
Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 70

A Device Independent High Grade Implementation of AES

on Xilinx FPGA'S

Abstract

The paper proposes a way for the implementation the Advanced Encryption Standard

(AES), by matching the algorithm requirements with the hardware (specifically the Xilinx

FPGA's) requirements.

The aim from the new proposal was an implementation that is not restricted to a

particular device. Instead a one guided by the customer requirements, that’s to say

transforming the AES architecture to general purpose tool.

Finally, a comparison of the proposed implementation with other implementation of

the AES using FPGA was made and assessed. The results clearly demonstrate the

efficiency of the proposed implementation.

 ةـــــــلاصـالخ

القياسي المخقذم مه خلال مطابقةت مخطببةاث خُاسصميةت الخشةفيش مةغ المخطببةاث البحث يقخشح طشيقً لخىفيز المشفش

 المىظُمت.لبىاء ألماديً

فةالىمُر المقخةشح مُ ةً مةه ،الخىفيةز يوةُن ريةش مقيةذ بجٍةاص حىفيةز مؼةيه أنالٍذف مه المقخشح الجذيةذ ٌةُ إن

 مؼذاث ػامت ألأرشاض.ب حىفز سيتالقيا ألمخقذمً ألمشفشيخلال مخطبباث المسخخذم مه خلال ححُيل ٌيوبيت

َحقييمةً َالخةي ألأ ٍةضةوفة َباسةخخذاملبمشفشة أخشِ مه الخىفيز أوُاعأخيشاٌ حمج مقاسوت الخىفيز المقخشح مغ

 مه خلالٍا أظٍشث الىخائج كفاءة الخىفيز المقخشح.

1. Introduction

Dr. Dhafer R. Zaghar

Computer & Software Eng. Dept., College of Eng.

Al-Mustansiriya University, Baghdad, Iraq

Asst. Prof. Dr. Siddeeq Y. Ameen

Computers & Information Technology Eng. Dept.

University of Technology, Baghdad, Iraq

Asst. Lect. Muayed S. Al-Huseiny
Computer & Software Eng. Dept., College of Eng.

Al-Mustansiriya University, Baghdad, Iraq

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 71

Cryptography is an old strategy to guarantee information exchange securely, such that

other people have no access to the encrypted information. Historically encryption was used

during war; nowadays it is largely used in internet, banking, and other telecommunication

applications. In the past, the core of security was due to the assumption that the algorithm

should be unknown, an idea no more accepted, since it gives a false confidence of security.

The most accepted idea presently is that the algorithm must be public and the security must

be in the key
[1,2]

.

Furthermore, their strength should be assessed in terms of cost and speed. For a heavily

loaded server, speed is the issue and hence hardware implementation is the choice, while for

small designs such as smart card applications, low cost hardware or software implementation

is the choice. Standards are essential for cryptography to ensure a bilateral usage of the

information being exchanged. In 2001 the national institute of standards and technology

(NIST), adopted the Rijndael algorithm as the advanced encryption standard (AES), for

encryption purposes in commercial applications
[2,3]

.

It replaces the old DES, due to its best overall scores in security, performance,

efficiency, implementation, and flexibility with respect to the other competitors
[4]

.The

Rijndael is capable of using cryptographic keys of 128, 192, and 256 bits to encrypt and

decrypt data in blocks of 128 bits
[3]

.

The main purpose of paper is to implement a high frequency, high throughput, and

reduced cost encryption algorithm design, on high volume FPGA devices. This is made by a

hyper pipelined architecture dedicated for Xilinx FPGAs.

2. Rijndael Structure

This algorithm defines the input block as 128 bits matrix, dividing them as a 4x4 bytes

matrix called state. The algorithm has five operations all performed on the state to produce

the encrypted data. The inverse of these operations should be applied in order to get the

original data back, i.e. to decrypt the cipher text. The operations are SubByte, ShiftRow,

MixColumn, AddRoundKey, and Key generation schedule, for encryption or the inverse of

each for decryption
[3]

.

