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Abstract

In this paper a composite beam element has been developed. The composite beam
element can be used to model the nonlinear behavior of composite beams. The element is
implemented in a nonlinear finite element program (written by the researcher) and its
implementation is verified by the analysis of continuous beam tested by others. The good
agreement between the computed results and experimental data demonstrates accuracy of
the used element. It was found that the increase of steel reinforcement gives an increase in
ultimate load by 14.3%, also the increase of flange width at plastic hinge region gives an
increase in the ultimate load by 39.3%.
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1. Introduction

When two elements capable of resisting bending moments are elastically connected
together at the interface, interaction partial or complete, between the two elements takes
place. If the elastic connection is flexible, the differential axial strains at the common
interface exist resulting in slip, and differential deflections may also result giving rise to uplift
between the two elements.

Many studies have been conducted concerning the analysis of composite structures in
the past. However, generally either full interaction has been assumed ™ or the shear
connectors have been treated as rigid or elastic springs 23] Some of studies assumed that the
shear connector is continuous along the length, i.e. discrete connectors are assumed to be
replaced by a medium of negligible thickness having normal and tangential modulus 7.
Yam and Chapman ™®! developed an approach to incorporate nonlinear material and shear
connector behavior, the resulting nonlinear differential equations had been solved iteratively.

2. Finite Element Idealization

The composite beam has two coordinate system, X, Z for the concrete part and X, and

Z for the steel part. Each part of the element has its pertaining end nodes 1 and 2 with three
degrees of freedom per node as shown in Fig.(1), consequently, there are six degrees of
freedom (four transitional and two rotational displacements) for each node of the element.

Assuming that the plane section within each material remains plane, the axial
displacement and strain can be expressed in the terms of displacements u and w relative to the
local x and z axes. According to Fig.(2) the horizontal displacement and strain in each
component of the horizontal beam are:

1) Steel Beam
dw
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iii) Slab Reinforcement

dw
u,=u.-—d G iitttettetetteeneetntetettetatetnttenntetnsttnntctnactnsetnacnnaennns 5
sr oc z d)( ()
2 2
e = Mo g AW A e ©)

sr=dx_zdxz_oc_zdxz

where uqc and o are axial displacements in the concrete slab and steel beam, respectively,

and d(\jNC and 5 L are the slopes of concrete slab and steel beam in z direction, respectively.
X X
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S st2

Figure (1) Displacement components of an element of
a composite beam
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Figure (2) Deformations of composite beam segment

The slip, S, between the concrete slab and steel beam is given as the difference in the
displacement between bottom surface of concrete slab and the top surface of steel beam at the
centerline of the interface, i.e.

The separation (uplift), f,, between the concrete slab and steel beam in the vertical
direction is the difference in deflection (in z-direction) between the steel beam and concrete
slab at the node under consideration. It may be expressed as:
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Vectors represent the axial displacement and the bending displacements are {u} and
{Vv}, respectively,

From Equations (2), (4) and (6) it can be concluded that [8], a Co-continuity shape
function (linear) and C;-continuity shape function (cubic Hermitten) are required for

representing the axial and flexural displacements, respectively. Then let uy(x) and vo(X) be the
axial and bending displacements at any point along x-axis, respectively, then:

u, =Na{u} & v, =Nb{v}

where, Na is the shape function defining a linear interpolation of u,(x) between the nodes, and
Nb comprises the cubic beam function interpolation polynomial

Na=[N1 N2]' & Nb=[N3 N4 N5 Né|'

......................... (13)
where:
N1=1-2 N2 =2
2 3 IE 3
|\|3=1—?;_iz+2|_i3 N4=x—zi+%> ........................................ (14)
2 3 2 3
N5= K20 e X X
L2 L L L

thus, the displacements field, {d}, is

{d}z[ustl Uy Wg Wy 8y 04 Uy, U, Wy, W, 06y, © ]T

As stated before, six degrees of freedom are needed at each node in the finite element
discretization. The nodal displacements at each node will be,

{di}z[usti uci Wsti Wci 9sti eci]-r
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For beam element under external load, using the virtual work principles ©

L
External virtual work = _[ RiUiOX ceieiiiiiiiiiniinnecceeee, (17)
0

where R; is the applied load and U; is the virtual displacement. For nodal displacements, {d},
and equivalent external load {R;}

External virtual Work=[R;]18{d}" ....cceerrririinniiiiiiiinniieciee, (18)

But the internal work = internal work in steel beam + internal work in concrete slab +
internal work in shear connector + internal work in slab reinforcement. Then:

n L
[RHd}= [8e,0,dvol+ [8e o dvol+) [5e, o, Asrdx

vol.steel vol.concrete i=1 o
+ i[qx 8S] .+ i[a 8, ] crrerrerreerreneer e (19)
m=1 m=1

where qy is the shear force (KN) in x-direction, F, is the normal force (kN), F,=f(f.), n is the
number of layer reinforcement, ns is the number of shear connectors in each element, and xs

is the location of shear connector. The strains in a composite beam component are expressed
as:

