FUZZY MAXIMUM POWER POINT TRACKING CONTROLLERS FOR PHOTOVOLTAIC SYSTEMS: A COMPARATIVE ANALYSIS

Ammar Al-Gizi1*, Abbas Hussien Miry2, Hussein M. Hathal3, Aurelian Craciunescu4

1,2,3Electrical Engineering Department, College of Engineering, Mustansiriyah University, Baghdad, Iraq
4Electrical Engineering Faculty, University Politehnica of Bucharest, Bucharest, Romania

1https://orcid.org/0000-0002-4200-665X
2https://orcid.org/0000-0002-7456-287X
3https://orcid.org/0000-0002-3670-5585

Received 22/08/2023 Revised 14/04/2024 Accepted 20/04/2024

Abstract: The design of an effective fuzzy maximum power point tracking controller plays a crucial aspect in enhancing the photovoltaic system’s efficiency. This article aims to design and compare the performance of symmetric and asymmetric types of fuzzy controllers’ maximum power point tracking algorithms. Depending on the BP SX150S module’s power-voltage attributes at standard technical conditions, the input membership function parameters are derived. Moreover, the effect of fuzzy memberships’ quantity is also examined in this article. Where five and seven triangular memberships are used. For the simulation, MATLAB is used to assess the effectiveness of the fuzzy controllers. Simulation results show that the asymmetric controller outperforms the symmetric type in terms of transient and steady-state tracking for different numbers of membership functions. Specifically, when employed with 5-triangle memberships, the asymmetric controller outperforms the symmetrical controller in terms of rise time, tracking precision, and energy output, respectively, by 83%, 0.06%, and 14.14%. While, the rise time, tracking precision, and energy yield of 7-triangle memberships are all improved by 86.7%, 0.04%, and 14.78%, respectively. Using asymmetric type, 7-triangle memberships enhance the rise time and harvested energy by around 18.2% and 0.082%, respectively. Overall, the most effective tracking technique for enhancing the photovoltaic system’s efficiency is the asymmetric type, independent of the quantity of memberships.

Keywords: Energy Yield; Fuzzy Controllers; Maximum Power Point Tracking; Perturb and Observe; Photovoltaic.

1. Introduction

In a photovoltaic (PV) system, the operational point at which a solar panel generates its greatest power output is called the maximum power point (MPP). The MPP changes with environmental factors like solar irradiance (G) and temperature (T) [1-4]. Since the current-voltage relationship is complicated and exponentially nonlinear, determining the photovoltaic module’s MPP is challenging. Because the MPP location is unknown, many MPPT algorithms have been used to find it. The MPPT controller is utilized to continuously adjust the PV system's operating point to track the MPP and maximize the energy harvest through appropriate modification for the DC/DC converter’s duty (D) [2]. Fuzzy logic (FL), incremental conductance (InC), and perturb and observe (P&O) algorithms are common PV MPPT techniques utilized for this objective [5, 6]. InC and P&O tracking techniques usually cause an energy loss due to a fluctuation around
the MPP [7, 8]. Currently, the fuzzy MPPT is a popular choice to locate and monitor the PV system's MPP because of its efficiency and ability to adapt to complicated systems. Where the PV system’s detailed mathematical model is unnecessary when utilizing the FLC-based MPPT. Rather, it makes control decisions based on linguistic rules and expert knowledge. This simplifies implementation and eliminates the need for costly calculations [9]. PV systems with FLC MPPT can perform superior to PV systems that employ conventional P&O or InC tracking techniques in both transient and steady-state performances [10-14]. FLC with symmetric types of MFs outperforms the conventional P&O technique concerning tracking speed and precision, especially at varying and challenging environmental conditions [10, 11], [15-17]. The PV system's efficiency is improved by using a 5-tri MFs asymmetric controller [18, 19]. MFs' parameters are calculated by the power-voltage (P-V) curve’s characteristic. The description of MFs and rules is a crucial part of the fuzzy controller structure. Trial and error are often used to establish MFs for traditional controllers, although this method does not provide the intended outcomes [20]. Because the setting values of MFs in an FLC-based MPPT system can greatly influence its effectiveness, researchers and practitioners often turn to various optimization techniques to automatically seek the best values for the MFs rather than a trial-and-error [21-23]. The asymmetric fuzzy controller with 5-tri MFs offers the greatest PV system's dynamic and stable tracking results when compared to the symmetric fuzzy controller and P&O-based MPPT approaches [19]. In this article, symmetric and asymmetric fuzzy controllers with 5 and 7 triangular MFs are proposed. To further demonstrate the improvements of the suggested fuzzy MPPT approaches, the conventional P&O established in [24] is also provided. Section 2 is dedicated to explaining the mathematical model of the PV system being used in the article; Section 3 describes the proposed symmetric and asymmetric types of FLCs-based MPPT. Meanwhile, Section 4 presents the outcomes of the simulations. Finally, Section 5 summarizes the key findings of the article.

