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Abstract 
 

The paper proposes a way for the implementation the Advanced Encryption Standard 

(AES), by matching the algorithm requirements with the hardware (specifically the Xilinx 

FPGA's) requirements.  

The aim from the new proposal was an implementation that is not restricted to a 

particular device. Instead a one guided by the customer requirements, that’s to say 

transforming the AES architecture to general purpose tool.  

Finally, a comparison of the proposed implementation with other implementation of 

the AES using FPGA was made and assessed. The results clearly demonstrate the 

efficiency of the proposed implementation. 

 

 

 

 ةـــــــلاصـالخ

القياسي المخقذم مه خلال مطابقةت مخطببةاث خُاسصميةت الخشةفيش مةغ المخطببةاث البحث يقخشح طشيقً لخىفيز المشفش 

 المىظُمت.لبىاء  ألماديً

فةالىمُر  المقخةشح مُ ةً مةه  ،الخىفيةز يوةُن ريةش مقيةذ بجٍةاص حىفيةز مؼةيه أنالٍذف مه المقخشح الجذيةذ ٌةُ  إن

 مؼذاث ػامت ألأرشاض.ب حىفز سيتالقيا ألمخقذمً ألمشفشيخلال مخطبباث المسخخذم مه خلال ححُيل ٌيوبيت 

َحقييمةً َالخةي  ألأ ٍةضةوفة   َباسةخخذاملبمشفشة أخشِ مه الخىفيز  أوُاعأخيشاٌ حمج مقاسوت الخىفيز المقخشح مغ 

 مه خلالٍا أظٍشث الىخائج كفاءة الخىفيز المقخشح. 
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Cryptography is an old strategy to guarantee information exchange securely, such that 

other people have no access to the encrypted information. Historically encryption was used 

during war; nowadays it is largely used in internet, banking, and other telecommunication 

applications. In the past, the core of security was due to the assumption that the algorithm 

should be unknown, an idea no more accepted, since it gives a false confidence of security. 

The most accepted idea presently is that the algorithm must be public and the security must 

be in the key 
[1,2]

.  

Furthermore, their strength should be assessed in terms of cost and speed. For a heavily 

loaded server, speed is the issue and hence hardware implementation is the choice, while for 

small designs such as smart card applications, low cost hardware or software implementation 

is the choice. Standards are essential for cryptography to ensure a bilateral usage of the 

information being exchanged. In 2001 the national institute of standards and technology 

(NIST), adopted the Rijndael algorithm as the advanced encryption standard (AES), for 

encryption purposes in commercial applications 
[2,3]

.  

It replaces the old DES, due to its best overall scores in security, performance, 

efficiency, implementation, and flexibility with respect to the other competitors 
[4]

.The 

Rijndael is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and 

decrypt data in blocks of 128 bits 
[3]

.  

The main purpose of paper is to implement a high frequency, high throughput, and 

reduced cost encryption algorithm design, on high volume FPGA devices. This is made by a 

hyper pipelined architecture dedicated for Xilinx FPGAs. 

 

2. Rijndael Structure 
 

This algorithm defines the input block as 128 bits matrix, dividing them as a 4x4 bytes 

matrix called state. The algorithm has five operations all performed on the state to produce 

the encrypted data. The inverse of these operations should be applied in order to get the 

original data back, i.e. to decrypt the cipher text. The operations are SubByte, ShiftRow, 

MixColumn, AddRoundKey, and Key generation schedule, for encryption or the inverse of 

each for decryption 
[3]

.  

The flow chart in Fig.(1) shows the Rijndael-128, in which there are 10 rounds 

(Nr=10). Each of which performs the same operations except the last for encryption has no 

MixColumn and the first for decryption has no Inverse MixColumn. Each round uses a key 

generated from the original 128 bits key (W=128) via the key generation schedule. The first 

operation is the SubByte transformation is a table look-up operation. It is executed byte to 

byte. It takes the data variable, and deals with it as an address for a specific memory defined 

by the algorithm (i.e. the content), the data stored in that address is taken as the result of the 

transformation (lookup table) 
[3,5]

.  

The second operation is the ShiftRow. It shifts the rows of the state to the left in the 

following order, none in the first, once in the second, twice in the third, and three times in the 
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fourth 
[3,5]

. The third operation is the MixColumn. It operates on the state column by column, 

treating each one as a fourth degree polynomial over GF(2
8
) and multiplied modulo (X

 4 
+ 1) 

with affixed polynomial 
[3]

. The last operation (the AddRoundKey) is a bitwise XOR 

between the state and the key 
[3]

. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (1) The AES encryption diagram 
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The basic building block of virtex configurable logic block (CLB) is the logic cell (LC). 

