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Abstract: In the past, artificial intelligence techniques 
were successfully adopted for obtaining optimal power 
flow in a power system. However, this optimality is limited 
to the economic aspects of the system's operating 
conditions. The other aspects of the operation, like 
security conditions, have been given limited attention. 
Hence, this paper presents an attempt to dispatch the 
power generation in electrical power systems optimally by 
taking into consideration both economic and secure 
operations, so that modern power systems can operate 
reliably and effectively. Security-constrained optimal 
power flow is addressed in this paper as a multi-objective 
optimization problem, consisting of four objective 
functions: minimizing power generation costs; minimizing 
voltage deviation; minimizing power losses; and 
alleviating the overloading on transmission lines. A 
detailed steady-state generator model is adopted in the 
present formulation. A metaheuristic optimization 
technique, namely, differential evolution, is used to 
obtain the security constraint optimal power dispatch. 
Additionally, the operating states of a power system have 
been addressed in this paper. The identification of the 
operating states is vital to the assessment of the security 
of the EPS. Improvements and appropriate security 
assessments have been made in some cases. The 
proposed algorithm is applied to a typical power system 
with different operating strategies. The obtained results 
are compared to those obtained from previous studies in 
the literature to demonstrate the suggested method's 
validity and effectiveness. 

Keywords: Multi-objective optimization; power system 

security; differential evolution; economic dispatch   

 

1. Introduction 

Optimal Power Flow (OPF) is a vital analysis in 

power system operation. The primary goal of an 

OPF study is to dispatch power generation in an 

economically efficient manner by making 

optimal modifications to control variables in 

electrical power systems EPS while meeting 

various equality (EqC) and inequality (IqC) 

constraints.  

A lot of research has been carried out to tackle 

the OPF problem effectively by adopting 

traditional optimization techniques (successive 

linear programming as demonstrated in [1], 

sequential programming as in [2], and the 

Newton method as given in [3]). However, the 

above-mentioned approaches face difficulties 

when applied for continuous-discrete, non-linear 

functions in addition to the inherent limitations 

that come with account operations OPF, such as 

poor convergence characteristics, continuity, and 

trapping in the local minimum. A review of the 

OPF based on non-linear and quadratic 

programming approaches is given in [4]. 

Artificial optimization techniques have been 

adopted in other attempts (bacteria foraging, as 

in [5]; particle swarm optimization, as 

Original Research 

https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd
https://www.inderscienceonline.com/doi/abs/10.1504/IJAISC.2008.021264
https://orcid.org/0000-0001-8002-7913
https://orcid.org/0000-0002-7783-2927
https://orcid.org/0000-0002-7783-2927


0917-ISSN 2520         )      0232 November, 06, No. 27Development (Vol.  Journal of Engineering and Sustainable 

726 
 

demonstrated in [6]). Mithun et al. [7] provide a 

review and survey of the most common 

optimization solutions for dealing with the OPF 

problem.  

The economical operation of a power system in a 

normal state is maintained efficiently by using 

traditional OPF. Unfortunately, this optimal 

solution may influence the violation of the 

operation limits under some contingency 

conditions. These violations may include power 

flow limits in the lines and bus voltage violations. 

For this purpose, the security-constrained 

optimal power flow (SCOPF) plays an important 

role in maintaining a secure and economic 

operation of the system. In some cases, the 

SCOPF can be analyzed as a multi-objective 

function (MOF) in the normal state, in addition 

to the pre-contingency and post-contingency 

constraints, as illustrated in [8, 9].  

Some of the previous studies dealt with the 

subject of SCOPF. Galvani et al. [10] use the 

Multi-Objective Genetic Algorithm to determine 

the exact relationship between operational cost 

and security constraints. Kucuktezcan et al. [11] 

propose an approach for optimizing preventative 

and corrective control operations to increase the 

dynamic security of a power system against 

transient instabilities. Ayan et al. in [12] and 

Saberi et al. in [13] present an approach for 

transient stability SCOPF solutions using a 

chaotic artificial bee colony algorithm based on 

chaos theory. while this study concentrates on 

steady-state security. The optimal coordination 

between preventive and corrective control was 

analyzed by Xu et al. [14]. Their analysis was 

based on utilizing a preventive/corrective 

SCOPF model and an artificial intelligence 

technique. Velloso et al. [15] gave a 

decomposition strategy that combines a column-

and-constraint generation technique with 

numerical approaches to find accurate SCOPF 

issue solutions. As a result, heuristic search 

algorithms are a good fit for addressing the 

SCOPF problem and may be adapted for use in a 

contingency situation to improve security, as 

demonstrated in [16].  

In this paper, an artificial intelligence technique, 

namely the differential evolution (DE) algorithm 

was used to conduct the SCOPF study. This 

algorithm was reported to be powerful in OPF 

studies, as illustrated in [17–20], by considering 

the single and multi-objective (S-MOF) 

optimization techniques, minimizing the total 

fuel costs (TFC) of the generation, active power 

transmission losses (APTLs), in addition to 

contingency constraints. The determinants that 

have been regarded as security limitations in this 

study include voltage deviations (VD) and 

overloaded transmission lines (OLTL).  

This paper also addresses the operating states of 

a power system. These states are vital in the 

optimization process and the assessment of a 

secure operation of the power system.  

In the normal state of operation, S-MOF are 

applied to obtain an optimized power flow in the 

operating system. In addition, a contingency 

analysis (CA) was employed to recognize the 

critical contingencies. 

