
Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

61

 Low Cost and High Speed Look-Up Table Implementation
of Xilinx FPGA

Abstract

There are two methods to implement LUT up to 7-bit depends on the type of Xilinx

chip hardware and the software that can use in design and the code generation. The first

method implements LUT as a RAM. This method gives high speed and requires a very high

cost.

The second method implements LUT as logic gates. This method requires special

software and gives a low speed implies.

This paper proposed a modification to the second method that will save the speed of

the first method and low cost of the second method. It depends on the design of the LUT.

Therefore it will not require special software.

 ةـــــــلاصـالخ

وانى انبشايجياث انًسخخذيت في Xilinxذ إنى حقُيت بج حسخُ-7سعت LUTهُاك طشيقخاٌ نبُاء انجذاول انشقًيت

وهيزِ انطشيقيت حكيوٌ RAMنبُياء انجيذاول انشقًييت هيى ذيكم را يشة حصًيى وحونيذ انشفشة. انطشيقت الأونى انًسخخذيت

حكيوٌ انيت انكهفت وراث سش ت انيت. إيا انطشيت انثاَيت فخسخخذو انبواباث انًُطقيت وهزِ ححخيا إنيى بشيجيياث ةاويت و

 إبطا يٍ انطشيقت انسابقت.

ف هزا انبحث حى اقخشاح طشيقت نخحويش وحطويش انطشيقت انثاَيت بحيث حعط َفس سش ت انطشيقت الأونيى ييك هفيت

 يقاسبت نهطشيقت انثاَيت دوٌ انحاجت إنى بشيجياث ةاوت.

Keywords

DSP, FPGA, LUT, Virtex-II, Xilinx, CLB, bit cell, gate cell

Dr. Dhafer R. Zaghar

Computer & Software Eng. Dept., College of Eng.

Al-Mustansiriya University, Baghdad, Iraq

Asst. Prof. Dr. Khamis A. Zidan

Computer & Software Eng. Dept., College of Eng.

Al-Mustansiriya University, Baghdad, Iraq

Dr. Laiyth M. Al-Rawi

Computer & Software Eng. Dept., College of Eng.

Al-Mustansiriya University, Baghdad, Iraq

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

67

 1. Introduction

A large number of system development and integration companies, labs, and

government agencies (hereafter referred to as “the community”) exist that have traditionally

produced DSP applications requiring rapid development and deployment as well as ongoing

design flexibility. These applications are generally low-volume and frequently specific to

defense and government requirements. This task has generally been performed by software

applications on general-purpose computer
[1]

. Often these general-purpose solutions are not

adequate for the processing requirements of the applications and the designers have been

forced to employ solutions involving special-purpose hardware acceleration capabilities.

These special-purpose hardware accelerators come at a significant cost. The community does

not possess the large infrastructure or volume requirements necessary to produce or maintain

special-purpose hardware.

Additionally, the investment made in integrating special-purpose hardware makes

technology migration difficult in an environment where utilization of leading-edge technology

is critical and often pioneered. Recent improvements in Field Programmable Gate Array

technology have made FPGA’s a viable platform for the development of special-purpose

digital signal processing hardware
[1]

, while still allowing design flexibility and the promise of

design migration to future technologies
[2]

. Many entities within the community are eyeing

FPGA-based platforms as a way to provide rapidly deployable, flexible, and portable

hardware solutions.

Introducing FPGA components into DSP system implementations creates an assortment

of challenges across system architecture and logic design, where system architects may be

available, skilled logic designers is a scarce resource. There is a growing need for tools to

allow system architects to be able to implement FPGA-based platforms with limited input

from logic designers. Unfortunately, getting designs translated from software algorithms to

hardware implementations has proven to be difficult
[2]

.

Current efforts like VHDL can be processed by traditional FPGA design flows. Other

tools use derived languages based on C such as Handel-C
[3]

, C++ extensions such as

System C
[4]

, or Java classes such as JHDL
[5]

. These tools give designers the ability to more

accurately model the parallelism offered of the underlying hardware elements. While these

approaches attempt to raise the abstraction level for design entry, many experienced logic

designers argue that these higher levels of abstraction do not address the underlying

complexities required for efficient hardware implementations.

