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Application of a Numerical Moving Boundary Model for 
Prediction of Bubble Growth Rate in Boiling of Pure  

Liquids and Miscible Binary Mixture 
             
             
             
             
             
             

    
 

Abstract 
 

This investigation deals with the estimation of bubble growth rate during nucleate pool boiling of 

pure liquids and miscible wide boiling range binary mixture such as n-Pentane/Tetradecene mixture. 

Understanding the process of heat exchange between the heating surface and the adjacent liquid 

during boiling should start from the ability to understand the mechanism of bubble growth rate and 

departure parameters (diameter and frequency). For binary mixtures, the mass balance of the more 

volatile component (n-Pentane) and energy balance at the vapor/liquid interface were used to predict 

the bubble radius, R(t), as a function of time. Whereas, for pure liquids the energy balance at the 

bubble boundary was used to estimate the bubble radius together with the temperature distribution in 

the liquid domain.  

The bubble growth rate of binary mixtures predicted by this model was compared with existing 

theories. The discrepancy in the bubble growth constant between this analysis and those of other 

investigators was explained and verified by the present model. The model of pure liquids showed well 

agreement with available experimental data. 

 

 
 

 ةــــلاصـالخ
البحث يتعامل مع التخمين النظري لمعدل نمو الفقاعة خلال الغليان الحوضي للسوائل النقية أو الخلائط الثنائية 
المتجانسة مثل بنتان/تتراديكان. إن فهم عملية التبادل الحراري بين السطح الساخن وطبقة السائل المتاخمة له أثناء عملية 

هم النظام القائم لمعدل نمو الفقاعة والعوامل الداخلة والمؤثرة عند الانفصال من السطح )القطر الغليان تبدأ من إمكانية ف
والتكرار خلال الثانية الواحدة(. في حالة الخلائط المتجانسة فقد تم استخدام الاتزان الكتلي للعنصر الأكثر تطايراً )البنتان( 

صل بين السائل والبخار( والاتزان الحراري لغرض التنبؤ لنصف قطر ضمن مكونات الخليط عند جدار الفقاعة )السطح الفا
. أما في حالة السوائل النقية فإن الاتزان الحراري عند جدار الفقاعة قد تم استخدامه للتنبؤ بقيمة R(t)الفقاعة بدلالة الزمن، 

R(t) .وكذلك إيجاد التوزيع الحراري خلال السائل المجاور للفقاعة 
اعة المتولدة خلال الغليان الحوضي والمحسوب بواسطة هذا البحث قد تم مقارنته مع النظريات المتوفرة معدل نمو الفق

في هذا المجال. الاختلاف بمعدل نمو الفقاعة للخلائط المتجانسة والمحسوب بهذا البحث عن تلك المحسوبة باستخدام النظريات 
. النموذج الخاص بالسوائل النقية قد أظهر مطابقة بصورة جيدة مع المتوفرة قد تم تفسيره وإثبات صحته بين طيات البحث

  النتائج العملية المتوفرة.
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The asymptotic bubble growth stage is the dominant period of the bubble life, since the 

earlier stage, which is controlled by inertia and surface tension forces, occupies a very short 

period. Rayleigh 
[1]

, obtained the velocity at the boundary at the liquid/vapor interface of inviscid 

and incompressible liquid with uniform pressure in the form: 
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and the equation of motion as: 
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Plesset and Zwick 
[2]

, took into consideration the cooling effect caused by the vaporization 

at the bubble boundary. Their formula of bubble growth rate has the expression: 
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Forster and Zuber 
[3]

, extended the Rayleigh equation and using the Clausius-Clapeyron 

relation: 
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To introduce the temperature difference, ∆T=[T(R) – Ts∞], to the equation. Here, TS∞ is the 

saturation temperature corresponding to the pressure p∞. The final form of their formula is:                                                                                              
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Scriven 
[4]

, in an analysis of bubble growth rate in pure and binary liquid mixtures took into 

account the radial convection effect on the bubble growth which results from the unequal 

densities of the liquid and vapor phases, convection effect.  

The energy equation which determines the temperature distribution in the liquid for 

incompressible fluid with no viscous dissipation and no energy fluxes other than ordinary heat 

conduction was expressed as: 
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The mass balance equation for the more volatile component for constant and uniform liquid 

density, constant diffusivity and no mass fluxes other than ordinary diffusion, was written as 

follows:                   
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Scriven solved eq.(6) for pure liquids and binary mixtures with bubble growth rate 

expression in the form: 
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The above equations are applied for large superheats for pure liquids and binary mixtures 

respectively, and 
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Scriven 
[4]

, solution implied that the temperature and concentration at the bubble boundary 

remain constant throughout bubble growth. 