2. Modeling of PV System
First, As shown in Fig. 1, the primary parts of a conventional stand-alone PV system are a module, load, and tracking system that includes a DC/DC converter and a tracking technique. The following elements are used in this article:

- **BP SX150S module with (N_S=72) cells linked in series,**
- **DC/DC converter (ideal buck-boost type),**
- **Load of resistance (R_L=6Ω),**
- **MPPT techniques as fuzzy and P&O.**

![Figure 1. Conventional stand-alone PV system](image)

Under STC, the BP SX150S module has the greatest output power of 150 W. At these conditions, the cell temperature \(T_c \) and solar irradiance \(G_r \) are 25 °C and 1000 W/m², respectively. Table 1 is a list of the electric specifications for the PV module in use [25].
To identify the point of operation at MPP and draw the most power possible from the PV module, it is necessary to maintain the compatibility between the converter’s input impedance (\(R_{in}\)) and the PV optimum impedance (\(R_{opt}\)) using a DC/DC converter [11] as expressed by:

\[
R_{opt} = \frac{V_{mpp}}{I_{mpp}}
\]

(1)

At the MPP, the module’s voltage and current can be denoted as \(V_{mpp}\) and \(I_{mpp}\), respectively.

The input impedance of an ideal DC/DC converter (as seen by the PV module) is:

\[
R_{in} = \frac{V}{I} = \frac{v_{L}}{i_{L}} \times \frac{(1-D)^2}{D^2} = R_{L} \times \frac{(1-D)^2}{D^2}
\]

(2)

The converter’s duty cycle is denoted by \(D\), while \(I_{L}\) and \(V_{L}\) are the load’s current and voltage, respectively, and \(I\) and \(V\) are the module’s current and voltage, respectively.

As expressed in (2), load matching can be satisfied by amending the value of \(D\). By decreasing \(D\), the operating point moves clockwise (i.e., the module voltage increases) and vice versa. By a single-diode PV cell, the operational point of a module defined by its current and voltage at various \(G\) and \(T\) is expressed by:

\[
I = I_{ph} - I_{o} \left(\exp \left(\frac{q(V+IR_{sh})}{N_{q}nKT} \right) - 1 \right) - \left(\frac{V+IR_{sh}}{R_{sh}} \right)
\]

(3)

\(I-V\) equation as a function of \(R_{in}\) is:

\[
V - R_{in}I = V - R_{in}f(V,G,T) = 0
\]

(4)

\(I_{ph}\) denotes a light current and \(I_{sc}\) denotes a short-circuit current. \(I_{o}\) is a cell’s reverse current, \(K\) is Boltzmann’s constant, \(q\) is an electron charge, and \(n\) is an ideality factor of the diode (often symbolized by “\(A\)”), whose value ranges between 1 and 2 (1.62 in this article) and is used to modify the module’s \(I-V\) characteristics into their actual characteristics [26].

The reverse saturation current (\(I_{o}\)) is temperature dependent and is expressed as:

\[
I_{o} = I_{or} \times \left(\frac{T}{T_{r}} \right)^{3} \times \exp \left(\frac{qE_{g}}{nKT} \left(\frac{1}{T_{r}} - \frac{1}{T} \right) \right)
\]

(5)

\(E_{g}\) is a cell’s semiconductor band gap energy.