The flow chart in Fig.(1) shows the Rijndael-128, in which there are 10 rounds

(Nr=10). Each of which performs the same operations except the last for encryption has no

MixColumn and the first for decryption has no Inverse MixColumn. Each round uses a key

generated from the original 128 bits key (W=128) via the key generation schedule. The first

operation is the SubByte transformation is a table look-up operation. It is executed byte to

byte. It takes the data variable, and deals with it as an address for a specific memory defined

by the algorithm (i.e. the content), the data stored in that address is taken as the result of the

transformation (lookup table)
[3,5]

.

The second operation is the ShiftRow. It shifts the rows of the state to the left in the

following order, none in the first, once in the second, twice in the third, and three times in the

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 72

fourth
[3,5]

. The third operation is the MixColumn. It operates on the state column by column,

treating each one as a fourth degree polynomial over GF(2
8
) and multiplied modulo (X

 4
+ 1)

with affixed polynomial
[3]

. The last operation (the AddRoundKey) is a bitwise XOR

between the state and the key
[3]

.

Figure (1) The AES encryption diagram

3. Xilinx Virtex FPGA

Input

AddRoundKey (State, Round key)

I = 1

ShiftRow (State)

Mix Column (State)

AddRoundKey (State, Round key)

SubByte (State)

I = I + 1

I < Nr

Nr

Yes

SubByte (State)

ShiftRow (State)

Output

K

e

y

E

x

P

a

n

s

i

o

n

W[0]

 W [I * Nb]

 W[Nr* Nb]

No

AddRoundKey (State, Round key)

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 73

The basic building block of virtex configurable logic block (CLB) is the logic cell (LC).

An LC includes a 4-input function generator, carry logic and a storage element. Each virtex

CLB contains four LCs organized in two similar slices
[6]

. Virtex function generators are

implemented as 4-input look-up tables (LUT). Each LUT can provide a 16 x 1 bit

synchronous RAM. Furthermore, the two LUT's within a slice shown in Fig.(2) can be

combined to create a 16 x 2 bit, 32 x 1 bit synchronous RAM, or a 16 x 1 bit dual-port

synchronous RAM. The storage element in the virtex slice can be configured as edge

triggered D-type flip-flops, which can either be driven by the function generators within the

slice or directly from slice inputs
[6]

.

The F5 multiplexer in each slice combines the two function generator outputs. This

combination provides either function generator that can implement any 5-input function, a

4:1 multiplexer or selected functions of up to nine inputs. Similarly, the F6 multiplexer

combines the output of all four function generators in the CLB by selecting one of the F5

multiplexer outputs. This permits the implementation of any 6-input function, 8:1 multiplexer

or selected function of up to 19 inputs
[6]

.

4. AES-128 Implementation

The AES as mentioned before is implemented with ten rounds. Each has four stages

(operations), except the last, which has only three. The proposed implementation is based on

using a full pipeline for all of these stages per round with an attempt to have the shortest

possible data path per stage, resulting in the capability to have higher operational

speed(frequency) with a 128 bit word length ,and hence a higher throughput.

The idea of having shortest data path requires sometimes splitting some fundamental

stages into two sub stages separated by a clocked storage as shown in Fig.(3). This is all done

with particular characteristics of the Xilinx FPGAs.

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 74

Figure (2) Detailed view of the virtex slice

G4

G3

G2

G1

BY

F5

IN

BX

F4

F3

F2

F1

SR
CLK

CE

Cout

Cin

I3

I2

I1

I0
LU

T

WE DI

CLK

WE

A4

WSO

WSH

CY

CY

BY DG

BX

 F6

F5

YB

Y

YQ

XB

F5

X

XQ

I3

I2

I1

I0 WE

LUT

DI
INT

 D Q

 REV

EC

INT

D Q

 bit

0

bit

1

bit

2

bit

3

bit

4

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 75

Figure (3) Stage partitioning

4-1 SubByte

This transformation is mainly a byte oriented table look-up operation, where each byte

is used as an address to a pre-stored value. Taking the previous fact together with the way of

representing functions in Xilinx FPGAs, one can suggest the way of partitioning the SubByte

operation as follows:

1. The eight bits entry look-up table shown in Fig.(3) is divided into four sub-tables as shown

in Fig.(4).

