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Nonlinear Analysis of Continuous Composite Beam by 
Finite Element Method 

                              

 
 

 

 

 

 

 

 
 

Abstract 
 

In this paper a composite beam element has been developed. The composite beam 

element can be used to model the nonlinear behavior of composite beams. The element is 

implemented in a nonlinear finite element program (written by the researcher) and its 

implementation is verified by the analysis of continuous beam tested by others. The good 

agreement between the computed results and experimental data demonstrates accuracy of 

the used element. It was found that the increase of steel reinforcement gives an increase in 

ultimate load by 14.3%, also the increase of flange width at plastic hinge region gives an 

increase in the ultimate load by 39.3%. 

 

 

 

 

 الخــــلاصـــــة

في ُذا الثحث ذن ذطويز عٌصز العرة الوزكة. ويوكي اسرخذاهَ في ذوثيل الرصزف اللاخطي للعرة الوزكة. 

العٌصز يٌفذ في تزًاهج عٌاصز هحذدٍ لاخطي )هكروب هي قثل الثاحث(  وُذا الرٌفيذ قذ دقق تواسطح ذحليل عرة هسروز 

ح الجيذج تيي القين الوحسوتح والوعلوهاخ العوليح تيٌد دقَ العٌصز هزكة هفحوص هي قثل تاحثيي آخزيي. الوقارً

( يعطي سيادج في قاتليَ ذحول العرة  plastic hingeالوسرخذم. لقذ وجذ إى الشيادج في حذيذ الرسليح في هٌاطق )

( سوف  (plastic hinge( في هٌاطق الوفصل اللذى (flange% كذلك الشيادج في عزض الشفح 35.1القصوى تٌسثَ 

      %.1..1يعطي سيادج في ذحول العرة القصوى تٌسثَ 
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1. Introduction 
 

When two elements capable of resisting bending moments are elastically connected 

together at the interface, interaction partial or complete, between the two elements takes 

place. If the elastic connection is flexible, the differential axial strains at the common 

interface exist resulting in slip, and differential deflections may also result giving rise to uplift 

between the two elements. 

Many studies have been conducted concerning the analysis of composite structures in 

the past. However, generally either full interaction has been assumed 
[1]

 or the shear 

connectors have been treated as rigid or elastic springs
 [2,3]

. Some of studies assumed that the 

shear connector is continuous along the length, i.e. discrete connectors are assumed to be 

replaced by a medium of negligible thickness having normal and tangential modulus 
[4-7]

. 

Yam and Chapman 
[4,5]

 developed an approach to incorporate nonlinear material and shear 

connector behavior, the resulting nonlinear differential equations had been solved iteratively. 

 

2. Finite Element Idealization 
 

The composite beam has two coordinate system, Z,X for the concrete part and X, and 

Z for the steel part. Each part of the element has its pertaining end nodes 1 and 2 with three 

degrees of freedom per node as shown in Fig.(1), consequently, there are six degrees of 

freedom (four transitional and two rotational displacements) for each node of the element. 

Assuming that the plane section within each material remains plane, the axial 

displacement and strain can be expressed in the terms of displacements u and w relative to the 

local x and z axes. According to Fig.(2) the horizontal displacement and strain in each 

component of the horizontal beam are: 
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iii) Slab Reinforcement 
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duu c
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where uoc and uost are axial displacements in the concrete slab and steel beam, respectively, 

and 
dx

dw c and 
dx

dw st  are the slopes of concrete slab and steel beam in z direction, respectively. 
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Figure (1) Displacement components of an element of  
a composite beam 
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Figure (2) Deformations of composite beam segment 

 

The slip, S, between the concrete slab and steel beam is given as the difference in the 

displacement between bottom surface of concrete slab and the top surface of steel beam at the 

centerline of the interface, i.e. 

 

   syz
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   …………………………………………………..….…. (7) 
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The separation (uplift), fa, between the concrete slab and steel beam in the vertical 

direction is the difference in deflection (in z-direction) between the steel beam and concrete 

slab at the node under consideration. It may be expressed as: 

 

csta wwf   ………………………………………………………………….. (9) 
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Vectors represent the axial displacement and the bending displacements are {u} and 

{v}, respectively, 
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These displacement components can be assembled in one column vector {d} as: 
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From Equations (2), (4) and (6) it can be concluded that 
[8]

, a Co-continuity shape 

function (linear) and C1-continuity shape function (cubic Hermitten) are required for 

representing the axial and flexural displacements, respectively. Then let uo(x) and vo(x) be the 

axial and bending displacements at any point along x-axis, respectively, then: 

 

}u{Nauo       &      }v{Nbvo  ……………………………………….……. (12) 

 

where, Na is the shape function defining a linear interpolation of uo(x) between the nodes, and 

Nb comprises the cubic beam function interpolation polynomial 
[8]
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thus, the displacements field, {d}, is 