However, the PV module short-circuit current (\(I_{sc}\)) as follows:

\[
I_{sc} = \frac{g}{\alpha} \left(I_{scr} + \alpha(T - T_{r}) \right)
\]

(6)

By varying a parameter \(D\) from 0 to 1 with a step of 0.05 and by using the Newton-Raphson method to solve nonlinear equations (2), (3), and (4), the plots of voltage change (\(\Delta V\)), power change (\(\Delta P\)), and the power \(\Delta P/\Delta V\) relationship can be found. These plots are depicted in Figs. 2, 3, and 4, respectively, at various \(G\) and a fixed \(T\) of 25 °C.

Table 1. Specifications of BP SX150S module under

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Power ((P_{max}))</td>
<td>150 W</td>
</tr>
<tr>
<td>Open-circuit voltage ((V_{oc}))</td>
<td>43.5 V</td>
</tr>
<tr>
<td>Short-circuit current ((I_{sc}))</td>
<td>4.75 A</td>
</tr>
<tr>
<td>Voltage at Pmax ((V_{mpp}))</td>
<td>34.5 V</td>
</tr>
<tr>
<td>Current at Pmax ((I_{mpp}))</td>
<td>4.35 A</td>
</tr>
<tr>
<td>Temperature coefficient of (V_{oc})</td>
<td>(- (160 \pm 20) \text{ mV/}°\text{C})</td>
</tr>
<tr>
<td>Temperature coefficient of (I_{sc}) ((\alpha))</td>
<td>((0.065 \pm 0.015) \text{%/}°\text{C})</td>
</tr>
<tr>
<td>Temperature coefficient of power</td>
<td>(-(0.5 \pm 0.05) \text{%/}°\text{C})</td>
</tr>
</tbody>
</table>
3. Fuzzy MPPT Controller

The MPPT control algorithm is used to determine the optimal value of D. Fuzzy logic is a control system methodology that uses linguistic variables and rules to approximate human reasoning. FLCs are effective in handling non-linear and uncertain systems, making them suitable for MPPT in PV systems, where environmental conditions can vary [9]. To preserve the MPP, the fuzzy MPPT modifies the DC/DC converter’s duty. Fig. 5 depicts the FLC structure.

Table 2 demonstrates that the FLC with five MFs has five rules in its rule base (RB) [26-29]. However, in the event of 7-MFs, the rules will be 7, as indicated in Table 3 [26]. The operational point’s proximity to the MPP determines the rules. D will be gently raised or lowered to locate the MPP if the point of operation gets close to it, and conversely.

By looking at the $\Delta P/\Delta V$ curve illustrated in Fig. 6, the control rules are simply demonstrated.
The center of gravity approach is utilized to obtain ΔD crisp value, as shown in Fig. 5 during a defuzzification stage as:

$$\Delta D = \frac{\sum_{i=1}^{n} \Delta D_i \times \mu(\Delta D_i)}{\sum_{i=1}^{n} \mu(\Delta D_i)}$$ \hspace{1cm} (7)

At rule, i, $\mu(\Delta D_i)$ and ΔD_i represent the fuzzy and crisp values of the output, respectively. n is the rules’ quantity (5 when there are only five rules and 7 when there are only seven rules). In contrast, ΔD is the FLC output's final crisp value. As a result, the actual value of the duty cycle can be calculated depending on the produced ΔD [11]. The parameters of the MFs have an impact on the efficiency of the fuzzy MPPT [21]. In this article, symmetric and asymmetric FLCs are used, employing 5 and 7 triangular MFs in each type.

3.1. Symmetric FLC

The input of the symmetric controller is depicted in Fig. 7, utilizing 5-MFs and 7-MFs. The greatest positive and negative $\Delta P/\Delta V$ readings are -43.5 and 43.5, respectively.

3.2. Asymmetric FLC

At STC, Fig. 6 shows that the values of $\Delta P/\Delta V$ around MPP are asymmetric. Its value on the left side of MPP is smaller than the value on the
right. Hence, it is straightforward to design an asymmetric MF for FLC based on this characteristic.

From Fig. 6, by using the same ΔD, the greatest positive $\Delta P/\Delta V$ (right side of MPP) is 4.75, whereas a negative reading of $\Delta P/\Delta V$ is -43.5 (left side of MPP). As a result, and according to the symmetric MFs of ΔD illustrated in Fig. 8, the magnitude of the greatest negative reading of $\Delta P/\Delta V$, NEB has to be 43.5/4.75 times the greatest positive reading, POB. Hence, the greatest positive and negative readings of $\Delta P/\Delta V$ are set as 4.75 and -43.5, respectively.

