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 Low Cost and High Speed Look-Up Table Implementation 
of Xilinx FPGA 

 

 

 

 

 

 

 

 

 

 

 

 

Abstract 
 

There are two methods to implement LUT up to 7-bit depends on the type of Xilinx 

chip hardware and the software that can use in design and the code generation. The first 

method implements LUT as a RAM. This method gives high speed and requires a very high 

cost. 

The second method implements LUT as logic gates. This method requires special 

software and gives a low speed implies.  

This paper proposed a modification to the second method that will save the speed of 

the first method and low cost of the second method. It depends on the design of the LUT. 

Therefore it will not require special software.  
 

 
 

 ةـــــــلاصـالخ

وانى انبشايجياث انًسخخذيت في   Xilinxذ إنى حقُيت بج حسخُ-7سعت  LUTهُاك طشيقخاٌ نبُاء انجذاول انشقًيت 

وهيزِ انطشيقيت حكيوٌ  RAMنبُياء انجيذاول انشقًييت  هيى ذيكم را يشة حصًيى وحونيذ انشفشة. انطشيقت الأونى انًسخخذيت 

حكيوٌ  انيت انكهفت وراث سش ت  انيت. إيا انطشيت انثاَيت فخسخخذو انبواباث انًُطقيت وهزِ ححخيا  إنيى بشيجيياث ةاويت و

 إبطا يٍ انطشيقت انسابقت.

ف  هزا انبحث حى اقخشاح طشيقت نخحويش وحطويش انطشيقت انثاَيت بحيث حعط  َفس سش ت انطشيقت الأونيى ييك  هفيت 

 يقاسبت نهطشيقت انثاَيت دوٌ انحاجت إنى بشيجياث ةاوت.
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 1. Introduction  
 

A large number of system development and integration companies, labs, and 

government agencies (hereafter referred to as “the community”) exist that have traditionally 

produced DSP applications requiring rapid development and deployment as well as ongoing 

design flexibility. These applications are generally low-volume and frequently specific to 

defense and government requirements. This task has generally been performed by software 

applications on general-purpose computer 
[1]

. Often these general-purpose solutions are not 

adequate for the processing requirements of the applications and the designers have been 

forced to employ solutions involving special-purpose hardware acceleration capabilities. 

These special-purpose hardware accelerators come at a significant cost. The community does 

not possess the large infrastructure or volume requirements necessary to produce or maintain 

special-purpose hardware. 

Additionally, the investment made in integrating special-purpose hardware makes 

technology migration difficult in an environment where utilization of leading-edge technology 

is critical and often pioneered. Recent improvements in Field Programmable Gate Array 

technology have made FPGA’s a viable platform for the development of special-purpose 

digital signal processing hardware 
[1]

, while still allowing design flexibility and the promise of 

design migration to future  technologies 
[2]

. Many entities within the community are eyeing 

FPGA-based platforms as a way to provide rapidly deployable, flexible, and portable 

hardware solutions. 

Introducing FPGA components into DSP system implementations creates an assortment 

of challenges across system architecture and logic design, where system architects may be 

available, skilled logic designers is a scarce resource. There is a growing need for tools to 

allow system architects to be able to implement FPGA-based platforms with limited input 

from logic designers. Unfortunately, getting designs translated from software algorithms to 

hardware implementations has proven to be difficult 
[2]

. 

Current efforts like VHDL can be processed by traditional FPGA design flows. Other 

tools use derived languages based on C such as Handel-C 
[3]

, C++ extensions such as    

System C 
[4]

, or Java classes such as JHDL 
[5]

. These tools give designers the ability to more 

accurately model the parallelism offered of the underlying hardware elements. While these 

approaches attempt to raise the abstraction level for design entry, many experienced logic 

designers argue that these higher levels of abstraction do not address the underlying 

complexities required for efficient hardware implementations. 

Another approach has been to use “block-based design” 
[6]

 where system designers can 

behaviorally model at the system level, and then partition and map design components onto 

specific hardware blocks which are then designed to meet timing, power, and area constraints. 

An example of this technique is the Xilinx System Generator for the Math Works Simulink 

Interface 
[7]

. Using this tool, a system designer can “develop high performance DSP systems 

for Xilinx FPGA’s. Designers can design and simulate a system using MatLab, Simulink, 
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 and a Xilinx library of bit/cycle-true models. The tool will then automatically generate 

synthesizable Hardware Description Language (HDL) code mapped to Xilinx pre-optimized 

algorithms” 
[7]

. However, this block-based approach still requires that the designer be 

intimately involved with the timing, and control aspects of cores in addition to being able to 

execute the back-end processes of the FPGA design flow.  

