from the Association of Arab Universities, for her

efforts in reviewing the paper and providing the authors with

valuable comments to improve the paper.

Compliance with Ethical Standards and Conflict of

Interest

The authors declare that there is no conflict of interest

regarding the publication of this paper, and strictly complied

Author Contribution Statement

Dr. Mohammad Malkawi proposed the research problem, and

both Dr. Methaq Alnoori and Enas Rawashdeh researched the

topic and validated the research theme. All three authors

contributed to the investigation of the research theme and

discussed the model and the results. Dr. Methaq and Dr. Enas

compiled the reference list and summarized related research.

References

[1] S. Usman, R. Mehmood, I. Katib, and A. Albeshri, "Data Locality in High-

Performance Computing, Big Data, and Converged Systems: An Analysis of

the Cutting Edge and a Future System Architecture," Electronics, vol. 12, no.

1, p. 53, 2022. DOI: https://doi.org/10.20944/preprints202211.0161.v1

[2] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,

and A. P. Sheth, "Machine learning for Internet of things data analysis: a

survey," Digit. Commun. Networks, vol. 4, no. 3, pp. 161–175, 2018, doi:

https://doi.org/10.1016/j.dcan.2017.10.002.

[3] J. Yu, M. Ai, and Z. Ye, “A review on design inspired subsampling for big

data,” Stat. Pap., pp. 1–44, 2023. DOI: https://doi.org/10.6339/21-JDS999

[4] A. A. Hamad and M. J. Farhan, “A NEW MIMO SLOT ANTENNA FOR

5G APPLICATIONS,” J. Eng. Sustain. Dev., vol. 24, no. 6, pp. 33–41, 2020.

DOI: https://doi.org/10.31272/jeasd.24.6.3

[5] J. Ousterhout et al., “The case for RAMClouds: scalable high-performance

storage entirely in DRAM,” ACM SIGOPS Oper. Syst. Rev., vol. 43, no. 4,

pp. 92–105, 2010.DOI: https://doi.org/10.1145/1965724.1965751

[6] A. H. Rashed and M. H. Hamd, "Robust detection and recognition system

based on facial extraction and decision tree," J. Eng. Sustain. Dev., vol. 25,

no. 4, pp. 40–50, 2021. DOI: https://doi.org/10.31272/jeasd.25.4.4

[7] P. Vagata and K. Wilfong, “Scaling the Facebook data warehouse to 300

PB,” Faceb. Code, Faceb., vol. 10, 2014.

https://code.facebook.com/posts/229861827208629/ scaling-the-Facebook-

data-warehouse-to-300-pb/

[8] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-based

optimization of MapReduce programs,” Proc. VLDB Endow., vol. 4, no. 11,

pp. 1111–1122,2011. https://doi.org/doi.org/10.1145/2522968.2522979

[9] S. I. M. Mosharraf and M. A. Adnan, “Hwang, Eunji, et al. ‘Exploring

memory locality for big data analytics in virtualized clusters.’ Proceedings of

the 2017 Symposium on Cloud Computing. 2017.,” J. Big Data, vol. 9, no. 1,

pp. 1–30, 2022. DOI: https://doi.org/10.1109/CCGRID.2018.00017

[10] Y. Lu, “Zhang et al., 2015.” Massachusetts Institute of Technology,

2017. https://doi.org/10.1007/s13351-017-7088-0

[11] M. Kadhum, E. Rawashdeh, and M. Alshraideh, “An Efficient Bug

Reports Assignment for IoT Application with Auto-Tuning Structure of ELM

Using Dragonfly Optimizer,” J. Hunan Univ. Nat. Sci., vol. 48, no. 7, 2021.

[12] E. F. Rawashdeh, I. Aljarah, and H. Faris, “A cooperative coevolutionary

method for optimizing random weight networks and its application for

medical classification problems,” J. Ambient Intell. Humaniz. Comput., vol.

