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Abstract

Inflatable dams are flexible cylindrical inflatable and deflatable structures made of
rubberized material attached to a rigid base and inflatable by air, water, or a combination
of air/water.

The interest in inflatable dams is increasing because of the ease of placement and
construction.

Behavior of air or water inflated dams is physically studied and analyzed under
different conditions of internal pressure, upstream and downstream heads of water.

Experimental data obtained on laboratory test facility for with air and/or water
inflated dams are presented and compared with the theoretical results based on a developed
computer program describing dam height, cross sectional profiles and dam cross sectional
area. Good agreement was obtained between theory and experiment results.
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1. Introduction

In the modern times the construction of hydraulic structures becomes essential due to
the increase in population, consumption rates and numerous uses against a limited resource of
water. In the choice of a suitable dam for the site, economic and technical aspects should be
carefully considered. With the advantages of the inflatable dams *71%11 hehavior and
stability of these dams have highlighted the importance of modeling inflated dam profiles for
design and planning purposes.

Prediction of the inflatable dam profiles has been studied by many researchers *31. For
these purposes, several mathematical models have been developed. Particular attention has
been devoted to the effects of internal pressure and external water pressure on the dam
stability 2381,

This paper explores the effects on the internal pressure and upstream head as well as the
inflation medium (air and water) under hydrostatic conditions on the behavior of the inflatable
dams Fig.(1).

The analysis of Harrison ! was applied to develop a computer program. Good
agreement was obtained between theory and experiment.
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Figure (1) Forces Acting on the Dam (Hydrostatic Condition)

2. Experimental Arrangement

The experiments were performed in rectangular glass walled flume having a length of
20 m, width of 0.9 m and a depth of 0.6 m. the discharge was measured with the help of a
rectangular sharp crested weir (. Water level and dam profile displacement, horizontally and
vertically, were taken with the help of profile gage ™.

Air pressure inside the dam model was measured with a water manometer tube. Air
compressor was used to inflate the air dam model. A piezometer connected to a steel column
of external diameter of 200mm was used to measure the water pressure inside the water dam
model. The steel column was also used to measure inflate the dam model by water.

A rubber material with the properties mention in Table (1) is used to build the models.
Two models of dams, air inflated dam and water inflated dam, were made from a rectangular
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rubber sheet with the perimeter length of 0.553m, membrane thickness of 0.001m and base
length of 0.15m have been employed ™.

Table (1) Membrane Properties

Material Thickness | Weight | Tensile Strength
(mm) (kg/m2) (KN/m)
Rubber 1 1.3 6.453

3. Analysis and Discussion

3-1 Comparisons between Experimental and Theoretical Results

A compression was carried out between the experimental of height and cross sectional
area of the inflated dam with those obtained from the theoretical analysis. A computer
program based on the finite elements technique has been developed to analyzed air-inflated
dams, and water inflated dams under hydrostatic conditions.

Tables (2) and (3) show the difference in dam height and cross sectional area for air-
inflated dams, and water-inflated dams respectively. Also the comparison of shape of the dam
between the experimental and theoretical results for some cases is included [Fig.(2) and (3)].

Table (2) shows that the mean percentage of differences for all values of dam height
and dam cross sectional area are 2.17%, 3.82% respectively. It can be seen that the higher
percentage differences are found when low inflated pressures or higher upstream head is
applied; this will increase the distortion of the dam and make the effect of end fixation of the
dam model on the central cross sectional profile is clear.

Figure (2), shows a comparison between the experimental and theoretical results of the
dam for some cases of low and high internal air pressures. It can be observed from Fig.(2)
that a good agreement exists for higher internal pressures (4kN/m?) while a bad agreement
exists with low internal pressure (2kN/m?) (Fig.2b), that is, for the same upstream head
(200 mm) and downstream head (O mm). On the other hand a good agreement is found with
low upstream heads (100 mm). Such behavior is attributed to the effect of end fixation of the
dam model on its center. In Table (3), the mean percentage of differences for all values of
dam height and dam cross-sectional area are 4.53% and 2.63% respectively. The higher
percentage differences, same as in air-inflated dam, was found with low inflated pressures
(306 mm), Fig.(3).
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Table (2) Comparison between Theoretical and Experimental Dam