Se, =[B, Js{d})
8¢, =[B.J5{d}
88, =[By [8{U} cverereieeeete e (20)
S =[B, J5{d}

d Fa =[Bf ]S{d},

where [B]’s are the strain-displacement relationship matrices. Combing of Equations (19) and
(20) leads to:

R,}= I[Bst]TGst dvol + I[BC]TGCWOI+ij[Bsr]Tcsr A, dx+

steel concrete i=1 0

mi;[[Bs]T )+ mi;[[Bf TE]L oo (21)

and the strain vectors may be written in one column vector, {€}, as:
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Uy, N’ 0 0 -N, O
Uy 0 N’ N’ N, 0
W, —zN; 0 0 y.N; N,
. w,, 0 —zN" —dzN” y.N, —N,
Z“ 0., “N" 0 0 y.N, N,
e)=de LB ] % Lwhere[s]r = O T2Ne aNa YNe =N o
. Uy, N, 0 0 -N, O
¢ U, 0 N/, N/, N, 0
L W, —zN§ 0 0 y.Ni N;
w,, 0 —-2zN" —dzN’ yN. -N,
0., -zN? 0 0 y.N, N,
9., | | 0 —zN7 —dzN! y.N; —N,|
Eg. (21) can be written in compact form as:
[KHAY= AR f eeveemeemeeeetete ettt (23)

where [K] is the stiffness matrix. The stiffness matrix is generated at the mid-length of
composite beam element and assumed to be constant along the element for the non-linear
behavior. The stiffness matrix of a composite beam element is given by:

[KF = [[BI' [PIBIAVOL evevveieiiiiiiiiinn (24)

vol

It is composed from the contribution of composite beam components and can be
expressed as:

[KF =[KE +[KE +[KE +[KE+IKE oo, (25)

where:

€.

[KJS : steel beam element stiffness matrix, [K]S:

ot - concrete slab element stiffness matrix,

[K[S : slab reinforcement element stiffness matrix, [K]S: shear connector element stiffness

matrix in x-direction, and, [K]f : shear connector element stiffness matrix in z-direction.
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3. Non-Linear Analysis: Cross-Section Properties

The modulus of elasticity for each material of composite beam is a function of strain
value at the point under consideration. But the strain varies across the depth of the beam. Steel
beam and concrete slab section are divided into a number of layers as shown in Fig.(3) so
that:

EA =IEdA=Zn:EieAie ............................................................. (26)
A ie=1

El =_[Ezsz=zn:EiezzAie ........................................................ 27)
A ie=1

where, n is the number of layers in the material under consideration. Eje is the modulus of
elasticity of element. z is the distance from layer to the reference axis of concrete slab or steel
beam. Aj is the cross-sectional area of the layer.

. bc

l<

of
Figure (3) Layered beam section
4. Materials Constitutive Relationships

4-1 Concrete
For concrete in compression the used model for the stress-strain relationship is that
proposed in BS 8110 ! as shown in Fig. (4-A), the ultimate compressive strain, o, is limited

to 0.0035, the curved portion of stress-strain curve is defined by:

6 =5500,/0,, 8= 11.3%10°E% cevuurrirrruereerrnnnrernnneeeerenneneennnneeeennnnnnns (28)
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with &, =2.44*10™ /o, , and the initial modulus of elasticity is:

Ei = 550040, wereereereereereereeseeseeseeseeseeseeseeseeseessessessensessensensesoon (29)

in which o, is the concrete cube strength in MPa.

The tensile strength of concrete is relatively low so that, concrete is assumed incapable
to resist any tension.

4-2 Steel Beam and Reinforcement
A bilinear stress-strain curve is adopted for this type of steel as shown in Fig.(4-B). In
this stress-strain curve, the yield stress, fy, in tension and compression is equal.

4-3 Shear Connectors

Load-slip curves and information concerning shear connectors can be obtained from
push-out tests, although they cannot be assumed to represent what really happens because the
distribution of longitudinal stress in the concrete flange of a beam is different from that in the
slab in push-out test %!,

Many different load-slip relationships for stud connectors have been proposed, an
exponential model is the best of these models. An exponential model for the load-slip
relationship of shear connectors was used by Yam and Chapman . This is represented by the
following function,

where a = A and b:lln _a , are two constants chosen to give the best fit
2Q1-Q2 S (Q2-Q1

with experimental load-slip curve. Alternatively, two points are chosen from the experimental
curve, so that S,=2S;, this is shown in Fig.(4-C).
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Figure (4) A-Stress-strain curved for concrete; B- Bilinear stress-strain
curved for steel; C-Load-slip for shear connector

5. Convergence Criteria

The nonlinear algebraic equations can be solved iteratively, as illustrated in Fig.(5) in
which R and d denote a representative load and displacement respectively. For the first stage
of solution, the material properties are assumed constant and a set of nodel displacements
corresponding to a specified applied loading is determined. From these displacements, strains
throughout the beam are determined, which are used to define the secant values of material
properties for the second stage of the solution. The process is repeated until the calculated
displacements have converged.

d

»
»

i & &3¢ dn

Figure (5) Solution procedure in a nonlinear problem (secant method)
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6. Results of Numerical Example

Yam and Chapman ™ tested a series of continuous composite beams, CBI is one of the
tested continuous beams, and Fig.(6) illustrates the dimensions of this beam. The material
properties are listed below.