Figure (4) The four sub-tables

2. Taking the most significant two bits as an index for these sub-tables ,so each sub-table is

now of six bits entry. Thus, each resulting bit would use two slices, two F5 Muxs, an F6

Mux and a flip flop. That is to say a single complete LC. This is the first part, which

exactly ends at the D-type flip flop (the splitter) as shown in Fig.(5).

The output from the four sub-tables together with the two index bits (In6 and In7) of

the input byte form a six bits function, which in the same way drives another LC at its D-type

flip flop the second part ends as shown in Fig.(6).

Out = (¬In7 8 ¬In6 8 Sub0)7(¬In7 8 In6 8 Sub1)7

(In7 8 ¬In6 8 Sub2) 7(In7 8 In6 8 Sub3) ………………………………..

(1)

LUT0 LUT1

LUT2 LUT3

1st
 Substage

With

1/2 X

 Data path

Length

B

U

F

F

E

R

2nd

Substage

With

1/2 X

datapath

Length

B

U

F

F

E

R

 PARTITONING

Single stage

Operation

With X

Data path

 length

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 76

where " ¬" (not) ," 7 " (OR) , and "8" (AND) are the known logical operators, Out is the

resultant bit of the SubByte transformation, Sub0 ,Sub1 , Sub2 and Sub3 are the outputs

from the four sub-tables and In7 and In6 are the index bits.

Figure (5) 1st stage of SubByte transformation

Figure (6) 2nd stage of SubByte transformation

Nor

maliz

er

Selec

tion

bit0

bit1

bit2

bit3

Clk

Subi

bit5

bit0

bit1

bit2

bit3

bit0

bit1

bit2

bit3

F5 F5 F6

s

u

b

L

U

T

s

u

b

L

U

T

s

u

b

L

U

T

D

FF

s

u

b

L

U

T

Sub0

Sub1

Sub2

Sub3

Sub0

Sub1

Sub2

Sub3

In6

In7

Clk

Sub0

Sub1

Sub2

Sub3

Sub0

Sub1

Sub2

Sub3

F5 F5 F6
Byte

sub i

s

u

b

L

U

T

s

u

b

L

U

T

s

u

b

L

U

T

s

u

b

L

U

T

D

F

F

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 77

The previous organization uses two LC's per bit on two stages, two F5 Muxs, F6 Mux

and the delay per stage is the sum of the delays for two LUT's, while the direct placement of

the table contents uses three LC's per bit on a single stage, six F5 Muxs, three F6 Muxs and

the delay per stage is the sum of the delays for six LUT's. Thus it can be said that the

proposed implementation reduces the cost to (2/3) the original and rises the speed three times

the original. The above description gives its best results with a pipelined architecture, and

gives the highest throughput when the pipe fills with data.

4-2 ShiftRow

From the point of view of implementation on FPGAs, the ShiftRow costs no resources

more than the (almost) freely provided wiring, since it involves no mathematical and no

logical operations, just rerouting of the input bytes. Hence, it is not considered as a one of

the pipeline stages.

4-3 MixColumn

This operation is to some extent complex and requires knowledge in finite fields.

However, it operates on state column by column, treating each as a four term polynomial

over GF(2
8
) and multiplied modulo (X

 4
+ 1) with a fixed polynomial a(X) given by

[3]
:

a(X) = {03}X
3
 + {01}X

2
 + {01}X + {02}

The resultant four bytes can be defined as follows:

S´0,c = ({02} • S0,c) xor ({03} • S1,c) xor S2,c xor S3,c …………………….. (2)

S´1,c = S0,c xor ({02} • S1,c) xor ({03} • S2,c) xor S3,c .……………………. (3)

S´2,c = S0,c xor S1,c xor ({02} • S2,c) xor ({03} • S3,c) ……………………... (4)

S´3,c = ({03} • S0,c) xor S1,c xor S2,c xor ({02} • S3,c) ……………………... (5)

From the above equations, there are an xor operation and a multiplication in GF(2
8
),

which can actually be further partitioned into left shift ,and if needs reduction (in case of

overflow) by xoring with the constant polynomial m(X) = X
8
+ X

4
+ X

3
 + X + 1.