The asymmetric controller’s input using 5-MFs and 7-MFs is depicted in Fig. 9.

![Asymmetric controller’s input: (a) 5-MFs; (b) 7-MFs](image)

Figure 9. Asymmetric controller’s input: (a) 5-MFs; (b) 7-MFs

4. Results and Discussions

Under STC and over 30s, the simulation results using P&O, symmetric, and asymmetric fuzzy tracking algorithms are analyzed. The starting point of operation is selected on the MPP’s left side, assuming a starting duty of 0.9. The article analyzes and compares the results of various tracking algorithms using three metrics: steady state precision, energy output, and rise time t_r. The definitions of these metrics are outlined as:

\[
\text{Precision (\%)} = \frac{P_{av}}{P_{MPP}} \times 100 = \frac{\int_{t_f}^{t_r} V \cdot I \, dt}{\int_{t_f}^{t_r} P_{MPP} \, dt} \times 100
\]

\[
\text{Energy Output (Wh)} = \frac{\int_{0}^{t_f} P(t) \, dt}{3600}
\]

P_{av} represents the steady-state average power, P_{MPP} represents the MPP’s greatest power, $P(t)$ represents a current power at the moment t, t_f refers to a total simulation duration, and t_r represents the amount of time needed for the generated power to go up from 0.10 to 0.90 of its ultimate value [30]. The generated power from the PV module applying various MPPT algorithms is displayed in Fig. 10, employing 5-MFs. Fig. 11 depicts the output power using seven MFs.

![Generated power applying MPPT algorithms using 5-MFs at STC](image)

Figure 10. Generated power applying MPPT algorithms using 5-MFs at STC

Furthermore, Table 4 examines the effectiveness of the three MPPT algorithms. With regard to transient and steady-state performances, Fig. 10 and Fig. 11 illustrate that the symmetric fuzzy tracking algorithm surpasses the conventional
P&O algorithm. Furthermore, with 5-MFs and 7-MFs, the asymmetric fuzzy tracking algorithm outperforms both P&O and symmetric fuzzy controller.

![Figure 11. Generated power applying MPPT algorithms using 7-MFs at STC](image)

Table 4. Effectiveness of tracking algorithms

<table>
<thead>
<tr>
<th>Tracking Algorithms</th>
<th>Steady-State Power* (W)</th>
<th>Steady-State Precision (%)</th>
<th>Rise Time (s)</th>
<th>Energy Output** (Wh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P&O (ΔD=0.005)</td>
<td>149.64</td>
<td>99.77</td>
<td>8.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Symmetric (5-MFs)</td>
<td>149.87</td>
<td>99.91</td>
<td>6.4</td>
<td>1.05</td>
</tr>
<tr>
<td>Asymmetric (5-MFs)</td>
<td>149.94</td>
<td>99.97</td>
<td>1.1</td>
<td>1.223</td>
</tr>
<tr>
<td>Symmetric (7-MFs)</td>
<td>149.84</td>
<td>99.90</td>
<td>6.8</td>
<td>1.043</td>
</tr>
<tr>
<td>Asymmetric (7-MFs)</td>
<td>149.90</td>
<td>99.94</td>
<td>0.9</td>
<td>1.224</td>
</tr>
</tbody>
</table>

* MPP’s ideal power is 149.988 W.
** Ideal energy output is 1.25 Wh.

With a 5-MFs asymmetric fuzzy controller, the module can produce energy of 1.223 Wh by locating the MPP with t_r of 1.1 s and a precision of 99.97%. t_r, precision and energy output are 6.4 s, 99.91%, and 1.05 Wh, respectively, when utilizing a symmetric fuzzy controller, as illustrated in Fig. 10 and Table 4. In comparison, an asymmetric fuzzy controller of 7-MFs can achieve the MPP with 0.9 s and a precision of 99.94%. As a result, the PV module can produce 1.224 Wh of energy. While employing a symmetric fuzzy controller, t_r, precision, and energy output are 6.8 s, 99.9%, and 1.043 Wh, correspondingly, as illustrated in Fig. 11 and Table 4. Similarly, the asymmetric fuzzy controller of 7-MFs surpasses that type of 5-MFs concerning rise time and energy output. Where, with an asymmetric fuzzy controller of 5-MFs and 7-MFs, t_r is 1.1 s and 0.9 s, respectively. Table 4 illustrates that the maximum energies collected from the module utilizing an asymmetric fuzzy controller of 5-MFs and 7-MFs are 1.223 Wh and 1.224 Wh, respectively. Moreover, Table A-1 in Appendix A illustrates a comparative result with other relevant research presented in the literature.