In the alert state, SCOPF is utilized to relieve the 

congestion of heavily loaded transmission lines 

and reduce the voltage deviations on the nodes to 

recover the system to a normal state before it 

goes into an emergency state. The overload on 

transmission lines is alleviated by minimizing SI 

through adjusting generator scheduling to 

redirect the power flows in the system. A suitable 

change in the generating schedule can cause a 

change in the power flows, allowing the 

remaining transmission lines to take the 

increased load while maintaining the limit.  
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This method was tested on the standard IEEE 30-

bus system in a variety of scenarios. The 

simulation results are analyzed and show that the 

suggested method is effective when compared to 

other recently developed heuristic algorithms 

that have been discussed in the literature . 

The rest of the paper is structured as follows: 

Section 2 states the problem formulation of a 

conventional optimal power flow and the 

objective function (OF) to be optimized. It also 

gives the structure of the optimization problem. 

The procedural steps for the proposed algorithm 

based on the DE technique are given in Section 

3. Section 4 describes the results and discussions. 

Section 5 states the conclusions. 

2. Formulation of the Optimal Power Flow 

Problem 

In this study, the following four OFs are looked 

at as both S-MOF. These goals represent major 

interests in planning and operation for EPS [21].  

2.1. Minimizing the Total Fuel Cost (TFC) 

The actual power output of the generators, 𝑃𝐺 , 

can be used to calculate the TFC for generators. 

The cost curves of generators are represented by 

quadratic functions, and TFC in dollars per hour 

($/h) is represented as [21]: 

𝑂𝐹1 =  ∑(𝑎𝑖 + 𝑏𝑖𝑃𝐺𝑖
+ 𝑐𝑖𝑃𝐺𝑖

2)

𝑁𝐺

𝑖=1

 $/ℎ         (1)    

𝑖 = 1,2,3 … , 𝑁𝐺  

Where 𝑎𝑖 , 𝑏𝑖 and 𝑐𝑖 are the cost factors of the ith 

generating unit; 𝑃𝐺𝑖
 is the actual active power 

produced by the  ith generating unit in MW;  𝑁𝐺  

is the total number of generators. 

2.2. Active Power Transmission Losses (APTLs) 

Minimization 

The APTLs can be minimized through the 

adjustment of the appropriate control parameters. 

For this purpose, the objective function is 

described as follows [21]: 

𝑂𝐹2 =  ∑ 𝐺𝑖𝑗  (|𝑉𝑖
2

 
| + |𝑉𝑗

2| −
𝑁𝑇𝐿 
𝑖=1

2|𝑉𝑖𝑉𝑗| 𝑐𝑜𝑠 𝛿𝑖𝑗)  𝑀𝑊        𝑖 = 1, … , 𝑁𝑇𝐿           (2)  

Where 𝐺𝑖𝑗 is a conductance of line connecting 

bus i to bus j,  𝛿𝑖𝑗 is a voltage angle difference, 

𝑉𝑖 & 𝑉𝑗 are the voltage magnitude, and 𝑁𝑇𝐿 is the  

total is the total number of lines in the system  

2.3. Minimization of the Voltage Deviation (VD) 

Voltage magnitude constancy is one of the 

important security and quality indicators. The 

voltage magnitude should be maintained within 

permissible limits. To this end, the deviation in 

voltage is used as an objective function [21]:  

𝑂𝐹3 = ∑|𝑉𝑘 
− 𝑉𝑘

𝑟𝑒𝑓|
2

𝑁𝑃𝑄

𝑘=1

  𝑘 = 1,2, … , 𝑁𝑃𝑄    (3) 

Where, 𝑉𝑘 is voltage load bus,  𝑁𝑃𝑄 is the number 

of load buses, and 𝑉𝑘
𝑟𝑒𝑓 is the specified reference 

value of the voltage magnitude at load bus 𝑘, 

which is typically set to 1.0 p.u. 

2.4. Severity Index (SI) 

SI quantifies the severity of OLTL, which 

describes the power system's post-contingency 

state as follows [24].   

𝑂𝐹4 = ∑(
𝑆𝑙

𝑆𝑙
𝑚𝑎𝑥)2𝑚

𝑁𝑇𝐿

𝑙∈𝐿°

                                         (4) 

Where 𝑆𝑙 is MVA power flow in transmission 

lines, 𝑆𝑙
𝑚𝑎𝑥 is a line rating (MVA), 𝐿°set of 

overloaded transmission lines, and m is an 

integer exponent fixed at 1.  

By adjusting generator scheduling, the SI is 

reduced, which is calculated by conducting a 

Newton-Raphson power flow study. Thus, it is 
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possible to obtain the least amount of overload in 

transmission lines. The severity index's higher 

value indicates that the contingency is more 

insecure. 