Partitioning the operation in the above way simplifies it and makes it suitable for FPGA

implementation as follows:

1. The most significant bit of the bytes to be multiplied (with two and three) are both xored

and the result is stored as a flag, and this is the end of the first stage.

2. If the flag is one, then one of the shifted bytes needs to be reduced. Thus one of the

variables in the next stage must be m(X)

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 78

3. If the flag is zero so either none or both of needs a reduction. Since xoring a polynomial

with itself gives an all zero result. Hence in either case the constant should be replaced by

all zeros polynomial.

4. As a result the first stage needs half a slice. The second stage has two un-multiplied

variables plus the shift of the one multiplied by two, one multiplied by three plus its shift

and the constant polynomial (m(X) or all zeros). Thus it is a six variable function

implemented in the same optimized way of SubByte transformation. Hence for each bit

there are two stages with five LUT's, two F5 Muxs, F6 Mux and two Flip Flops.

4-4 AddRoundKey

The round key addition is performed by the bitwise xoring of the state with the round

key. Hence for each bit we need a single LUT and a D-type Flip Flop. Thus the design is

actually a five stages pipeline, two for SubByte, and two for MixColumn and one for

AddRoundKey as shown in Fig.(7).

N

Figure (7) The five stage pipeline AES round

All the above procedures are for a single round. Having completed, there is freedom to

choose:

1. The multiplicity of this round to give a highest throughput with up to one cycle

architecture, in the expense of cost.

2. Feed the output of this round back to its input ten times before the result becomes

available.

After passing the baseline the costumer requirements and nothing else would cause the

choice of a particular FPGA device, with the same ratio of speed to cost for almost all

devices. The proposed architecture gives the designer the highest degree of flexibility to

support the required systems, such as if the costumer requires the encryption and decryption

processes to be separate, the xcv1000 for each of the separate processes will be

recommended. On the other hand, if the request was for both processes on the same system,

the virtex device will be recommended. Furthermore, if in addition to the previous case the

key generation is required, then the virtex E is the choice and so on. Finally, a comparison

was made with other implementations as shown in Table (1).

The following evaluation criteria were made in the comparison, the number of slices,

the clock frequency, the throughput, and throughput per slice (TPS), most but not all of the

4 LUT's

with 6 bits

Selection

with 2

bit index

Selective

XOR

Round key

addition

Normalize

 selection

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 79

implementers use the same criteria, so we will as possible get the benefit of their criteria. The

best and most expressing criteria as we think is the TPS
*
, since it gives a view for connecting

frequency, size and throughput.
*
TPS = Encryption rate / # CLB slices used

The implementation of the others that used in the comparison with the proposed has

been abbreviated in Table (1) by their author names. A brief description of these

implementations in their order in Table (1) is:

Table (1) A Comparison between the proposed implementation
and others

i. Weaver and Wawrzynek worked on the throughput optimization, making use of manual

design (hand mapping) and C-low pipelining. Their implementation was made on virtex

E-8
[7]

.

ii. Extra implementation of Weaver is the same as that of (i) but on Spartan II
[8]

.

iii. Amphin implementation is a commercially available design. Its core uses a highly

optimized HDL implementation
[9]

.

iv. Chodowiec and Gaj designed a compact implementation directed for low-end products.