 

2. Architectural Description of Virtex-II Array [8-11] 
 

The Virtex-II user-programmable gate array, shown in Fig.(1), comprises two major 

configurable elements: configurable logic blocks (CLBs) and input/output blocks (IOBs). 

i. CLBs provide the functional elements for constructing logic. 

ii. IOBs provide the interface between the package pins and the CLBs. 

iii. CLBs interconnect through a general routing matrix (GRM). 

  

 
Figure (1) Virtex-II architecture overview 

 
The GRM comprises an array of routing switches located at the intersections of 

horizontal and vertical routing channels. Each CLB nests into a Versa Block that also 

provides local routing resources to connect the CLB to the GRM. 

The Versa Ring I/O interface provides additional routing resources around the periphery 

of the device. This routing improves I/O routability and facilitates pin locking. The Virtex-II 

architecture also includes the following circuits that connect to the GRM. 
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 i. Dedicated block memories (BRAMs) of 4096 bits for each block. 

ii. Clock DLLs for clock-distribution delay compensation and clock domain control. 

iii. 3-State buffers (BUFTs) associated with each CLB that drive dedicated segmentable 

horizontal routing resources. 

Values stored in static memory cells control the configurable logic elements and 

interconnect resources. These values load into the memory cells on power-up, and can be 

reloaded if necessary to change the function of the device. 

Input/Output block in the Virtex-II IOB select I/O inputs and outputs that support a 

wide variety of I/O signaling standards. 

There is three IOB storage elements function either as edge-triggered D-type flip-flops 

or as level-sensitive latches. Each IOB has a clock signal (CLK) shared by the three flip-flops 

and independent clock enable signals for each flip-flop. In addition to the CLK and CE 

control signals, the three flip-flops share a Set/Reset (SR). For each flip-flop, this signal can 

be independently configured as a synchronous Set, a synchronous Reset, an asynchronous 

Preset, or an asynchronous Clear. The output buffer and all of the IOB control signals have 

independent polarity controls. 

Input path in the Virtex-II IOB input path routes the input signal directly to internal 

logic and/ or through an optional input flip-flop. An optional delay element at the D-input of 

this flip-flop eliminates pad-to-pad hold time. The delay is matched to the internal          

clock-distribution delay of the FPGA, and when used, assures that the pad-to-pad hold time is 

zero. Output path includes a 3-state output buffer that drives the output signal onto the pad. 

The output signal can be routed to the buffer directly from the internal logic or through an 

optional IOB output flip-flop. 

The 3-state control of the output can also be routed directly from the internal logic or 

through a flip-flop that provides synchronous enable and disable. 

 

3. Xilinx FPGA CLB Architecture [8-11] 
The basic building block of the Virtex-II Configurable Logic Block (CLB) is the logic 

cell (LC). A LC includes a 4-input function generator, carry logic, and a storage element. The 

output from the function generator in each LC drives both the CLB output and the D input of 

the flip-flop as shown in Fig.(2). Each Virtex-II CLB contains four LCs, organized in two 

similar slices, as shown in Fig.(3). 

In addition to the four basic LCs, the Virtex-II CLB contains logic that combines 

function generators to provide functions of five or six inputs. Consequently, when estimating 

the number of system gates provided by a given device, each CLB counts as 4 LCs. 

Virtex-II function generators are implemented as 4-input look-up tables (LUTs). In 

addition to operate as a function generator, each LUT can provide a 16 x 1-bit synchronous 

RAM. Furthermore, the two LUTs within a slice can be combined to create a 16 x 2-bit or 32 

x 1-bit synchronous RAM, or a 16x1-bit dual-port synchronous RAM. 
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 F5 in Fig.(3) multiplexer output in each slice combines the function generator outputs. 

This combination provides either a function generator that can implement any 5-input 

function, a 4:1 multiplexer, or selected functions of up to nine inputs. 

 

 
 

Figure (2) Detailed view of virtex-II slice 

 

 
 

Figure (3) A simplified structure of a CLB of virtex-II 



Journal of Engineering and Development, Vol. 9, No. 2, June (2005)                             ISSN 1813-7822 

 

06 

 Similarly, F6 multiplexer output combines the outputs of all four-function generators in 

the CLB by selecting one of the F5-multiplexer outputs. This permits the implementation of 

any 6-input function, an 8:1 multiplexer, or selected functions of up to 19 inputs. Each CLB 

has four direct feedthrough paths, two per slice. These paths provide extra data input lines or 

additional local routing that does not consume logic resources. 