Height and Cross Sectional Area (Air Inflated Dams-Static Conditions)

s o Dam Height | & _ Cross-section =
S |<5E| Vs | Dis (mm) Q5 Area (m*) Qo
7 S g E Head | Head é P é i—:
= [ £€& <[ mm) | (mm) Exp. | Theo. | @S | Exp. | Theo. | o7
1 50 0 205.6 | 204.09 | 0.73 | 0.0380 | 0.03889 | 2.34
2 100 0 208 |205.67 | 1.12 | 0.0381 |0.03872| 1.63
3 150 0 211.9 | 207.4 | 2.12 | 0.0366 | 0.03825| 4.51
4 15 0 212.6 |1 194.26 | 8.63 0.038 |0.03525| 7.24
5 200 550 | 213.6 | 201.01| 5.89 | 0.0378 [0.03597 | 4.84
6 100 | 216.2 | 209.5 | 3.10 | 0.0379 |0.03641| 3.93
7 150 | 221.8 | 218.92 | 1.29 |0.03746|0.03667 | 2.10
8 50 0 209 206 1.44 | 0.0396 | 0.0396 | 0.00
9 2 100 0 210.8 | 2075 | 157 | 0.0392 | 0.0395 | 0.77
10 150 0 2134 | 209.4 | 1.87 | 0.0389 | 0.0392 | 0.77
11 200 0 2146 | 206.1 | 3.96 | 0.0391 | 0.0380 | 2.81
12 50 0 213.6 | 210.1 | 1.63 | 0.0395 |0.04114| 4.15
13 5 100 0 214.6 1 211.38| 1.5 |[0.03895]0.04085| 4.87
14 150 0 216.4 | 212.3 | 1.89 |0.04107]0.04071| 0.88
15 200 0 218 | 212.1 | 2.71 |0.04072]0.04022 | 1.23
16 50 0 216.9 | 214.33 | 1.18 |0.04033| 0.0426 | 5.63
17 N 100 0 217.6 | 215 1.19 ]0.03902 | 0.04241| 8.68
18 150 0 219.3 | 216.12 | 1.45 |0.03988]0.04232| 6.12
19 200 0 220.2 | 217 1.45 | 0.0411 | 0.042 2.19
20 50 0 222.2 | 219.35| 1.28 |0.04167 | 0.04417 6
21 100 0 223 | 219.72 | 1.47 |0.04241|0.04403| 3.82
22 150 0 224.3 1220.92| 15 |[0.04091] 0.0440 | 7.55
23 5 0 225.7 | 221.2 | 199 |0.04185]0.04364 | 4.28
24 200 50 225.8 | 2214 | 195 |0.04241]0.04374| 3.14
25 100 | 226.8 | 2226 | 1.85 | 0.0421 |0.04363| 3.63
26 150 | 228.2 | 2245 | 1.62 |0.04122]0.04377| 6.19

Mean 2.17 3.82
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Table (3) Comparison between Theoretical and Experimental
Dam Height and Cross Sectional Area
(Water Inflated Dams-Static Conditions)