 

   T
2c2st2c2st2c2st1c1st1c1st1c1st wwuuwwuud   …... (15) 

 

As stated before, six degrees of freedom are needed at each node in the finite element 

discretization. The nodal displacements at each node will be, 
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For beam element under external load, using the virtual work principles
 [8]

 

 

External virtual work 
L

0

ii dxUR  ………………………………………… (17) 

 

where Ri is the applied load and Ui is the virtual displacement. For nodal displacements, {d}, 

and equivalent external load {Rj} 

 

External virtual work T

j }d{]R[   ………………………………………… (18) 

 

But the internal work = internal work in steel beam + internal work in concrete slab + 

internal work in shear connector + internal work in slab reinforcement. Then: 
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where qx is the shear force (kN) in x-direction, Fa is the normal force (kN), Fa=f(fa), n is the 

number of layer reinforcement, ns is the number of shear connectors in each element, and xs 

is the location of shear connector. The strains in a composite beam component are expressed 

as: 
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where [B]’s are the strain-displacement relationship matrices. Combing of Equations (19) and 

(20) leads to: 
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and the strain vectors may be written in one column vector, {}, as: 
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Eq. (21) can be written in compact form as: 

 

    
jRdK   ………………………………………………………………… (23) 

 

where [K] is the stiffness matrix. The stiffness matrix is generated at the mid-length of 

composite beam element and assumed to be constant along the element for the non-linear 

behavior. The stiffness matrix of a composite beam element is given by: 
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It is composed from the contribution of composite beam components and can be 

expressed as: 
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 where: 

 estK : steel beam element stiffness matrix,  ecK : concrete slab element stiffness matrix, 

 esrK : slab reinforcement element stiffness matrix,  eSK : shear connector element stiffness 

matrix in x-direction, and,  efK : shear connector element stiffness matrix in z-direction. 
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3. Non-Linear Analysis: Cross-Section Properties 
 

The modulus of elasticity for each material of composite beam is a function of strain 

value at the point under consideration. But the strain varies across the depth of the beam. Steel 

beam and concrete slab section are divided into a number of layers as shown in Fig.(3) so 

that: 
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where, n is the number of layers in the material under consideration. Eie is the modulus of 

elasticity of element. z is the distance from layer to the reference axis of concrete slab or steel 

beam. Aie is the cross-sectional area of the layer. 

 
bc

bc

bf

tf

hstw

 

Figure (3) Layered beam section 

 

4. Materials Constitutive Relationships 

 

4-1 Concrete 

For concrete in compression the used model for the stress-strain relationship is that 

proposed in BS 8110 
[9]

 as shown in Fig. (4-A), the ultimate compressive strain, cu is limited 

to 0.0035, the curved portion of stress-strain curve is defined by: 

 

26

cu 10*3.115500   ……………………………………………….. (28) 
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with cu

4

o 10*44.2   , and the initial modulus of elasticity is: 

 

cu5500Ei   …………………………………………………………….... (29) 

 

in which cu is the concrete cube strength in MPa. 

The tensile strength of concrete is relatively low so that, concrete is assumed incapable 

to resist any tension. 

 

4-2 Steel Beam and Reinforcement  

A bilinear stress-strain curve is adopted for this type of steel as shown in Fig.(4-B). In 

this stress-strain curve, the yield stress, fy, in tension and compression is equal. 

 

4-3 Shear Connectors 

Load-slip curves and information concerning shear connectors can be obtained from 

push-out tests, although they cannot be assumed to represent what really happens because the 

distribution of longitudinal stress in the concrete flange of a beam is different from that in the 

slab in push-out test 
[10]

. 

Many different load-slip relationships for stud connectors have been proposed, an 

exponential model is the best of these models. An exponential model for the load-slip 

relationship of shear connectors was used by Yam and Chapman 
[4]

. This is represented by the 

following function, 
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b , are two constants chosen to give the best fit 

with experimental load-slip curve. Alternatively, two points are chosen from the experimental 

curve, so that S2=2S1, this is shown in Fig.(4-C). 
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Figure (4) A-Stress-strain curved for concrete; B- Bilinear stress-strain 

curved for steel; C-Load-slip for shear connector 

 

5. Convergence Criteria  
 

The nonlinear algebraic equations can be solved iteratively, as illustrated in Fig.(5) in 

which R and d denote a representative load and displacement respectively. For the first stage 

of solution, the material properties are assumed constant and a set of nodel displacements 

corresponding to a specified applied loading is determined. From these displacements, strains 

throughout the beam are determined, which are used to define the secant values of material 

properties for the second stage of the solution. The process is repeated until the calculated 

displacements have converged.  