This is achieved by folding the iterative architecture to minimize circuit area
[10]

.

v. Kwon and et al employed basic loop architecture. It supports all three key sizes 128, 192

and 256 bits required by the AES standard. The switching from one key to another is

instantaneous and triggered by the control signals
[11]

.

vi. Chodowiec and et al employed the pipelined architecture and implemented their design on

a PCI-based FPGA board named SLAAC-IC equipped with virtex xcv 1000BG5606
[12]

.

vii. Elbirt and et al employed a 5-stage partial pipeline with one subpipe-line optimized for

speed
[13]

.

P
ro

p
.

W
ea

ve
r

V
ir

ex
-E

W

ea
ve

r

S
p

a
rt

rn

A
m

p
h

io
n

C
h

o
d

o
w

ie
c1

K
o

w
n

C
h

o
d

o
w

ie
c2

E
lb

ir
it

Slices 1504 770 770 570 222 2256 1228 4871

fmax (MHz) 310.6 155 115 / 50 30 47 /

Throughput

(Gb/s)
3.98 1.75 1.3 1.06 0.147 0.167 0.521 1.94

TPS (Mb/s) 2.64 2.3 1.7 1.9 0.63 0.074 0.424 0.195

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 80

5. Conclusions

An implementation oriented architecture design for the Rijndael algorithm was

presented. The architecture was chosen to be implemented in different volumes of Xilinx

FPGAs; the design is made to be hosted on FPGA layout (i.e. the Xilinx FPGA's). Thus the

constraints made on which particular device can be chosen are no more than the total number

of pins and slices required. This is the baseline, after which the design will not be guided by

the particular device, but fortunately by the costumer requirements. From the results

presented in Table 1 that compare the proposed implementation with other implementations,

it is clear that the proposed implementation is significantly exceeding the others and the

improvement ideas previously mentioned in the design and implementation are verified.

6. References

1. Schneier, B., "Applied Cryptography", 2
nd

Edition, New York, John Willey &

Sons, 1996.

2. Stallings, W., "Cryptography and Network Security", Prentice Hall, 2003.

3. Federal Information Processing Standards Publication 197, "Announcing the

Advanced Encryption Standard AES", November 26, 2001.

4. NIST, "Commerce Department Announcing Rijndael as the New AES",

www.nist.gov/public_affairs/releases/g00-176.html. Aug 25, 2001.

5. Alex, P., Marcelo, B., and Ricardo, R., "A low Device Occupation IP to

Implantent Rijndael Algorithm", www.inf.ufrgs.br/~panato/sim02.pdf .

6. Xilinx Virtex Manual Preliminary Product Specification, "DS003 (v.1.7)",

October 1, 1999.

7. Spartan Throughput, www.cs.berkely.edu/~nweaver/rijndael.

8. Nicolas, W., and John, W., "High Performance, Compact AES Implementation in

Xilinx FPGAs Virtex E".

9. Amphion, S., CS5210_40, "High Performance AES Encryption Cores",

www.amphion.com/cs5210.html, 2001.

10. Pawel, Ch., and Kris, G., "Very Compact FPGA Implementation of the AES

Algorithm", International Symposium on FPGA, 2001

http://www.nist.gov/public_affairs/releases/g00-176.html.%20Aug%2025
http://www.inf.ufrgs.br/~panato/sim02.pdf
http://www.cs.berkely.edu/~nweaver/rijndael
http://www.amphion.com/cs5210.html

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

 81

11. Ohjun, K. et. al., "Implementation of AES and Triple DES Cryptography using

a PCI-based FPGA Board", National Defense Academy, e-mail

940044@nda.ac.jp.

12. Pawel, Ch. et. al., "Experimental Testing of the Gigabit IP Sec. Compliant

Implementation of Rijndael and Triple DES using SLA'AC.1v FPGA

Acceleration Board", Proc. Information Security Conference, October 2001.

13. A. J., Elbirt, W. Yip, B. Chetwynd, C. Paar, "An FPGA-Based Performance

Evaluation of the AES Block Cipher Candidate Algorithm Finalists", ECE

Department, Worcester Polytechnic Institute, e-mail: spunge@alum.wpi.edu

mailto:940044@nda.ac.jp
mailto:spunge@alum.wpi.edu