An LC includes a 4-input function generator, carry logic and a storage element. Each virtex 

CLB contains four LCs organized in two similar slices 
[6]

. Virtex function generators are 

implemented as 4-input look-up tables (LUT). Each LUT can provide a 16 x 1 bit 

synchronous RAM. Furthermore, the two LUT's within a slice shown in Fig.(2) can be 

combined to create a 16 x 2 bit, 32 x 1 bit synchronous RAM, or a 16 x 1 bit dual-port 

synchronous RAM. The storage element in the virtex slice can be configured as edge 

triggered D-type flip-flops, which can either be driven by the function generators within the 

slice or directly from slice inputs 
[6]

.  

The F5 multiplexer in each slice combines the two function generator outputs. This 

combination provides either function generator that can implement any 5-input function, a 

4:1 multiplexer or selected functions of up to nine inputs. Similarly, the F6 multiplexer 

combines the output of all four function generators in the CLB by selecting one of the F5 

multiplexer outputs. This permits the implementation of any 6-input function, 8:1 multiplexer 

or selected function of up to 19 inputs 
[6]

. 

 

4. AES-128 Implementation  
 

The AES as mentioned before is implemented with ten rounds. Each has four stages 

(operations), except the last, which has only three. The proposed implementation is based on 

using a full pipeline for all of these stages per round with an attempt to have the shortest 

possible data path per stage, resulting in the capability to have higher operational 

speed(frequency) with a 128 bit word length ,and hence a higher throughput.  

The idea of having shortest data path requires sometimes splitting some fundamental 

stages into two sub stages separated by a clocked storage as shown in Fig.(3). This is all done 

with particular characteristics of the Xilinx FPGAs. 
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Figure (2) Detailed view of the virtex slice  
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Figure (3) Stage partitioning 

 

4-1 SubByte  

This transformation is mainly a byte oriented table look-up operation, where each byte 

is used as an address to a pre-stored value. Taking the previous fact together with the way of 

representing functions in Xilinx FPGAs, one can suggest the way of partitioning the SubByte 

operation as follows: 

1. The eight bits entry look-up table shown in Fig.(3) is divided into four sub-tables as shown 

in Fig.(4). 

 

 

 

 

 

                                

 
 

Figure (4) The four sub-tables 

 

2. Taking the most significant two bits as an index for these sub-tables ,so each sub-table is 

now of six bits entry. Thus, each resulting bit would use two slices, two F5 Muxs, an F6 

Mux and a flip flop. That is to say a single complete LC. This is the first part, which 

exactly ends at the D-type flip flop (the splitter) as shown in Fig.(5). 

The output from the four sub-tables together with the two index bits  (In6 and In7) of 

the input byte form a six bits function, which in the same way drives another LC at its D-type 

flip flop the second part ends as shown in Fig.(6). 
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where " ¬" (not) ,"  7 " (OR) , and "8" (AND) are the known logical operators, Out is the 

resultant bit of the SubByte transformation, Sub0 ,Sub1 , Sub2  and Sub3 are the outputs 

from the four sub-tables and In7 and In6 are the index bits. 

 

Figure (5) 1st stage of SubByte transformation 

 

 

Figure (6) 2nd stage of SubByte transformation 
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The previous organization uses two LC's per bit on two stages, two F5 Muxs, F6 Mux 

and the delay per stage is the sum of the delays for two LUT's, while the direct placement of 

the table contents uses three LC's per bit on a single stage, six F5 Muxs, three F6 Muxs and 

the delay per stage is the sum of the delays for six LUT's. Thus it can be said that the 

proposed implementation reduces the cost to (2/3) the original and rises the speed three times 

the original. The above description gives its best results with a pipelined architecture, and 

gives the highest throughput when the pipe fills with data. 

 

4-2 ShiftRow  

From the point of view of implementation on FPGAs, the ShiftRow costs no resources 

more than the (almost) freely provided wiring, since it involves no mathematical and no 

logical operations, just rerouting of the input bytes. Hence, it is not considered as a one of 

the pipeline stages. 

 

4-3 MixColumn  

This operation is to some extent complex and requires knowledge in finite fields. 