Another approach has been to use “block-based design”
[6]

 where system designers can

behaviorally model at the system level, and then partition and map design components onto

specific hardware blocks which are then designed to meet timing, power, and area constraints.

An example of this technique is the Xilinx System Generator for the Math Works Simulink

Interface
[7]

. Using this tool, a system designer can “develop high performance DSP systems

for Xilinx FPGA’s. Designers can design and simulate a system using MatLab, Simulink,

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

61

 and a Xilinx library of bit/cycle-true models. The tool will then automatically generate

synthesizable Hardware Description Language (HDL) code mapped to Xilinx pre-optimized

algorithms”
[7]

. However, this block-based approach still requires that the designer be

intimately involved with the timing, and control aspects of cores in addition to being able to

execute the back-end processes of the FPGA design flow.

2. Architectural Description of Virtex-II Array [8-11]

The Virtex-II user-programmable gate array, shown in Fig.(1), comprises two major

configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs).

i. CLBs provide the functional elements for constructing logic.

ii. IOBs provide the interface between the package pins and the CLBs.

iii. CLBs interconnect through a general routing matrix (GRM).

Figure (1) Virtex-II architecture overview

The GRM comprises an array of routing switches located at the intersections of

horizontal and vertical routing channels. Each CLB nests into a Versa Block that also

provides local routing resources to connect the CLB to the GRM.

The Versa Ring I/O interface provides additional routing resources around the periphery

of the device. This routing improves I/O routability and facilitates pin locking. The Virtex-II

architecture also includes the following circuits that connect to the GRM.

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

61

 i. Dedicated block memories (BRAMs) of 4096 bits for each block.

ii. Clock DLLs for clock-distribution delay compensation and clock domain control.

iii. 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable

horizontal routing resources.

Values stored in static memory cells control the configurable logic elements and

interconnect resources. These values load into the memory cells on power-up, and can be

reloaded if necessary to change the function of the device.

Input/Output block in the Virtex-II IOB select I/O inputs and outputs that support a

wide variety of I/O signaling standards.

There is three IOB storage elements function either as edge-triggered D-type flip-flops

or as level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops

and independent clock enable signals for each flip-flop. In addition to the CLK and CE

control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can

be independently configured as a synchronous Set, a synchronous Reset, an asynchronous

Preset, or an asynchronous Clear. The output buffer and all of the IOB control signals have

independent polarity controls.

Input path in the Virtex-II IOB input path routes the input signal directly to internal

logic and/ or through an optional input flip-flop. An optional delay element at the D-input of

this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal

clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is

zero. Output path includes a 3-state output buffer that drives the output signal onto the pad.

The output signal can be routed to the buffer directly from the internal logic or through an

optional IOB output flip-flop.

The 3-state control of the output can also be routed directly from the internal logic or

through a flip-flop that provides synchronous enable and disable.

3. Xilinx FPGA CLB Architecture [8-11]
The basic building block of the Virtex-II Configurable Logic Block (CLB) is the logic

cell (LC). A LC includes a 4-input function generator, carry logic, and a storage element. The

output from the function generator in each LC drives both the CLB output and the D input of

the flip-flop as shown in Fig.(2). Each Virtex-II CLB contains four LCs, organized in two

similar slices, as shown in Fig.(3).

In addition to the four basic LCs, the Virtex-II CLB contains logic that combines

function generators to provide functions of five or six inputs. Consequently, when estimating

the number of system gates provided by a given device, each CLB counts as 4 LCs.

Virtex-II function generators are implemented as 4-input look-up tables (LUTs). In

addition to operate as a function generator, each LUT can provide a 16 x 1-bit synchronous

RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32

x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM.

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

02

 F5 in Fig.(3) multiplexer output in each slice combines the function generator outputs.

This combination provides either a function generator that can implement any 5-input

function, a 4:1 multiplexer, or selected functions of up to nine inputs.