2.5. System Operational Constraints 

The following transmission system constraints 

are considered [20]:   

 

2.5.1. Equality Constraints (EQC) 

The following are the balanced power flow 

equations that the equality constraints represent: 

∑ 𝑃𝐺𝑖

𝑁𝐺

𝑖=1

= 𝑃𝐿𝑜𝑎𝑑𝑖
+ 𝑃𝐿𝑜𝑠𝑠         𝑖 =  1, … , 𝑁𝐵    (5) 

𝑃𝑖 = 𝑃𝐺𝑖
− 𝑃𝐿𝑜𝑎𝑑𝑖

= 

∑|𝑉𝑖 
||𝑉𝑗||𝑌𝑖𝑗| 𝑐𝑜𝑠(𝜃𝑖𝑗 − 𝛿𝑖𝑗)  𝑖 = 1,2. . , 𝑁𝐵

𝑁𝐵

𝑗=1

(6) 

𝑄𝑖 = 𝑄𝐺𝑖
− 𝑄𝐿𝑜𝑎𝑑𝑖

= 

− ∑|𝑉𝑖 ||𝑉𝑗||𝑌𝑖𝑗| 𝑠𝑖𝑛(−𝜃𝑖𝑗 − 𝛿𝑖𝑗)  

𝑁𝐵

𝑗=1

𝑖 = 1, . . , 𝑁𝐵   (7) 

Where 𝑃𝑖   is the net active power injection. 𝑄𝑖  is 

the net reactive power injection, 𝑃𝐺𝑖
 is the 

produced active power at bus 𝑖 , 𝑄𝐺𝑖
is the 

produced reactive power at bus 𝑖 , 𝑄𝐿𝑜𝑎𝑑𝑖
  and  

𝑃𝐿𝑜𝑎𝑑𝑖
stand for the reactive power and active 

power demand at a bus 𝑖 , 𝑃𝐿𝑜𝑠𝑠 is the active 

power losses, 𝑉 is the voltage magnitude, 𝑁𝐺  the 

total number of generator buses, 𝑁𝐵 represents 

the total number of nodes, 𝑌𝑖𝑗 is the Ybus (mho) 

admittance matrix, and 𝑖, 𝑗 are the from and to 

buses, 𝜃𝑖𝑗  The phase angle of Ybus' 𝑌𝑖𝑗 element 

is 𝑖𝑗 (radian), while 𝛿𝑖𝑗 The voltage angle 

difference between buses 𝑖 and 𝑗 is denoted as 𝑖𝑗 

(radian). 

2.5.2. Inequality Constraints (IQC) 

There are two types of IQC in the system: 

2.5.2.1. The inequality constraints on control 

variables 

The following are the minimum and maximum 

IQC values for control variables: 

• Generation constraints for active power 

output 𝑃𝐺: 

𝑃𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑖 ≤ 𝑃𝐺𝑖

𝑚𝑎𝑥    𝑖 = 1,2,3 … , 𝑁𝐺      (8)  

• Generation constraints for bus voltages 

𝑉𝐺: 

𝑉𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐺𝑖 ≤ 𝑉𝐺𝑖

𝑚𝑎𝑥    𝑖 = 1,2,3 … , 𝑁𝐺      (9)  

𝑁𝐺  refers to the number of generation buses. 

• Transformer tapping constraints 𝑇𝑇𝑖: 

𝑇𝑇𝑚𝑖𝑛 ≤ 𝑇𝑇𝑖 ≤ 𝑇𝑇𝑖
𝑚𝑎𝑥   𝑖 = 1,2,3 … , 𝑁𝑇    (10) 

𝑁𝑇 refers to the number of transformers. 

• The reactive power VAR injected from a 

particular VAR source 𝑄𝑐𝑖: 

𝑄𝑐𝑖
𝑚𝑖𝑛 ≤ 𝑄𝑐𝑖 ≤ 𝑄𝑐𝑖

𝑚𝑎𝑥   𝑖 = 1,2, … , 𝑁𝑐      (11)  

𝑁𝑐 refers to the number of shunt compensators. 

 

2.5.2.2 The inequality constraints on state 

variables. 

The following are the minimum and maximum 

IQC values for state variables: 

• The maximum and minimum reactive 

power output that can be produced 𝑃𝐺: 

𝑄𝐺𝑖
𝑚𝑖𝑛 ≤ 𝑄𝐺𝑖 ≤ 𝑄𝐺𝑖

𝑚𝑎𝑥   𝑖 = 1,2, … , 𝑁𝐺     (12)  

• The permissible voltage magnitude at 

load buses: 

𝑉𝐿𝑖
𝑚𝑖𝑛 ≤ 𝑉𝐿𝑖 ≤ 𝑉𝐿𝑖

𝑚𝑎𝑥   𝑖 = 1,2,3 … , 𝑁𝑃𝑄    (13)  

𝑁𝑃𝑄 refers to the number of load buses. 
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• The maximum and minimum active 

power output that can be produced at the 

Slack bus 𝑃𝐺𝑠: 

𝑃𝐺𝑠
𝑚𝑖𝑛 ≤ 𝑃𝐺𝑠 ≤ 𝑃𝐺𝑠

𝑚𝑎𝑥   𝑖 = 1,2, … , 𝑁𝐺𝑠    (14)  

𝑁𝐺𝑠 refers to the number of slack bus generators. 