5. Conclusions

This article proposes symmetric and asymmetric types of fuzzy tracking algorithms utilizing triangular 5-MFs and 7-MFs. Depending on three metrics, namely precision, rise time, and energy output, the effectiveness of tracking algorithms is assessed and compared to the standard P&O at STC, allowing the most efficient MPPT algorithm to be discovered. When compared to other MPPT methods, the asymmetric fuzzy tracking algorithm with 5-MFs and 7-MFs produces better results. It has the best precision, energy output, and lowest t_r, as illustrated in Fig. 10, Fig. 11, and Table 4. Further, with regard to rise time and energy output, the asymmetric fuzzy tracking algorithm of 7-MFs outperforms the tracking algorithm of 5-MFs. Table 4 shows that rise time and energy output have been enhanced by 18.2% and 0.08%, respectively. Overall, and irrespective of
the quantity of MFs, the most promising MPPT strategy for enhancing overall PV system performance is the asymmetric FLC.

Acknowledgments
The authors would like to express their appreciation to Mustansiriyah University (www.uomustansiriyah.edu.iq), Baghdad-Iraq for its assistance and academic advice in the writing of this work.

Conflict of Interest
The authors declare that there are no conflicts of interest regarding the publication of this article.

Author Contributions Statement
Authors: Ammar Al-Gizi and Abbas H. Miry proposed the research problem.
Authors: Ammar Al-Gizi and Hussein M. Hathal developed the theory and carried out the calculations.
Authors: Ammar Al-Gizi, and Aurelian Craciunescu verified the analytical methods and investigated the performance comparisons of symmetric and asymmetric fuzzy MPPT controllers’ algorithms and managed the results of this article.
All authors analyzed the findings and participated in the final article.

References

https://doi.org/10.1016/j.egyr.2018.04.003.

Appendix – A

In this section, Table A-1 summarizes a comparative result with other relevant research presented in the literature.

Table A-1. Comparative results with other relevant research

<table>
<thead>
<tr>
<th>Reference</th>
<th>FLC i/p Variable Selection</th>
<th>Type of FLC I/O MFs</th>
<th>Design of FLC i/p MF</th>
<th>Rise Time τr (s)</th>
<th>Output Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current article</td>
<td>ΔP/ΔV decrease computation complexity, avoid numerical inaccuracy, suitable for cost sensitive systems</td>
<td>5 and 7 triangular-MFs</td>
<td>Symmetric, Asymmetric (MF setting values are set based on the P-V curve under STC)</td>
<td>1.1 (Asymmetric 5-MFs) 0.9 (Asymmetric 7-MFs)</td>
<td>149.94 (Asymmetric 5-MFs) 149.90 (Asymmetric 7-MFs)</td>
</tr>
<tr>
<td>Ref. [25]</td>
<td>E=ΔP/ΔV, ΔE increase computation complexity, increase numerical inaccuracy</td>
<td>5 triangular-MFs only</td>
<td>Symmetric, MF setting values optimized by GA</td>
<td>4.16 (symmetric) 2.16 (optimized)</td>
<td>---</td>
</tr>
<tr>
<td>Ref. [23]</td>
<td>ΔP/ΔV decrease computation complexity, avoid numerical inaccuracy, suitable for cost sensitive systems</td>
<td>7 triangular-MFs only</td>
<td>MF setting values optimized by the chimp algorithm</td>
<td>2.1</td>
<td>---</td>
</tr>
<tr>
<td>Ref. [29]</td>
<td>Irradiance G, Temperature T Not suitable for cost sensitive systems</td>
<td>3 bell-MFs for Fuzzy Neural Network (FNN)</td>
<td>MF setting values optimized by FNN</td>
<td>---</td>
<td>141</td>
</tr>
</tbody>
</table>