Figure (2) Detailed view of virtex-II slice

Figure (3) A simplified structure of a CLB of virtex-II

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

06

 Similarly, F6 multiplexer output combines the outputs of all four-function generators in

the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of

any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB

has four direct feedthrough paths, two per slice. These paths provide extra data input lines or

additional local routing that does not consume logic resources.

4. Conventional Circuit Design using Xilinx FPGA [8]

The characteristics of FPGA give a set of rules to reduce the cost and increase the speed

of DSP systems are different from the rules that used in Boolean design. These rules are

varied from FPGA to other depending on the type of FPGA. The rules that can be to built an

optimal cost and speeds in Xilinx FPGA are that:

i. 1-Divided the large circuit to small sub circuits with input pins less than 7-inputs, because

the large input function is uncontrollable space and delay design.

ii. 2-Each sub circuit has 4-inputs for minimum cost, because each 4-inputs function need to

one cell and one delay.

iii. 3-Each sub circuit has 6-inputs for maximum speed, because each 6-inputs function need

to four cells (one CLB) and one delay.

iv. 4-Each sub circuit has 5-inputs for optimal cost and speed, because each 5-inputs

function need to two cells and one delay.

v. 5-When the above rules are not satisfied try to use 3-inputs and not increase the input

number over 6 inputs, because each 7-inputs function need to eight cells and two delay,

when each 1,2,3-inputs function need to one cell and one delay.

5. LUT Architecture [11-13]

The Lockup Table (LUT) function is a function to convert the linear input data to

sinusoidal output data. The basic architecture for the Lockup Table (LUT) is a ROM that

stores the output data when the input data represents the address of ROM. The

implementation of LUT by using ROM gives low cost LUT, but the LUT is a part from DSP

system has other components which give high cost in ROM implementation. Thus the DSP is

a part from larger systems not suitable to build in ROM. This mean that there is two solutions,

first built LUT by ROM and other parts of over all system by using other technique such

FPGA. That is meaning the system needs to moor than one chip and interfacing between these

chips that increase the cost and complexity and reduce the speed. The second solution is

redesigning the LUT to become suitable with the other parts technique (Xilinx FPGA).

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

00

 6. The Proposed Implementation Method

This method depends on the separation of the nx1 LUT to (n-6) sub LUT (SLUT). Each

SLUT is a 6x1 LUT depending on the possibility of Xilinx FPGA to implement any 6x1 LUT

in one CLB. Then, a constant form of a digital function to match the parts of the LUT will be

used.

For example an 8x1 LUT shown in Fig.(4), has a function S that depend on 8 variables

(ABCDEFGH). This function will generate a 16x16 cell Karnof map. It will divide to 4 units

each one is an 8x8 cell sub_Karnof map that has a function (Ti) depending on 6 variables

(CDEFGH).

) f(A B TiS  3A B T2 TBA 1 B TA0 TB A  …………….…… (1)

Each sub_function Ti will require one CLB (4 cells) so the collection function ƒ will be

required to one CLB (4 cells). This is mean that the total cost of the 8x1 LUT is 20 cells

(5 CLBs) as shown in Fig.(5).

 Figure (4)16x16 cell karn of map

T0

6- bit LUT

T1

6- bit LUT

T3

6- bit LUT

T2

6- bit LUT

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

02

Figure (5) Proposed method for 8x1 LUT

7. Proposed Case Study for Evaluation

The implementation of 10x10-bit LUT using v999999 chip using ISA4.1I directly will

require 10,000 cells with a maximum speed 250 MHz. However, the conversion of the data of

LUT to Boolean equation (that required to a hard work) will require 640 cells with a

maximum speed 50 MHz. Thus the use of the proposed method 10x10-bit LUT will require

1030 cells with a maximum speed 250 MHz but with 4 clock delay between input and output

data as shown in Table (1).