e Dam Height | & _ Cross-section | &

Test | <5€ | s | DIs (mm) 05 area (m*) o3
L O

No. | © &= | Head | Head 82 &
2g < | (mm)| (mm) | Exp. | Theo. <\§ = | Exp. | Theo. g g=
1 50 0 186.9 | 177.9 | 4.82 | 0.03704 | 0.03814 | 2.97
2 100 0 188 | 177.5 | 5.58 | 0.03721 | 0.03753 | 0.86
3 N’g 150 0 190.1 | 175.8 | 7.52 | 0.03826 | 0.03705| 3.16
4 § E 0 191.8 |172.91] 9.85 | 0.0398 | 0.03627 | 8.87
5 ™ 170 50 192 | 173.1 | 9.84 | 0.03918 | 0.0363 | 7.35
6 100 194 | 184.8 | 4.74 | 0.03928 | 0.03765 | 4.15
7 150 | 198.4 | 194.2 | 2.12 | 0.03868 | 0.03882 | 0.36
8 —~ 50 0 198.9 | 191 | 3.97 | 0.03932 | 0.03993 | 1.55
9 gwg 100 0 199.7 | 192.1 | 3.81 | 0.03944 | 0.03986 | 1.06
10 N fr 150 0 201.6 | 192 | 4.76 | 0.04079 | 0.03983 | 2.35
11 — 170 0 202.3 | 189.6 | 6.28 | 0.03933 | 0.03915 | 0.46
12 50 0 206.9 | 199.1 | 3.77 | 0.04254 | 0.04165 | 2.09
13 100 0 207.7 | 199.8 | 3.80 | 0.04273 | 0.04157 | 2.71
14 o~ 150 0 209.3 | 200.9 | 4.01 | 0.04197 | 0.04134 | 1.50
15 = % 0 209.4 | 200.5 | 4.25 | 0.04331 | 0.04127 | 4.71
16 LT 50 209.7 | 201.3 | 4.01 | 0.04331]0.04114 | 5.01
17 = 170 100 211 | 203.7 | 3.46 | 0.04045 | 0.04136 | 2.25
18 150 | 2135 | 206.1 | 3.47 | 0.04228 | 0.0414 | 2.08
19 170 | 214.6 | 206.5 | 3.77 | 0.0419 |0.04148 | 1.00
20 —~ 50 0 213.5 | 205.7 | 3.65 | 0.042 |0.04315( 2.74
21 o N§ 100 0 2141 | 206.3 | 3.64 | 0.04207 | 0.04296 | 2.12
22 © “ZD 150 0 215.4 | 207.6 | 3.62 | 0.04321 | 0.04304 | 0.39
23 — 170 0 2159 | 207.1 | 4.08 | 0.04446 | 0.04292 | 3.46
24 < 50 0 219.1 | 211.7 | 3.38 | 0.04472 | 0.04494 | 0.49
25 S E 100 0 219.8 | 212.9 | 3.14 | 0.04466 | 0.04493 [ 0.60
26 ™~ E 150 0 221.1 | 213.2 | 3.57 | 0.04337 | 0.04493 [ 3.60
27 — 170 0 2215 | 213.7 | 3.52 | 0.04337 | 0.04467 | 3.00
Mean 4.53 2.63
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Figure (2) Experimental and Theoretical Shape of Air-Inflated Dam

|| o

Figure (3) Experimental and Theoretical Shape of Water-Inflated Dam

3-2 Behaviors of Inflatable Dams

Analysis for the results obtained theoretically from the computer program was carried
out to investigate the behavior of inflatable dams under different conditions of internal
pressure and upstream head for both air and water inflated dams under hydrostatic conditions.
The effect of base length, membrane thickness, membrane perimeter length on the behavior of

inflatable dams is also included in this work.
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3-2-1 Effect of Increasing Internal Pressure for Constant Upstream and
Downstream Head

Figures (4) and (5) show the effect of rising internal pressure on the cross-sectional
profile of air-inflated dam and water-inflated dam respectively. Figure (4) shows the change
in cross-sectional profile for air-inflated dam when increasing the internal air pressure from
1.5kn/m? to 5kn/m? with constant upstream head of 200mm and downstream head equal to
zero. Large deformation occurred with low internal pressure, the change in cross-sectional
profile of dam is due to change in forces on element and therefore causing a change in tension
and slope of the element ™.

Figure (5) shows the behavior of water-inflated dam when increasing the internal water
pressure from 306mm to 714mm with constant upstream head of 150mm and downstream
head equal zero. Again as in air-inflated dam large deformation occurs with low internal
pressures and the dam laying flat on the downstream side with low internal pressure
(306mm). The curve in Fig.(6) shows a steep rise in dam height for air-inflated dam when
increasing inflated pressure from 1.5kn/m? to 2kn/m?, however, more increasing in inflating
pressure makes the curve flatter reducing the rate of increasing in dam height. In Fig.(7) the
dam height for water-inflated dam has a steady increased when the inflating pressure
increased from 306mm to 714mm.

Figure (4) Effect of Increasing Internal Pressure on the Behavior of
Air-Inflated Dams for Constant Upstream Head and Downstream Head
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Figure (5) Effect of Increasing Internal Pressure on the Behavior of
Water-Inflated Dams for Constant Upstream Head and Downstream
Head

3-2-2 Effect of Rising Upstream Head and Internal Pressure for Constant
Downstream Head

The effects of rising upstream head and internal pressure on the behavior of inflatable
dams are investigated through the following parameters:
» Tension in the membrane.
» Dam height (height of dam crest).
» Upstream membrane slope (at upstream fixture).
» Downstream membrane slope (at downstream fixture).
» Cross-sectional area of the dam membrane elongation in the membrane.