In addition to EQC and IQC, transmission line 

overloading should not exceed the allowable 

limit for the system to be healthy, which is as 

follows: 

• Transmission line power capacity 

constraints: 

𝑆𝐿𝑖 ≤ 𝑆𝐿𝑖
𝑚𝑎𝑥   𝑖 = 1,2,3 … , 𝑁𝑇𝐿                      (15)  

2.6. Mathematical Structure of The Optimization 

Process 

The security constraint optimal power flow 

problem is treated mathematically as a single and 

multi-objective function subjected to a non-linear 

constraint as shown below: 

2.6.1 Single objective function [20]  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [𝐶𝐹𝑖(𝑥, 𝑢)   𝑖 = 1, … , 𝑁𝑜𝑏𝑗]          (16) 

Subject to: 

𝑔1𝑗 (𝑥, 𝑢) = 0   𝑗 = 1,2,3 … , 𝑛                      (17) 

𝑔2𝑘(𝑥, 𝑢) = 0   𝑘 = 1,2,3 … , 𝑚                     (18) 

Where: The nonlinear EQC and IQC are 

represented by 𝑔1 and 𝑔2, respectively, while 𝐶𝐹 

represents the objective function. 

The vector 𝑥 consists of the following state 

variables: 

1. Active power generated from the slack 

bus 𝑃𝐺𝑠. 

2. Load buses' voltage 𝑉𝐿. 

3. Reactive power output for generators 𝑄𝐺. 

4. Bus voltage angles 𝜃. 

5. Transmission line loading 𝑆𝐿𝑖. 

Hence, 𝑥 may be written as: 

𝑥𝑇 = [
𝑃𝐺1, 𝑉𝐿1 … 𝑉𝐿𝑁𝐿

,  𝑄𝐺1 …  𝑄𝐺𝑁𝐺
 ,

𝜃1 … 𝜃𝑁𝐵
, 𝑆𝐿1 … 𝑆𝐿𝑁𝐿 

]           (19) 

The vector 𝑢 contains control variables such as: 

1. Bus voltages for generators 𝑉𝐺. 

2. Real power output for generators 𝑃𝐺  at 

PV buses except at the slack bus 𝑃𝐺𝑠. 

3. Transformer tap ratio 𝑇. 

4. Reactive power compensator 𝑄𝑐 

Hence, 𝑢 may be written as: 

𝑢𝑇 = [
𝑃𝐺2 … 𝑃𝐺𝑁𝐺, 𝑉𝐺1 … 𝑉𝐺𝑁𝐺

,  𝑄𝑐1 …  𝑄𝐶𝑁𝐶
 , 𝑇1 … 𝑇𝑁𝑇 

]                    (20) 

2.6.2. Multi-Objective Function (MOF) 

The importance of considering several objectives 

stems from the fact that the mathematical model 

of the optimization process becomes more 

realistic. The power system runs efficiently under 

different constraints. This may be applied in the 

normal and alert state of the power system's 

actual operation.  

The MOF may be realized as follows [25]:  

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒,  𝐽𝐹𝑖(𝑥, 𝑢) = ∑ 𝑊𝑖𝐶𝐹𝑖(𝑥, 𝑢)  

𝑁

𝑖=1

 

= 𝑊1𝐶𝐹1+ . . . , +𝑊𝑖𝐶𝐹𝑖      𝑖 = 1, … , 𝑁𝑜𝑏𝑗    (21) 

Subject to the nonlinear equality and inequality 

constraints. 

Where 𝐽𝐹 denotes a MOF with 𝑖 functions, 𝐶𝐹 

represents a single objective function, and 𝑊 

represents a scalar weight multiplied by each 

objective. The range of 𝑊 is from (0-1) with a 

total summation equal to one.  

The MOF problem was resolved in this paper by 

using the weighted sum of the OFs. For the case 

of conflicting OFs, the SCOPF may effectively 

solved as a single objective function to manage 
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such adversary objectives at the same time. In 

general, MOF optimization can be solved with or 

without giving objective preferences. According 

to the author's conclusions in [25], the author 

found through the research [25] that the acquired 

solution has no substantial compromising results 

for a variety of combinations of weight values 

considered. Therefore, all objectives are 

weighted equally without prioritizing any of the 

objectives in the minimization process.  

2.6.3. Bounds scaling 

Since the control variables to be optimized vary 

in a wide range. For example, TFC can vary 

between 900 $/h and 700 $/h, while bus voltages 

can vary between 0.95 V and 1.05 V. It is 

important to standardize these ranges between 0 

and 1 by a procedure called boundary scaling or 

normalization. This normalization can be 

achieved by using the following equation [27]:  

𝑂𝐹𝑖
𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =

𝑂𝐹𝑖 − 𝑂𝐹𝑖𝑚𝑖𝑛

𝑂𝐹𝑖𝑚𝑎𝑥
− 𝑂𝐹𝑖𝑚𝑖𝑛

              (22) 

2.7. Power System Security 

The elements of the power system must operate 

within the security limits defined for them in 

order to maintain the secure operation of the 

power system. These elements are protected and 

switched out when these limits are violated. A 

secure operation of an EPS requires the system to 

not only run within a specified limit in a steady 

state but also be capable of surviving 

contingencies. 

2.8. Contingency Analysis (CA) 

CA is one of the many functions included in 

energy management systems (EMS) used to 

control EPS operation. Contingency analysis is a 

tool that indicates the impact of system elements 

outage. This outage may be due to a particular 

disturbance that occurs in the power system, its 

evaluation, and prioritization. Contingency 

analysis can also be used to assess the effect of 

N-1 contingencies, evaluate the performance 

indices of the system, and compare results to 

operating limits for each EPS element. 

2.9. Contingency Ranking (CR) 

Since only a few of the outages might alter the 

normal operation of the system. The CR is a short 

list of those contingencies that are likely to 

overload some transmission lines or violate the 

permissible voltage limit. This contingency 

ranking is accomplished by computing the 

severity index SI. 