Table (1) The cost, speed and RGV for the three methods

Method Total cost /cell Speed /MHz RGV

Direct 10000 250 1

Boolean equations 650 50 3

Proposed 1030 250 9.7

In table (1), the RGV is the rational gain value that can be calculated as follow:

250

speed1
 *

cost1

10000

speed2

speed1
 *

cost1

cost2
 RGV  ……………………. (2)

T0

T1

T2

T3

4
-b

it

st
o

ra
g

e
2

-b
it

st
o

ra
g

e

F(ABTi)
With

storage

C

D

E

F

G

H

A

B

S

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

02

 8. Conclusions

The DSP systems have different functions with LUT. These systems will have a cost

problem because the architecture of LUT is suitable with ROM. However the other parts such

as adders have a high cost when implemented using ROM. The implementation of the system

using Xilinx FPGA give a low cost for all parts except the LUT will has a very high cost.

Therefore, the implementation of DSP systems using FPGA gives a total cost less than ROM.

This paper shows the method of implement a very low cost and high speed LUT using Xilinx

FPGA.

The Xilinx FPGA is a good tool to build the DSP systems, but not all DSP circuits are

suitable with the architecture of Xilinx FPGA such as LUT and some circuits. It needs to be

redesigned to become suitable with conventional circuit design using Xilinx FPGA.

The good partitions to LUT will give a low cost and high-speed DSP system in one chip

FPGA. The DDS is an example has a DSP circuits suitable with FPGA and other circuit

suitable with ROM and the old design use two chips first is FPGA and the other ROM or a

very large FPGA chip. However, by using the proposed method the circuit of DDS built by

using small to medium single FPGA chip.

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

02

 9. References

1. R. Lauwereins, M. Engels, M. Adé, and J. Peperstraete, "Grape-II: A System-Level

Prototyping Environment for DSP Applications", IEEE Computer, Vol. 28, No. 2,

February 1995, pp. 35-43.

2. P. Banerjee, et. al., "MATCH: A MATLAB Compiler for Configurable Computing

Systems", Technical Report, Center for Parallel and Distributed Computing,

Northwestern University, Aug. 1999.

3. J. Gerlach, and W. Rosenstiel, "System Level Design using the System C Modeling

Platform", http://www.systemc. org/papers/sda-2000.

4. P. Bellows, and B. Hutchings, "JHDL- An HDL for Reconfigurable Systems",

Proceedings of the IEEE Symposium on FPGA's for Custom Computing

Machines, April 1998, pp. 175-184.

5. H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, "Surviving the

SOC Revolution: A Guide to Platform-Based Design", Kluwer Academic

Publishers, 1999.

6. Xilinx System Generator v2.1 for Simulink Reference Guide, Xilinx, 2000.

7. J. Donaldson, "From Algorithm to Hardware-The Great Tools Disconnect",

COTS Journal, October 2001, pp. 48-54.

8. R. Andraka’s Website: http://users.ids.net/~randraka.

9. U. Sj ِ str ِ m, M. Karlsson, and M. H ِ rlin, " A Digital Down Converter Chip", In

Proc. of European Signal Processing Conference EUSIPCO’96, Vol. 1, Trieste,

Italy, Sept. 1996, pp. 284–287.

10. L. Wanhammar, "DSP Integrated Circuits", Academic Press, 1999.

11. M. Vadim, "Frequency Synthesis Theory and Design", Third addition, Wiley &

Sons, New York, 1975.

12. D. R. Zaghar, "A Hybrid Frequency Synthesizer using Digitally Controlled

Oscillator in Microwave Band", M.Sc. Thesis, Baghdad University, 1997.

13. N. Lindlbauer, "Application of FPGA’s to Musical Gesture Communication and

Processing", M.Sc. Thesis, Berkeley, 1999.

http://users.ids.net/~randraka

Journal of Engineering and Development, Vol. 9, No. 2, June (2005) ISSN 1813-7822

01

 List of Symbols

CLB: configurable logic block.

DDS: direct digital synthesizer.

DLL: delay locked loop.

DSP: digital signal processing.

FPGA: Field programmable gate array.

HDL: Hardware Description Language.

IOB: input/output buffer.

JHDL: Java classes HDL.

LC: logic cell.

LUT: look-up table.

RGV: Rational gain value.

VHDL: very high speed HDL.