12, pp. 321–342, 2021. DOI: https://doi.org/10.1007/s12652-020-01975-3

[13] L. M. Abualigah, A. T. Khader, and M. A. Al-Betar, "Unsupervised

feature selection technique based on genetic algorithm for improving the text

clustering," in 2016 7th International Conference on computer science and

information technology (CSIT), IEEE, 2016, pp. 1–6. DOI:

https://doi.org/10.1109/CSIT.2016.7549453

[14] M. S. Mahdavinejad, M. Rezvan, M. Barekatain, P. Adibi, P. Barnaghi,

and A. P. Sheth, “Machine learning for Internet of Things data analysis: a

survey. Dig. Commun. Netw.” Press, 2017.

https://doi.org/10.1016/j.dcan.2017.10.002

[15] M. Kadhum, S. Manaseer, and A. L. Abu Dalhoum, "Cloud-edge

network data processing based on user requirements using modify mapreduce

algorithm and machine learning techniques,” Int. J. Adv. Comput. Sci. Appl.,

vol. 10, no. 12, 2019, doi: https://doi.org/10.14569/ijacsa.2019.0101242.

[16] M. Kadhum, M. H. Qasem, A. Sleit, and A. Sharieh, Efficient

MapReduce matrix multiplication with optimized mapper set, vol. 574. 2017.

doi: https://doi.org/10.1007/978-3-319-57264-2_19.

[17] J. Jin et al., “A data-locality-aware task scheduler for distributed social

graph queries,” Futur. Gener. Comput. Syst., vol. 93, pp. 1010–1022, 2019.

https://doi.org/10.1016/j.future.2018.04.086

[18] R. Bunt and C. Williamson, Temporal and spatial locality: A time and a

place for everything. na, 2003. https://doi.org/10.1145/301618.301668

[19] Z. Sha, Z. Cai, F. Trahay, J. Liao, and D. Yin, “Unifying temporal and

spatial locality for cache management inside SSDs,” in 2022 Design,

Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2022,

pp. 891–896. doi: https://doi.org/10.23919/DATE54114.2022.9774532

[20] M. Y. Özkaya, A. Benoit, and Ü. V Çatalyürek, “Improving locality-

aware scheduling with acyclic directed graph partitioning,” in Parallel

Processing and Applied Mathematics: 13th International Conference, PPAM

2019, Bialystok, Poland, September 8–11, 2019, Revised Selected Papers,

Part I 13, Springer, 2020, pp. 211–223. https://doi.org/10.3390/s18061676

https://doi.org/10.20944/preprints202211.0161.v1
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.6339/21-JDS999
https://doi.org/10.31272/jeasd.24.6.3
https://doi.org/10.1145/1965724.1965751
https://doi.org/10.31272/jeasd.25.4.4
https://code.facebook.com/posts/229861827208629/%20scaling-the-Facebook-data-warehouse-to-300-pb/
https://code.facebook.com/posts/229861827208629/%20scaling-the-Facebook-data-warehouse-to-300-pb/
https://doi.org/doi.org/10.1145/2522968.2522979
https://doi.org/10.1109/CCGRID.2018.00017
https://doi.org/10.1007/s13351-017-7088-0
https://doi.org/10.1007/s12652-020-01975-3
https://doi.org/10.1109/CSIT.2016.7549453
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.14569/ijacsa.2019.0101242
https://doi.org/10.1007/978-3-319-57264-2_19
https://doi.org/10.1016/j.future.2018.04.086
https://doi.org/10.1145/301618.301668
https://doi.org/10.23919/DATE54114.2022.9774532
https://doi.org/10.3390/s18061676

Journal of Engineering and Sustainable Development (Vol. 28, No. 04, July 2024) ISSN 2520-0917

472

[21] H. Zhang, G. Chen, B. C. Ooi, K.-L. Tan, and M. Zhang, “In-memory big

data management and processing: A survey,” IEEE Trans. Knowl. Data Eng.,

vol. 27, no. 7, pp. 1920–1948, 2015. DOI:

https://doi.org/10.1109/TKDE.2015.2427795

[22] H. S. Stone, “A logic-in-memory computer,” IEEE Trans. Comput., vol.