2.10. Operating States of a Power System 

Identification of the power system operating 

states is important in the optimization and 

evaluation of the security of the system. The 

system might operate in one of the five states 

shown in Fig. 1 [26].  

In the normal state, the system running with no 

constraints is violated. All variables are within 

the allowable limits. In this case, S-MOF can be 

treated as minimizing TFC, APTLs, VD, and 

OLTL. additionally, the critical contingencies 

can be identified by using CA. Another important 

state is the alert state. In this state, the system 

state variables are within the acceptable ranges 

and all operating constraints are fulfilled. 

However, the system becomes weaker to a level 

that any emergency renders the remaining 

elements running out of limits, putting the system 

in a contingency state. In this case, the focus is 

on improving security by minimizing the SI and 

VD as OFs, to alleviate the OLTL and reduce the 

VD on the buses and did not give the other 

objectives more priority (minimize TFC costs 

and APTLs). This is because the alert state is 

short, and the operator's priority is to return the 

system to a normal state before it goes into an 

emergency state. 
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3. Proposed Approach 

To solve the formulated single and multi-

objective SCOPF problems, the approach 

suggested in this study employs a technique 

known as "differential evolution" (DE) [17]. The 

search for an optimum solution in an EPS faces 

difficulties due to the large size of the EPS, 

complexity, and wide geographical dispersion. 

The problem is exacerbated by the existence of 

many nonlinear equality and inequality 

constraints [27]. Storn and Price (1995) 

presented DE, a new evolution-inspired 

optimization approach that is simple but 

powerful for solving large optimization problems 

[17]. The DE algorithm can manage the 

following problems: non-linear, non-

differentiable, non-convex, non-continuous, and 

multi-objective functions [19]. The search in this 

algorithm is based on a stochastic technique that 

is capable of achieving optimization globally 

[20].   

The DE algorithm's stages are as follows: 

𝑋 = [𝑥1, 𝑥2, … … , 𝑥𝐷], which represents a 

vector of control variables.  

𝑃 = [𝑋1, 𝑋2, … … , 𝑋𝑁𝑃], which represents a 

population-searching space.  

NP: the size of a population; D: Dimension of 

problem, 𝐷 represents the number of control 

variables; 𝐺: generation numbers. 

 

The control parameters of the algorithms are:  

• 𝐹 : The mutation constant. 

• 𝐶𝑅: The crossover constant. 

• 𝑁𝑃: The population size. 

 

3.1. Structure of the DE Algorithm  

The Differential algorithm consists of the 

following main steps as follows [20]:   

3.1.1. Initialization: 

In this step, the initialization of a population is 

realized. The parameter vectors are created based 

on a stochastic process by selecting elements 

inside the search space of the problem randomly 

to transform a group of control variables into the 

vector of target variables 𝑋. This is achieved by 

using the equation below Within its minimum 

and maximum limits: 

𝑋𝑖 = 𝑋𝑖
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(𝑋𝑖

𝑚𝑎𝑥 − 𝑋𝑖
𝑚𝑖𝑛)        (23)           

Where: 𝑖; 𝑟𝑎𝑛𝑑 is an integer selected randomly 

between 0 and 1,  𝑋𝑖 is a target vector, while 

𝑋𝑖
𝑚𝑖𝑛 and  𝑋𝑖

𝑚𝑎𝑥 are the minimum and 

maximum limits of the control. 
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Figure 1. Classification of power system 

operating states 



0917-ISSN 2520         )      0232 November, 06, No. 27Development (Vol.  Journal of Engineering and Sustainable 

732 
 

 

3.1.2. Mutation 

The second step in the DE algorithm is mutation. 

This is simply a recombination of the members 

of the population by using a mutation operator. 

The mutation process led to the creation of a 

modified version of each individual. This can be 

implemented after normalizing the population 

randomly by collecting a third vector consisting 

of the difference between two vectors from the 

same population. This vector is referred to as a 

mutant vector. As a result, the differential 

mutation is mathematically described as follows: 

𝑣𝑖 = 𝑋𝑝1 + 𝐹𝑆(𝑋𝑝2 − 𝑋𝑝3)                             (24) 

Where: 𝑣 is 𝑎 mutant vector; 𝑝1 ≠ p2 ≠ p3 are 

randomly selected numbers from the population 

search; 𝑋𝑝1, 𝑋p2 𝑎𝑛𝑑 𝑋𝑝3are vectors picked 

randomly in the current generation's population; 

𝐹𝑆 is the scaling factor, which takes values from 

0 to 1.  

3.1.3. Crossover 

The function of this step is to enhance the 

diversity of each solution vector. This can be 

accomplished by generating a trail vector from 

the target and mutated vectors. Depending on the 

value of a random variable. If this value is 

smaller than the crossover constant, a mutant 

vector variable is considered; otherwise, the 

target vector variable is considered. This is 

realized through the comparison of the crossover 

constant and with a random number in the range 

of 0 to 1. as illustrated in Equation (25). 

𝑢𝐺
𝑡𝑟𝑎𝑖𝑙 = {

 𝑣𝐺
𝑚𝑢𝑡𝑎𝑡𝑒     𝑖𝑓 (𝑟𝑎𝑛𝑑 ≤  𝐶𝑅)

𝑥𝐺
𝑡𝑎𝑟𝑔𝑒𝑡  … … … . 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    (25) 

𝑢𝑡𝑟𝑎𝑖𝑙  is the trailing vector of the control variable; 

𝑣𝑚𝑢𝑡𝑎𝑡𝑒  is the mutant vector of the control 

variable; 𝑥𝑡𝑎𝑟𝑔𝑒𝑡 is the target vector of the control 

variable; 𝐶𝑅 is the crossover constant. 