3-2-2-1 Tension in the Membrane

The average tension between the upstream fixture and downstream fixture has been
computed. Figures (8) and (9) show that the tension in the membrane decreases with
increasing upstream head also the tension was increased when the internal pressure increased.
The decrease in the membrane tension when increasing the upstream head may be due to the
increasing in the force f, on the element and therefore the tension in the membrane decreased.
At the same time when decreasing the internal pressure, the components of forces F; and F,
are decreased causing a decrease in the membrane tension ™.
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3-2-2-2 Dam Height

Figure (10) shows the dam height of air-inflated dam increases with increasing the
upstream head for all inside pressure. This behavior may not continue depending on the
internal pressure. For example, when the internal air pressure increased to 5kn/m? and
upstream head equal to 180mm the dam height reaches a peak value of 221.98mm and
decrease to 221.03mm when increasing the upstream head to 220mm. Figure (11) shows the
variation of dam height with increasing upstream head for water-inflated dam. Similar as in
air-inflated dam but with low water pressures (306mm), the dam height decreases as upstream
head increasing. The dam height rises slightly when the upstream head increasing until the
dam height reach a peak value but falls slightly as upstream head increasing (water pressure
408mm, to 510mm).

3-2-2-3 Upstream Membrane Slope

Figures (12) and (13) show the variation of upstream slope (slope at upstream fixture)
with increasing upstream head and internal pressure for air and water inflated dams. The
upstream slope decreases when increasing upstream head, this was due to the deformation
towards the downstream side. In Fig.(12), the rate of decrease in upstream slope is greater for
low internal pressure (3kn/m?) than high internal pressure (5kn/m?). The same behavior was
found in water-inflated dams (Fig.13), but the upstream slope is higher for low water pressure
than upstream slope of high water pressure with low upstream head. But when increasing the
upstream head, the upstream slope for high water pressure is greater than those for low water
pressure. This may be due to that the dam begins to lie flat at the upstream fixture when the
internal pressure and upstream head are decreasing.

3-2-2-4 Downstream Membrane Slope

Figure (14) shows the downstream slope is higher for low air pressure than that of high
air pressure with low upstream head. But when increasing the upstream head, the downstream
slope for high air pressure is greater than that for low air pressure. In Fig.(15), the
downstream slope decreases when the upstream head increases for all water pressures with no
convergence observed to the graphs. When the dam is inflated by low water pressure
(306mm) and upstream head increases above 100mm the dam is lid at the downstream fixture
(downstream slope equal zero).

3-2-2-5 Cross-Sectional Area

From Fig.(16), the cross-sectional area for air-inflated dams is increased when
increasing internal air pressure and decreases as the upstream head increases. Also the rate of
decreasing in cross-sectional area of the dam for low air pressure (3kn/m) air pressure is
higher than when the dam inflated with high air pressure (5kn/m?).

Same behavior was found in water-inflated dams (Fig.17), the cross-sectional area
increased when increasing internal water pressure and decreased when increasing upstream
head.

vV
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3-2-2-6 Elongation in the Membrane

The stretch in the membrane original length has been usually noticed this, occurs due to
the applied loads (upstream head, downstream head and internal pressure) and can be found
from the stress-strain relationship ™.

The elongation of membrane material was found by subtracting the original length from
the new length (stretch length). Figures (18) and (19) show that the elongation increases
when the internal pressure increases or when the upstream head decreases. It is well known
also that the elongation in membrane material is directly affected by the properties of the
materials of the membrane ™.

3-2-3 Effect of Variation in Membrane Perimeter Length

The membrane tension and dam height were investigated by increasing membrane
perimeter length from 450mm to 650mm for both air and water inflated dams. Figure (20)
shows that when increasing membrane perimeter length for air-inflated dam results in
increasing in the membrane tension. Also the height of the dam increases when increasing the
membrane perimeter length Fig.(21).

The same behavior was found in the case of water-inflated dam [Figs.(22) and (23)] but
with low rate of increasing in tension and height compared with air-inflated dam.

3-2-4 Effect of Variation in Membrane Thickness

The effect of variation in membrane thickness on the tension and the dam height was
investigated by increasing membrane thickness from0.5mm to 3.5mm. Figures (24) and (25)
show the behavior of air-inflated dam when increasing membrane thickness. Increasing in
membrane thickness produce a decrease in tension of the membrane also the height of the
dam shall decreases when increasing membrane thickness.