Steel beam: 152 mm* 76 mm *17.86 kg/m rolled steel joist. Flange 76 mm* 9.6 mm.
Web thickness 5.9 mm. Young’s Modulus 206700 MPa. Yields stress 301 MpPa.
Strain—hardening factor 0.005.

Concrete slab: 610 mm* 60.3 mm. cylinder compressive strength 48 MPa. Young’s
Modulus 27600 MPa.

Shear Connector: 9 mm diameter. 50 mm height. Spacing 146 mm. Number of rows 2.

Load-slip relation Q =32(1—e 7% %),
Longitudinal reinforcement: Young’s Modulus 206800 MPa. Yield stress 321 MPa.
Area of top bars 445 sq. mm. Area of bottom bars 142 sq. mm.

3.355 m ¥ 3.355 m

Ll

A
b4

Figure (6) Continuous composite beam CBI [8]

The results in Fig.(7-A), (7-B), and (7-C) for beam CBI show similarly good
agreement. Figure (7-A) shows the deflection shape at P=122 kN, which corresponds to 87%
of ultimate load. It should be pointed out that in the experiment the loads on the two spans
were not identical. They were 121 kN and 123 kN, but in the analysis for simplicity they were
assumed equal. The calculated results are close to the experimental values although the
analysis overestimates the measured deflections in the left span and underestimates the same
measured deflection in the right span. The slip variation along the span at 87% of the ultimate
load is illustrated in Fig.(7-B) which shows good agreement. Here again a situation similar to
that in Fig.(7-A) can be observed. Comparison of the computed strains in the extreme bottom
flange of the beam is rather closely with their experimental counterparts, Fig.(7-C).
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From Figures (8) and (9), the failure load of the original beam was 140 kN and this
equals to reference value, this failure load was simultaneous for beam and shear connector. At
this load a plastic hinge was found at mid support and under point loads (beam failure by
plastic hinge mechanism). Also the maximum slip at this load level was 1.393 mm and it is
much closed to the failure value of stud connector (1.4 mm) .. One of the study cases the
steel reinforcement especially at mid support (top) and under point loads (bottom) is doubled.
Figure (8) shows an increase in the ultimate load value by percent 14.3%, and this increase
gives low slip at load level of 140 kN, Fig.(9) shows the comparison between slip values at
140 kN for original beam, increasing of steel reinforcement, and increasing in flange width,
The effect of increasing in steel reinforcement is very clear on slip (Fig. (9)).

Finally, by doubling flange width at plastic hinge zone the increase in the ultimate load
value is very good (39.3%, Fig.(8)), also the slip is very little at 140 kN when compared with
original values as shown in Fig.(9).

210
180 =
150 —
§ 120 —
3 .
o 90 =
-
60 —@— Original values
—h— As=2*As
30 —A&A— Dbf=2*bf
O I L] I L] I L] I L] I L]
0 10 20 30 40 50 60

Midspan deflection ( mm )

Figure (8) Load-deflection curve for original beam and increasing in
steel reinforcement and flange width
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Figure (9) Slip distribution along the beam axis at load P=140 kN for
original beam and increasing in steel reinforcement and flange width

7. Conclusions

The following points are the results concluded from the above discussion:-
1. The developed composite beam element gives good results when compared with

experimental data.
2. The double increase in steel reinforcement at plastic hinge region will give increase in the

ultimate load value by 14.3%.
3. The double increase in flange width of steel beam at plastic hinge region will give increase

in the ultimate load value by 39.3%.
4. The increase in steel reinforcement and flange width at plastic hinge region will give

decrease in slip value at the same load.
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Notations

€ost &Eqc

Ugst &Uqc:
Wgt & W -
yC !
Vs :

axial strains in steel beam, concrete slab and steel reinforcement,

respectively.
central strains in steel beam and concrete slab, respectively.

stresses in steel beam, concrete slab and steel reinforcement,

respectively.

area of steel reinforcement.

strain-displacement matrix.

distance from steel reinforcement to reference axis of concrete slab.
uplift:

normal force.

element stiffness matrix.

shape function.

shear force.

slip.

axial displacements in steel beam, concrete slab and steel reinforcement,
respectively.

central axial displacements in steel beam and concrete slab, respectively.

deflections of steel beam and concrete slab, respectively.
distance from reference axis of concrete slab to interface.
distance from reference axis of steel beam to interface.
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