 

4. Conventional Circuit Design using Xilinx FPGA [8] 
 

The characteristics of FPGA give a set of rules to reduce the cost and increase the speed 

of DSP systems are different from the rules that used in Boolean design. These rules are 

varied from FPGA to other depending on the type of FPGA. The rules that can be to built an 

optimal cost and speeds in Xilinx FPGA are that: 

i. 1-Divided the large circuit to small sub circuits with input pins less than 7-inputs, because 

the large input function is uncontrollable space and delay design. 

ii. 2-Each sub circuit has 4-inputs for minimum cost, because each 4-inputs function need to 

one cell and one delay. 

iii. 3-Each sub circuit has 6-inputs for maximum speed, because each 6-inputs function need 

to four cells (one CLB) and one delay. 

iv. 4-Each sub circuit has 5-inputs for optimal cost and speed, because each 5-inputs 

function need to two cells and one delay. 

v. 5-When the above rules are not satisfied try to use 3-inputs and not increase the input 

number over 6 inputs, because each 7-inputs function need to eight cells and two delay, 

when each 1,2,3-inputs function need to one cell and one delay. 

 

5. LUT Architecture [11-13] 
 

The Lockup Table (LUT) function is a function to convert the linear input data to 

sinusoidal output data. The basic architecture for the Lockup Table (LUT) is a ROM that 

stores the output data when the input data represents the address of ROM. The 

implementation of LUT by using ROM gives low cost LUT, but the LUT is a part from DSP 

system has other components which give high cost in ROM implementation. Thus the DSP is 

a part from larger systems not suitable to build in ROM. This mean that there is two solutions, 

first built LUT by ROM and other parts of over all system by using other technique such 

FPGA. That is meaning the system needs to moor than one chip and interfacing between these 

chips that increase the cost and complexity and reduce the speed. The second solution is 

redesigning the LUT to become suitable with the other parts technique (Xilinx FPGA).  
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 6. The Proposed Implementation Method 
 

This method depends on the separation of the nx1 LUT to (n-6) sub LUT (SLUT). Each 

SLUT is a 6x1 LUT depending on the possibility of Xilinx FPGA to implement any 6x1 LUT 

in one CLB. Then, a constant form of a digital function to match the parts of the LUT will be 

used. 

For example an 8x1 LUT shown in Fig.(4), has a function S that depend on 8 variables 

(ABCDEFGH). This function will generate a 16x16 cell Karnof map. It will divide to 4 units 

each one is an 8x8 cell sub_Karnof map that has a function (Ti) depending on 6 variables 

(CDEFGH). 

 

 ) f( A B TiS  3A B T2 TBA 1 B TA0 TB A  …………….…… (1) 

 

Each sub_function Ti will require one CLB (4 cells) so the collection function ƒ will be 

required to one CLB (4 cells). This is mean that the total cost of the 8x1 LUT is 20 cells       

(5 CLBs) as shown in Fig.(5). 
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Figure (5) Proposed method for 8x1 LUT 

 
7. Proposed Case Study for Evaluation 

 

The implementation of 10x10-bit LUT using v999999 chip using ISA4.1I directly will 

require 10,000 cells with a maximum speed 250 MHz. However, the conversion of the data of 

LUT to Boolean equation (that required to a hard work) will require 640 cells with a 

maximum speed 50 MHz. Thus the use of the proposed method 10x10-bit LUT will require 

1030 cells with a maximum speed 250 MHz but with 4 clock delay between input and output 

data as shown in Table (1).  

 

 

Table (1) The cost, speed and RGV for the three methods 
 

Method Total cost /cell Speed /MHz RGV 

Direct 10000 250 1 

Boolean equations 650 50 3 

Proposed 1030 250 9.7 

 
 

In table (1), the RGV is the rational gain value that can be calculated as follow: 
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 8. Conclusions 
 

The DSP systems have different functions with LUT. These systems will have a cost 

problem because the architecture of LUT is suitable with ROM. However the other parts such 

as adders have a high cost when implemented using ROM. The implementation of the system 

using Xilinx FPGA give a low cost for all parts except the LUT will has a very high cost. 

Therefore, the implementation of DSP systems using FPGA gives a total cost less than ROM. 

This paper shows the method of implement a very low cost and high speed LUT using Xilinx 

FPGA. 

The Xilinx FPGA is a good tool to build the DSP systems, but not all DSP circuits are 

suitable with the architecture of Xilinx FPGA such as LUT and some circuits. It needs to be 

redesigned to become suitable with conventional circuit design using Xilinx FPGA. 

The good partitions to LUT will give a low cost and high-speed DSP system in one chip 

FPGA. The DDS is an example has a DSP circuits suitable with FPGA and other circuit 

suitable with ROM and the old design use two chips first is FPGA and the other ROM or a 

very large FPGA chip. However, by using the proposed method the circuit of DDS built by 

using small to medium single FPGA chip. 
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 List of Symbols 
 

CLB:  configurable logic block.  

DDS:  direct digital synthesizer. 

DLL:  delay locked loop. 

DSP:  digital signal processing. 

FPGA: Field programmable gate array. 

HDL:  Hardware Description Language. 

IOB:  input/output buffer. 

JHDL:  Java classes HDL. 

LC:  logic cell. 

LUT:  look-up table.  

RGV:  Rational gain value. 

VHDL: very high speed HDL. 

 

 