The behavior of water-inflated dam when increasing membrane thickness is the same as
air-inflated dam. But the over all rate of decreasing is lower than that in the case of
air-inflated dam [Figs.(26) and (27)].

3-2-5 Effect of Variation in the Base Length of the Dam

The effect of variation in the base length of the dam (distance between upstream and
downstream anchor) on the tension in membrane and dam height was investigated for both air
and water inflated dams by increasing in base length from 120mm to 250mm as shown in
Figs.(28, 29, 30) and (31) respectively.

For air-inflated dam, as the base length increasing the membrane tension also increases,
Fig.(28), the dam height increases as well, reaching its peak value at 219.22mm with internal
air pressure equal to 4kN/m2, however, more increasing in base length up to 220mm, the dam
height starts to decrease in opposite trend Fig.(29).

In the case of water-inflated dam the same behavior is found as in air-inflated dam that
IS, increasing in the base length causes an increase in tension in the membrane. However, the
peak value of the height of the dam shall reach 197.15mm,occurs at a base length of 220mm,
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beyond this value the height of the dam starts to decrease in reverse trend(internal water
pressure equal 408mm) [Fig.(30) and (31)].
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4. Conclusions

For a laboratory model of rubber inflatable dam, the shape, dam height and cross
sectional area, which obtained from the theoretical analysis under static conditions, were
compared with those obtained from the experimental work. In general, it was found a good
agreement between the experimental measurements and the results of theoretical analysis
obtain from the computer program.

From the previous analysis, the tension in the membrane and dam height of air-inflated
dam was higher than that for the water-inflated dam for the same conditions of internal
pressure, upstream head and downstream head, this means that air-inflated dam support
upstream head greater than water inflated dam. Also the stretch in the membrane of
air-inflated dam is higher than that of water-inflated dam, this is due to the high tension in an
air-inflated dam and this may cause a reduction in the dam life.

As shown in Fig.(12) when increasing the upstream head of air-inflated dam from
50mm to 175mm with internal pressure 4kN/m2 the decreasing in upstream slope is 16.9°. In
comparison with water inflated-dam at the same condition (408mm internal pressure) the
decreasing in upstream slope is 37.98° when increasing of upstream head from 50mm to
175mm, Fig.(13). This means that the magnitude of deformation depends on the type of
medium of inflation. The inflatable dams become rigid when inflated to high pressure which
make the deformation shape to be insignificant, however, the upstream head will change
accordingly.
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Notations

Fu = Upstream hydrostatic force on the element.
Fa = Internal air force on the element.

Fwa = Force due to internal water pressure.
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Appendix A
BASIC EQUATIONS AND THEORETICAL ANALYSIS

A-1 Forces Acting on an Upstream Element

where:
Fu = Upstream hydrostatic force on the element per unit length (F/L).
y = Specific Weight of the water (F/L®).
hc1= Depth of center of the upstream element below the upstream free water surface (L).
| = Length of the element (L).

Fwa:Y.hc3.| ................................................................................ (A'2)

where:
Fwa = Internal water force on the element per unit length (F/L).
y = Specific Weight of water inside the dam (F/L?).
Hcs = Depth of center of the upstream element or downstream element below the Internal
free water surface (L).

Fa = pia.l .................................................................................. (A'3)

where:
F, = Internal air force on the element per unit length (F/L).
Pia = Internal air pressure of the dam (F/L2).

where:
Fw = Force due to weight of element per unit length (F/L).
w = Weight of the element per unit area (F/L2).
Knowing the properties of inflation fluid, and the dam membrane material, the forces on
the element can be calculated using the previous equations.
Considering the horizontal and vertical equilibrium of these forces on element AB see
Fig.(A.1b).
For horizontal equilibrium:

Te C0S05 = Ta COSOA+ (Fa + Fua— Fu). SINOA wvvvvvvrrerereeeeseeseeereesesssessnenene (A-5)

For vertical equilibrium:

Tg SinOg = T SinOA + Fuat (Fu 5+ Fua ) COSOA cereeeeeresnnneeceeccoriinennnns (A-6)
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where:
Ta = tension at node A per unit length (F/L).
04 = slope of element AB at node A.
Tg = tension at node B per unit length (F/L).
0g = slope of element AB at node B.