3.1.4. Selection 

This step is aimed at keeping the best-selected 

solutions in the population throughout the 

optimization process. To this end, the trial vector 

is a candidate to be included in the population if 

it meets the quality selection criterion. It can 

replace the previous one if it is found to provide 

the best answer; otherwise, the candidate retains 

the previous version, according to the following 

equation (26). 

𝑥𝑖
𝐺+1 = 

{
𝑢𝐺

𝑡𝑟𝑎𝑖𝑙−𝑖
 𝑖𝑓 …  𝑓(𝑢𝐺

𝑡𝑟𝑎𝑖𝑙−𝑖
≤ 𝑓𝑥𝐺

𝑡𝑎𝑟𝑔𝑒𝑡−𝑖
)

𝑥𝐺
𝑡𝑎𝑟𝑔𝑒𝑡−𝑖

… … … 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (26) 

Where 𝑓(𝑥) stands for the value of the fitness 

function of the vector 𝑥, 𝑥𝑖 is the ith control 

variables, 𝑖 ranges from 1 to the population size, 

while G is the generation number.  

The algorithm does the mutation, crossover, and 

selection steps repeatedly for the control 

variables in the target vector and the trail vector, 

for the subsequent generation till the end of the 

total number of iterations. Fig.2 shows a 

flowchart of the DE process. 

Initialization 

Mutation 

Crossover 

Selection 

𝑥𝐺
𝑡𝑎𝑟𝑔𝑒𝑡 

 𝑣𝐺
𝑚𝑢𝑡𝑎𝑡𝑒  

𝑢𝐺
𝑡𝑟𝑎𝑖𝑙  

Figure 2. Differential Evolution Process 
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3.2. Implementation 

In this work, the recommended DE approach was 

implemented using the MATLAB application. 

"Table 1" displays the algorithm's control 

settings. 

Table 1. Differential Evolution parameters 

𝐹 0.8 

𝐶𝑅 0.5 

𝑁𝑃 10 

𝐺𝑚𝑎𝑥  50 

 

4. Simulation Results and Discussion 

In this study, the DE algorithm is used to solve 

the SCOPF problem, and it was tested on the 

standard IEEE 30-bus system, whose data and 

operation constraints are given in Ref. [28,29]. A 

single-line diagram is shown in "Fig. 3" with the 

main characteristics specified in "Table 2." 

 

Figure 3.  Single line diagram of IEEE 30-bus test 

system. 

Table 2. Characteristics specified for  
standard IEEE 30-bus system 

Test system [28,29] IEEE 30-bus network 

Number of buses 30 

Number of lines 41 

Number of generators 6 

Number of transformers 4 (90–110% ± 1.25%) 

off-nominal tap ratio at 

bus-to-bus lines 

6-10, 4-12,6-9, 28- 27 

Reactive power 

compensator on the buses 

10, 12, 15, 17, 20, 21, 23, 

24, 29 for (0-5) MVAR 

Number of loads 21 

Control variable 24 

Total loads 283.40 + j126.20 MVA 

Line load flow losses 5.849 + j 30.386 MVA 

voltage PV bus limits 0.95-1.1 (pu) 

voltage PQ bus limits 0.95-1.05 (pu) 

 

A code is written in MATLAB environment to 

simulate the proposed algorithm. The execution 

is carried out on a laptop with an Intel (R) Core 

(TM) i7-6700QM CPU running at 2.60 GHz (8 

CPUs), 8.192 GB of RAM, and a 64-bit operating 

system. The Newton-Raphson technique is used 

to compute the power flow in the IEEE-30 

system. In this work, the (SCOPF) will be used 

to process S-MOF optimization techniques in the 

IEEE-30 system, as well as contingency 

limitations, in order to minimize TFC, APTLs, 

and VD as well as OLTL. The following detailed 

cases will be used to present this study: 

4.1. Case study 1: 

In this case, the DE algorithm optimizes OF1-

OF3 consecutively as a single objective function, 

which may be used in the normal state of system 

operation. 

“Table 3” illustrates the optimal OFs for TFC, 

APTLs, and VD. The convergence of the OFs is 

depicted in "Fig. 4(a)–4(c) ". The validity of the 

results was confirmed by comparing them with 

other results in previous studies, as illustrated in 

"Table 4". The proposed algorithm is effective in 

reducing the TFC, APTLs, and VD in 

comparison with previous studies. 
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4.2. Case study 2: 

Case 2: In this case, 𝑂𝐹1–𝑂𝐹3 are optimized as a 

MOF by the DE algorithm. All functions are 

given equal weight. The results of three OFs 

optimizations with equal weight values for TFC, 

APTLs, and VD are shown in “Table 3”. "Fig. 5" 

illustrates the convergence characteristics for 

determining the optimal value.  

Despite improved TFCs, APTLs, and VDs in this 

case, overload is observed in some iterations on 

the TL6-TL8 transmission line while observing 

the security constraint for the OLTL. where, in 

this test, the TL6-TL8 is loaded with 44.8 MW, 

exceeding its maximum capacity of 32 MW. 