 

R

d
d1 d2 d3 d4 dn

Ko

Kn

Rj

 

Figure (5) Solution procedure in a nonlinear problem (secant method) 
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6. Results of Numerical Example   
 

Yam and Chapman 
[5]

 tested a series of continuous composite beams, CBI is one of the 

tested continuous beams, and Fig.(6) illustrates the dimensions of this beam. The material 

properties are listed below. 

Steel beam: 152 mm* 76 mm *17.86 kg/m rolled steel joist. Flange 76 mm* 9.6 mm. 

Web thickness 5.9 mm. Young’s Modulus 206700 MPa. Yields stress 301 MPa.            

Strain–hardening factor 0.005. 

Concrete slab: 610 mm* 60.3 mm. cylinder compressive strength 48 MPa. Young’s 

Modulus 27600 MPa. 

Shear Connector: 9 mm diameter. 50 mm height. Spacing 146 mm. Number of rows 2. 

Load-slip relation )e1(32Q S725.4 . 

 Longitudinal reinforcement: Young’s Modulus 206800 MPa. Yield stress 321 MPa. 

Area of top bars 445 sq. mm. Area of bottom bars 142 sq. mm. 

 

3.355 m 3.355 m

PP

 
 

Figure (6) Continuous composite beam CBI [5]  

 

The results in Fig.(7-A), (7-B), and (7-C) for beam CBI show similarly good 

agreement. Figure (7-A) shows the deflection shape at P=122 kN, which corresponds to 87% 

of ultimate load. It should be pointed out that in the experiment the loads on the two spans 

were not identical. They were 121 kN and 123 kN, but in the analysis for simplicity they were 

assumed equal. The calculated results are close to the experimental values although the 

analysis overestimates the measured deflections in the left span and underestimates the same 

measured deflection in the right span. The slip variation along the span at 87% of the ultimate 

load is illustrated in Fig.(7-B) which shows good agreement. Here again a situation similar to 

that in Fig.(7-A) can be observed. Comparison of the computed strains in the extreme bottom 

flange of the beam is rather closely with their experimental counterparts, Fig.(7-C).  
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Figure (7) Comparison between computed and reference values [5]  
at 122 kN, A-Deflected shape, B-Slip distribution,  

C-Longitudinal strain of bottom flange 
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From Figures (8) and (9), the failure load of the original beam was 140 kN and this 

equals to reference value, this failure load was simultaneous for beam and shear connector. At 

this load a plastic hinge was found at mid support and under point loads (beam failure by 

plastic hinge mechanism). Also the maximum slip at this load level was 1.393 mm and it is 

much closed to the failure value of stud connector (1.4 mm) 
[5]

. One of the study cases the 

steel reinforcement especially at mid support (top) and under point loads (bottom) is doubled. 

Figure (8) shows an increase in the ultimate load value by percent 14.3%, and this increase 

gives low slip at load level of 140 kN, Fig.(9) shows the comparison between slip values at 

140 kN for original beam, increasing of steel reinforcement, and increasing in flange width. 

The effect of increasing in steel reinforcement is very clear on slip (Fig. (9)). 

Finally, by doubling flange width at plastic hinge zone the increase in the ultimate load 

value is very good (39.3%, Fig.(8)), also the slip is very little at 140 kN when compared with 

original values as shown in Fig.(9).  
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Figure (8) Load-deflection curve for original beam and increasing in 
steel reinforcement and flange width   
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Figure (9) Slip distribution along the beam axis at load P=140 kN for 
original beam and increasing in steel reinforcement and flange width 

 

7. Conclusions 
 

The following points are the results concluded from the above discussion:- 

1. The developed composite beam element gives good results when compared with 

experimental data. 

2. The double increase in steel reinforcement at plastic hinge region will give increase in the 

ultimate load value by 14.3%. 

3. The double increase in flange width of steel beam at plastic hinge region will give increase 

in the ultimate load value by 39.3%. 

4. The increase in steel reinforcement and flange width at plastic hinge region will give 

decrease in slip value at the same load. 
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 5. 

Notations 

srcst &,  : axial strains in steel beam, concrete slab and steel reinforcement, 

respectively.  

ocost & : central strains in steel beam and concrete slab, respectively. 

srcst &,  : stresses in steel beam, concrete slab and steel reinforcement, 

respectively. 

Asr :  area of steel reinforcement. 

[B] :  strain-displacement matrix. 

dz :  distance from steel reinforcement to reference axis of concrete slab. 

fa :  uplift: 

Fa :  normal force. 

[K]
e
 :  element stiffness matrix. 

Na & Nb : shape function. 

Q :  shear force. 

S :  slip. 

srcst u&u,u : axial displacements in steel beam, concrete slab and steel reinforcement, 

respectively. 

ocost u&u : central axial displacements in steel beam and concrete slab, respectively. 

wst & wc : deflections of steel beam and concrete slab, respectively. 

yc :  distance from reference axis of concrete slab to interface.  

ys :  distance from reference axis of steel beam to interface. 