A-2 Forces Acting on the Downstream Element

The analysis for the downstream element is similar to that for the upstream element but
the forces F, equation (A.1) is equal to zero, and it is necessary to take into account the effect
of the downstream head F.

where:
Fs = Downstream hydrostatic force on the element per unit length (F/L).
Hc = Depth of center of the downstream element below the downstream free water surface
(L).
It should be noted that the forces F,, F4 can not both act on the same element at the same
time.

=L

Upstream
Dy | Hy head

1 == A

Downstream
head Hgq

|

(a) Forces acting on the dam

AA
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Upstream element Downstream element

(b) Forces acting on an element
Figure (A-1) Forces Acting on the Dam (Hydrostatic Condition)

A-3 Initial Values of Tension and Slope

To obtain the initial trial values of tension and slope of the first upstream element
assume the shape of the membrane to be circular (Parbery, 1978), the tension in the membrane
T can be found from the following expression:

Where:
T = Maximum tension force of the membrane material per unit length (F/L).
pi = Internal pressure (F/L?).
ri = Initial radius of curvature of the dam (circular) (L).
Assuming the downstream slope equal to zero, the horizontal equilibrium of static force
acting on the dam (Fig. A.1a) is:

2y(Hy) = THTCOSO14HV2Y(Ha)? oo (A-9)

where:
0, = Upstream slop of the dam at upstream fixture.
H, = Upstream head (L).
Hq = Downstream head (L).
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A-4 Co-Ordinate of Nodes of the Dam Profile

Stresses can be calculated from the following expression:

where:
o = Stress in the membrane material (F/L?).
T = Tension of the membrane material per unit length (F/L).
t = Thickness of membrane material (L).
Knowing the initial slope and new length (I+Al) of the first element, and the co-ordinates
of the first node [assumed (0,0)], the co-ordinates of the second node (X, y) can be found
(Fig. A.2, step 4) from the following equations:

X2 (1 ALY, COSB v eeesessseeseesses s eessessseeseessesssseseeesee s (A-11)
Y = (14 AL SINO covvveeeeeeeeeeeeeeeeeeeeseeeeeeeeeee e eesse s sseseee e s sseeee e (A-12)
/") ‘\
// T
g /7
/ + 7
."/ Z
| 0 02 1/ 01
Step 1 Step 2

((1+Al) coso4, (I+Al) sinB,4)

"\lﬁ‘\’7 2, (x,v¥)
P
/ -
' / _
4 0, VAL
Step 3 Step 4

Figure (A-2) Co-ordinates of Nodes of the Dam Profile

A-5 Improving Initial Values of Tension and Slope

The improved values of T and 0 are determined numerically from Newton's expressions:

Timproved = T = (Xsylse = y SX/SO) / Z cecececceseccsctcsscecsscccsssesessssecsncscs (A'13)

Oimproved = 0 = (Y. SXIST = X0 SY/ST) / Z evvrveeeeeeeeeerrrreeeeeeseeeennnnane. (A-
14)
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where:
Z = (OX/OT. 8Y/30) - (BY/OT. OX/BO) vevvnrnerernrierurniierurnrserasnssesasnrennn (A-15)
Upstream face Downstream face
T X Last node |
K
8 1Y

(a) Analysis when assuming T, ©

T+0T

x + Ox/OT. 8T
5 by + oyt 8T
(b) Analysis when assuming T+38T, 6
T x + Ox/60. 66
0+56 y + dy/d6. 66

(c) Analysis when assuming T, 6+58

 Tunprovea= T - (x. By/08 - y. 5x/58) / z |
| Bimproved = 8 - (y. OX/BT - x. dy/dT) / z ‘

| Where z = (5x/5T. y/56) — (By/ST. 5x/56) |
{ ) ]

(d) Improving the estimated values of T and 6
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Figure (A-3) Improving Initial T and 6 to Reduce the Miscloses
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Appendix B
COMPUTER PROGRAM AIDED

Where
Xm Ym = calculated miscloses of
the last node

Viol = given tolerance of
miscloses of the last
node — o
— Read Input Data
Call Inits = Calculate initial \ J
frial values of tension and
slope . v .
Call Inits
(- J

!

[ Analyze the inflatable dam ] <

No [Adjust initial trial values of
tension and slope of first
element

Print the out put results ]

r

Yes
No

Figure (B-1) Flow Chart of the Computer Program Aided
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