Because of the conflicting goals of the different 

OFs, the total cost in this case is (805.21 $/h), 

which is higher than the total cost in Case 1.  

4.3 Case Study 3:  

In this case, in addition to optimizing the 𝑂𝐹1–

𝑂𝐹3 as a MOF, the security optimization was 

applied to minimize the severity index 𝑂𝐹4 and 

then minimize overloading in transmission lines, 

which appears at some iterations during the 

optimizing process. All the four OFs are given an 

equal weight of (0.25). “Table 3” shows the 

results of four OFs optimizations for TFC, 

APTLs, VD, and OLTL. The convergence 

characteristics for determining the optimal value 

for it are shown in "Fig. 6".  

4.4. Case study 4: 

The (N-1) CA is used in normal operation in 

order to identify the critical contingencies. The 

line outage was considered in this work to be a 

critical contingency that caused the other 

elements to be overloaded. "Table 5" shortlists 

the critical contingencies as well as the 

generation initial value determined in this case 

and the generator output before rescheduling. 

The Rnk and power flow of the overloaded lines, 

as well as the SI, are shown in "Table 6". The 

results have been validated by comparing the 

results with previous studies [24] which 

identified four critical lines that cause 

overloading in the other lines when one is out. 

Unlike Ref [24], in this work, by performing a 

contingency analysis, seven critical lines were 

identified. Its effects on other parts of the system 

have been verified.   

 

4(a) TFC convergence 

 

4(b) VD convergence 
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4(c) APTLs convergence 

Figure 4(a)-4(c). Objective function convergence for 

Case 1 

 

Figure 5. Convergence Characteristics for case.2 

Figure 6. Convergence Characteristics for case.3 

 

4.5 Case Study 5:  

In this case, OLTL is alleviated by generator 

rescheduling using the suggested DE approach in 

order to achieve a minimal SI value that is near 

to or equal to zero. in addition to minimizing 

voltage violations by making the best 

modifications to the control variables for the 

system. "Table 7" illustrates the best control 

settings for all major contingencies, as well as the 

minimal SI and VD, in addition to the TFC and 

APTLs results. The results produced with the 

suggested approach outperform those obtained in 

Ref [24]. It is clear from the reduction in total 

TFC and taking VD into account. 

Following generator rescheduling during the   

TL1-TL3 outage, the new line flows achieved for 

TL1-TL2, and TL4-TL6 are less than the 

acceptable limit, which alleviates the overloaded 

lines and thus the obtained SI of zero. Similarly,  

for other element outages, the loading for 

elements after rescheduling is less than the 

allowable limit, demonstrating that the 

overloaded lines are eliminated. 
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Table 3. Simulation findings based on the DE algorithm 

Control 

variable 

Limits Initial 

value 

Case-1 
Case-2 Case-3 

Max. Min. TFC APTLs VD 

VG1 (pu) 1.10 0.95 1.05 1.0893 1.085 1.0151 1.074 1.077 

VG2 (pu) 1.10 0.95 1.04 1.0780 1.086 0.983 1.02 1.087 

VG5 (pu) 1.10 0.95 1.01 1.0383 1.059 1.031 0.999 1.021 

VG8 (pu) 1.10 0.95 1.01 1.0631 1.046 1.002 1.017 1.046 

VG11 (pu) 1.10 0.95 1.05 1.0597 1.037 1.076 1.094 1.028 

VG13 (pu) 1.10 0.95 1.05 1.0703 1.078 1.059 1.04 1.029 

PG1 (MW) 200 50 0 173.768 65.955 166.79 148.72 137.68 

PG2 (MW) 80 20 80 50.833 77.09 48.823 48.668 46.178 

PG5 (MW) 50 15 50 21.737 49.176 21.079 23.151 42.101 

PG8 (MW) 35 10 20 20.538 33.724 29.162 29.884 34.266 

PG11 (MW) 30 10 20 13.106 28.009 15.502 17.16 11.317 

PG13 (MW) 40 12 20 12.363 33.199 12.998 24.373 18.864 

Qc 10 (MVAR) 5 0 0 2.705 2.295 3.243 3.869 1.837 

Qc 12 (MVAR) 5 0 0 2.303 1.67 2.69 4.08 4.883 

Qc 15 (MVAR) 5 0 0 2.058 2.304 4.755 0.882 0.788 

Qc 17 (MVAR) 5 0 0 1.478 0.786 1.758 2.978 4.719 

Qc 20 (MVAR) 5 0 0 2.689 2.03 4.185 1.869 2.216 

Qc 21 (MVAR) 5 0 0 0.675 2.395 4.195 2.052 0.444 

Qc 23 (MVAR) 5 0 0 2.911 3.94 3.8 3.697 3.555 

Qc 24 (MVAR) 5 0 0 0.564 1.792 3.801 4.206 4.56 

Qc 29 (MVAR) 5 0 0 3.238 2.206 3.288 1.753 2.687 

T 6-9 1.10 0.9 1.078 0.968 1.003 1.041 1.032 1.067 

T 6-10 1.10 0.9 1.069 1.031 0.984 0.966 0.976 0.964 

T 4-12 1.10 0.9 1.032 1.080 1.042 1.08 0.963 0.964 

T 27-28 1.10 0.9 1.068 1.026 1.006 0.958 0.999 0.984 

TFC ($/h) 902.02 799.06 937.058 810.1 805.21 810.1 

APTLs (MW) 5.849 8.927 3.41 10.942 5.719 10.942 

VD (pu) 0.079 0.0234 0.0237 0.0012 0.003 0.0012 

RPTLs (MVAR) 30.134 39.16 18.797 51.266 26.666 51.266 

SI 0.157 ---- ---- ---- ---- 0.134 

Table 4. Comparison of the objectives with other optimization methods 

Optimization Techniques TFC APTLs VD Iterations Ref 

Initial Value -- 902.02 5.849 0.079 ----- ----- 

Differential Evolution DE 799.06 3.41 0.0012 50 proposed method 

Ant Colony Optimization ACO 801.4 3.417 0.119 50 [22] 