However, it operates on state column by column, treating each as a four term polynomial 

over GF(2
8
)  and multiplied modulo (X

 4 
+ 1) with a fixed polynomial a(X) given by 

[3]
: 

a(X) = {03}X
3
 + {01}X

2
 + {01}X + {02} 

The resultant four bytes can be defined as follows:  

 

S´0,c  = ({02} • S0,c) xor ({03} • S1,c) xor S2,c xor S3,c  …………………….. (2) 

 

S´1,c   = S0,c xor ({02} • S1,c) xor ({03} • S2,c) xor S3,c  .……………………. (3) 

 

S´2,c  = S0,c xor S1,c xor ({02} • S2,c) xor ({03} • S3,c) ……………………... (4) 

 

S´3,c   = ({03} • S0,c) xor S1,c xor S2,c xor ({02} • S3,c) ……………………... (5) 

 

From the above equations, there are an xor operation and a multiplication in GF(2
8
), 

which can actually be further partitioned into left shift ,and if needs reduction (in case of 

overflow) by xoring with the constant polynomial m(X) = X 
8
+ X 

4
+ X

3
 + X + 1. 

Partitioning the operation in the above way simplifies it and makes it suitable for FPGA 

implementation as follows: 

1. The most significant bit of the bytes to be multiplied (with two and three) are both xored 

and the result is stored as a flag, and this is the end of the first stage. 

2. If the flag is one, then one of the shifted bytes needs to be reduced. Thus one of the 

variables in the next stage must be m(X)  
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3. If the flag is zero so either none or both of needs a reduction. Since xoring a polynomial 

with itself gives an all zero result. Hence in either case the constant should be replaced by 

all zeros polynomial. 

4. As a result the first stage needs half a slice. The second stage has two un-multiplied 

variables plus the shift of the one multiplied by two, one multiplied by three plus its shift 

and the constant polynomial (m(X) or all zeros). Thus it is a six variable function 

implemented in the same optimized way of SubByte transformation. Hence for each bit 

there are two stages with five LUT's, two F5 Muxs, F6 Mux and two Flip Flops. 

 

4-4 AddRoundKey  

The round key addition is performed by the bitwise xoring of the state with the round 

key. Hence for each bit we need a single LUT and a D-type Flip Flop. Thus the design is 

actually a five stages pipeline, two for SubByte, and two for MixColumn and one for 

AddRoundKey as shown in Fig.(7). 

 

N 

 

 

Figure (7) The five stage pipeline AES round  
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was made with other implementations as shown in Table (1).  
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implementers use the same criteria, so we will as possible get the benefit of their criteria. The 

best and most expressing criteria as we think is the TPS
*
, since it gives a view for connecting 

frequency, size and throughput. 
*
TPS = Encryption rate / # CLB slices used 

The implementation of the others that used in the comparison with the proposed has 

been abbreviated in Table (1) by their author names. A brief description of these 

implementations in their order in Table (1) is: 

 

Table (1) A Comparison between the proposed implementation  
and others 

 

i. Weaver and Wawrzynek worked on the throughput optimization, making use of manual 

design (hand mapping) and C-low pipelining. Their implementation was made on virtex 

E-8 
[7]

. 

ii. Extra implementation of Weaver is the same as that of (i) but on Spartan II 
[8]

. 

iii. Amphin implementation is a commercially available design. Its core uses a highly 

optimized HDL implementation 
[9]

. 

iv. Chodowiec and Gaj designed a compact implementation directed for low-end products. 

This is achieved by folding the iterative architecture to minimize circuit area 
[10]

. 

v. Kwon and et al employed basic loop architecture. It supports all three key sizes 128, 192 

and 256 bits required by the AES standard. The switching from one key to another is 

instantaneous and triggered by the control signals 
[11]

. 

vi. Chodowiec and et al employed the pipelined architecture and implemented their design on 

a PCI-based FPGA board named SLAAC-IC equipped with virtex xcv 1000BG5606 
[12]

. 

vii. Elbirt and et al employed a 5-stage partial pipeline with one subpipe-line optimized for 

speed 
[13]

. 
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# Slices 1504 770 770 570 222 2256 1228 4871 

fmax (MHz) 310.6 155 115 / 50 30 47 / 

Throughput 

(Gb/s) 
3.98 1.75 1.3 1.06 0.147 0.167 0.521 1.94 

TPS (Mb/s) 2.64 2.3 1.7 1.9 0.63 0.074 0.424 0.195 
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5. Conclusions  
 

An implementation oriented architecture design for the Rijndael algorithm was 

presented.  The architecture was chosen to be implemented in different volumes of Xilinx 

FPGAs; the design is made to be hosted on FPGA layout (i.e. the Xilinx FPGA's). Thus the 

constraints made on which particular device can be chosen are no more than the total number 

of pins and slices required. This is the baseline, after which the design will not be guided by 

the particular device, but fortunately by the costumer requirements. From the results 

presented in Table 1 that compare the proposed implementation with other implementations, 

it is clear that the proposed implementation is significantly exceeding the others and  the 

improvement ideas previously mentioned in the design and implementation are verified. 
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