100, no. 1, pp. 73–78, 1970. DOI: https://doi.org/10.1109/TC.1970.5008902

[23]“(PDF) Performability analysis of wireless cellular networks.” Accessed:

Feb. 18, 2022. [Online]. Available:

https://www.researchgate.net/publication/255821609_Performability_analysis

_of_wireless_cellular_networks. DOI: https://doi.org/10.1002/dac.605

[24] D. Patterson et al., “A case for intelligent RAM,” IEEE micro, vol. 17,

no. 2, pp. 34–44, 1997. DOI: https://doi.org/10.1109/40.592312

[25] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, “A Survey on

Internet of Things: Architecture, Enabling Technologies, Security and

Privacy, and Applications,” IEEE Internet Things J., vol. 4, no. 5, pp. 1125–

1142, 2017, doi: https://doi.org/10.1109/JIOT.2017.2683200.

[26] V. Seshadri, “Fast and Energy-Efficient In-DRAM Bulk Data Copy and

Initialization”. https://doi.org/10.1145/2540708.2540725

[27] V. Seshadri et al., “Gather-scatter DRAM: In-DRAM address translation

to improve the spatial locality of non-unit strided accesses,” in Proceedings of

the 48th International Symposium on Microarchitecture, 2015, pp. 267–280.

https://doi.org/10.1145/2830772.2830820

[28] J. DeBrabant, A. Pavlo, S. Tu, M. Stonebraker, and S. Zdonik, “Anti-

caching: A new approach to database management system architecture,” Proc.

VLDB Endow., vol. 6, no. 14, pp. 1942–1953, 2013.

https://doi.org/10.14778/2556549.2556575

[29] R. Stoica and A. Ailamaki, “Enabling efficient OS paging for main-

memory OLTP databases,” in Proceedings of the Ninth International

Workshop on Data Management on New Hardware, 2013, pp. 1–7.

https://doi.org/10.1145/2485278.2485285

[30] J. J. Levandoski, P.-Å. Larson, and R. Stoica, “Identifying hot and cold

data in main-memory databases,” in 2013 IEEE 29th International Conference

on Data Engineering (ICDE), IEEE, 2013, pp. 26–37. doi:

https://doi.org/10.1109/ICDE.2013.6544811

[31] A. W. J. Lu, A study of an in-memory database system for real-time

analytics on semi-structured data streams. University of Toronto (Canada),

2015.

[32] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative

approach. Elsevier, 2011. ISBN: 9780123838735

[33] S. Manegold, “Memory Locality BT- Encyclopedia of Database

Systems,” L. Liu and M. T. Özsu, Eds., New York, NY: Springer New York,

2016, pp. 1–2. doi: 10.1007/978-1-4899-7993-3_686-2.

https://doi.org/10.1145/3357526.3357571

[34] E. N. Rush, B. Harris, N. Altiparmak, and A. Ş. Tosun, “Dynamic data

layout optimization for high performance parallel i/o,” in 2016 IEEE 23rd

International Conference on High Performance Computing (HiPC), IEEE,

2016, pp. 132–141. doi: https://doi.org/10.1109/ISPASS48437.2020.00025

[35] M. Kaufmann, “Storing and processing temporal data in main memory

column stores.” ETH Zurich, 2014.

https://doi.org/doi.org/10.14778/2536274.2536333

[36] P. Hu, S. Dhelim, H. Ning, and T. Qiu, “Survey on fog computing:

architecture, key technologies, applications and open issues,” Journal of

Network and Computer Applications, vol. 98. pp. 27–42, 2017. doi:

https://doi.org/10.1016/j.jnca.2017.09.002.

[37] P. J. Denning and J. P. Buzen, “The operational analysis of queueing

network models,” ACM Comput. Surv., vol. 10, no. 3, pp. 225–261, 1978.

https://doi.org/10.1145/356733.356735

https://doi.org/10.1109/TKDE.2015.2427795
https://doi.org/10.1109/TC.1970.5008902
https://doi.org/10.1002/dac.605
https://doi.org/10.1109/40.592312
https://doi.org/10.1109/JIOT.2017.2683200
https://doi.org/10.1145/2540708.2540725
https://doi.org/10.1145/2830772.2830820
https://doi.org/10.14778/2556549.2556575
https://doi.org/10.1145/2485278.2485285
https://doi.org/10.1109/ICDE.2013.6544811
https://doi.org/10.1145/3357526.3357571
https://doi.org/10.1109/ISPASS48437.2020.00025
https://doi.org/doi.org/10.14778/2536274.2536333
https://doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1145/356733.356735