Flower Pollination Algorithm FPA 800.161 3.115 0.1845 500 [21] 

Particle Swarm Optimization PSO 799.704 3.026 0.1506 500 [21] 

Artificial Bee Colony ABC 799.3862 2.8864 0.1017 100 [23] 

Moth-Flame Optimizer MFO 799.072 2.853 0.1065 500 [21] 



0917-ISSN 2520         )      0232 November, 06, No. 27Development (Vol.  Journal of Engineering and Sustainable 

737 
 

 

 

Table 5. Generators Output (MW) for IEEE 30-bus system (without rescheduling) 

Control 

Variables 

Initial 

value 

Outage Elements 

TL1-TL2 TL1-TL3 TL3-TL4 TL2-TL5 TL4-TL6 TL9-TL10 TL10-TL20 

 

 

Generators 

Output 

(MW) 

PG1 0 190.81 180.04 179.70 183.91 177.04 176.74 176.05 

PG2 50 50 50 50 50 50 50 50 

PG5 22 22 22 22 22 22 22 22 

PG8 22 22 22 22 22 22 22 22 

PG11 12 12 12 12 12 12 12 12 

PG13 12 12 12 12 12 12 12 12 

Table 6. Power flow and Contingency ranking of the overloaded lines 

Outage Elements Overload Line Power Flow  (MVA) Acceptable Limit (MVA) SI 

 

TL1-TL2 

TL1-TL3 191.0875 130 
 

5.5465 
TL3-TL4 181.1595 130 

TL4-TL6 108.148 90 

 

TL1-TL3 

TL1-TL2 182.9055 130  

3.0251 TL2-TL6 66.4641 65 

TL3-TL4 
TL1-TL2 180.0979 130 

2.9359 
TL2-TL6 65.5402 65 

 

TL2-TL5 

TL2-TL6 76.8172 65  

2.8237 TL5-TL7 83.6204 70 

 

TL4-TL6 

TL1-TL2 133.6409 130  

2.2132 TL2-TL6 69.8978 65 

TL9-TL10 TL16-TL17 16.8038 16 1.103 

TL10-TL20 TL15-TL18 16.4377 16 1.0555 

Table 7. Generator rescheduling (MW) using DE algorithm under  critical contingencies 

Outage 

Elements 

Critical 

Line 

Power Flow 

(MVA) before 

Power Flow 

(MVA) after 

Power Flow 

Limit (MVA) 
SI 

TFC 

($/h) 

APTLs 

(MW) 

VD 

(pu) 

 

 

TL1-TL2 

TL1-TL3 191.0875 119.998 130 
 

0 

 

859.4235 

 

11.0626 

 

0.0033 
TL3-TL4 181.1595 110.722 130 

TL4-TL6 108.148 69.738 90 

 

TL1-TL3 

TL1-TL2 182.9055 119.775 130  

0 

 

837.0058 

 

7.6451 

 

0.0015 TL2-TL6 66.4641 47.456 65 

 

TL3-TL4 

TL1-TL2 180.0979 112.669 130 
0 

 

848.3814 

 

5.6864 

 

0.0021 TL2-TL6 65.5402 39.402 65 

 

TL2-TL5 

TL2-TL6 76.8172 60.632 65 
0 

 

846.1312 

 

9.7193 

 

0.0018 TL5-TL7 83.6204 53.933 70 

 

TL4-TL6 

TL1-TL2 133.6409 88.59 130 
0 

 

824.5084 

 

7.0307 

 

0.0051 TL2-TL6 69.8978 53.177 65 

TL9-TL10 TL16-TL17 16.8038 12.563 16 0 822.4431 7.7838 0.0046 

TL10-TL20 TL15-TL18 16.4377 15.273 16 0 817.6163 7.6035 0.0044 
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5. Conclusions 

In this study, the power generation and other 

control variables (VAR sources and tap 

changers) were dispatched optimally by taking 

into consideration both the economic and 

security aspects of the operation. The problem 

was modelled as a multi-objective optimization 

one with quality and inequality operating 

constraints. 

 The objective functions that have been 

considered were the fuel cost, active power 

losses, and voltage deviation. A contingency 

analysis was successfully applied to shortlist the 

critical contingencies. The proposed algorithm 

was based on a metaheuristic technique (namely, 

DE). The proposed algorithm was applied to 

IEEE 30 bus test system with various cases of the 

power system operation. An appropriate security 

assessment and improvement were made by 

taking into account the security restrictions 

assigned to each case. The results obtained were 

compared to other previous studies. The findings 

reveal the effectiveness of the proposed 

algorithm in dispatching the generation optimally 

with the satisfaction of the operation equality and 

inequality constraints. 
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