Van Stralen 
[5]

, extended the theory of Scriven 
[4]

 concerning the bubble growth rate in 

binary mixtures. His model was based on the fact that the bubble growth is accompanied by 

simultaneous cooling of a superheated liquid microlayer adjacent to the bubble wall. The growth 

constant for free bubbles was expressed in the form:        
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The bubble radius as a function of time is                                                                   
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The growth rate constant, c1,m is a minimum for a low concentration of the more volatile 

component in a binary mixture at which the ratio (δT/Gd) is a maximum. Here, δT refers to the 

temperature difference between the bulk saturation temperature corresponding to the bulk 

composition and that at the bubble boundary, Gd is the vaporized mass diffusion fraction. This 

ratio is calculated graphically from the equilibrium diagram of the binary mixture considered. 

Van Stralen 
[6]

 later suggested introducing a modified Jakob number for binary mixtures to 

account for the effective temperature driving force in mixtures defined as: 
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Therefore, eq.(3.a) has the following form for binary mixtures: 
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The modified Jakob number is equal to that of pure liquids and azeotropic mixtures since 

(δT=0) then. 

Han and Griffith 
[7]

, developed a model to describe the bubble growth rate in a nonuniform 

temperature field. They explained the importance of the "waiting period" between the departure 

of a bubble and the nucleation of another bubble from the same site. During this period, the site 

and the surrounding area of the heating surface are flooded with bulk liquid. The thermal layer 

builds up again until the temperature and other conditions at the boiling site are right for 

nucleation. Bruijn 
[8]

, used the same form of eq.(6.a) and eq.(6.b) with ignoring the effect of 

convection term which results from the change of density accompanying evaporation (ε=0). He 

represented the bubble radius in the form R(t)=c1 t
1/2

  for asymptotic growth and constant values 

of concentration and temperature on the moving boundary, hence c1  is the bubble growth 

constant. 

Benjamin and Westwater 
[9]

, measured the boiling bubble growth rate in mixtures of 

water/ethylene glycol at atmospheric pressure. The experimental data showed that the variation of 

R(t) with time had an exponent of (0.4) rather than (0.5) as predicted by Scriven 
[4]

. Yatab and 

Westwater 
[10]

, showed that their experimental data of ethanol/water and ethanol/isopropanol 

mixtures boiling at atmospheric pressure gave the exponents of (0.32) and (0.27) for the time 

respectively. Those values were less than the predicted value of (0.5) of Scriven 
[4]

. 

Many investigators such as Calus and Rice 
[11]

, Calus and Leonidopoulos 
[12]

, Mikic and 

Rohsenow 
[13]

, and Thome 
[14]

, have employed the bubble growth rate, bubble departure diameter 

with or without nuclei population on the heating surface, to estimate the nucleate boiling heat 

transfer coefficient and heat flux. 

Hence, it is very important to concentrate on the prediction of bubble growth rate as a 

starting point for understanding the boiling phenomenon. Most of the models used to predict the 

bubble growth rate reviewed above are restricted by the initial and boundary conditions. To 

establish a new approach to predict the bubble growth rate in pure liquids and binary mixtures, a 

moving boundary numerical analysis based on the finite difference scheme was developed in this 

investigation. 

 

2. Model Statement 
 

The object of the model described in this research is to determine the bubble radius as a 

function of time in the form, R(t)=c1 t
n
. In binary mixtures, the vapor/liquid interface position 

with respect to a fixed point in space, temperature and concentration can be obtained at any time 

(t) by using the energy and mass balance equations there. This requires knowledge of the 

instantaneous temperature and concentration gradients at the interface. To obtain such 

parameters, instantaneous knowledge of the concentration and temperature at the bubble interface 

and in the liquid close to the bubble boundary are required. In the mixture case, solution of both 
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mass diffusion and energy equation are required to do this. For pure liquids, only the temperature 

gradient at the bubble boundary is required to trace the bubble radius at any time (t), then the 

solution of only the energy equation is required. 

The model of the bubble growth rate is therefore, based on the general equations controlling 

the heat and mass transfer at the vapor/liquid interface and temperature and concentration 

distribution in the liquid in the vicinity of the bubble boundary. 

 

3. Mathematical Model 
 

In this model, the bubble is considered to have a spherical shape and symmetrical. 

Therefore, the temperature and concentration everywhere are only a function of position (r) for 

any specified time. Figure (1) shows the position of the bubble boundary and at a point (i) in the 

liquid away from the interface at time (t), solid lines, and (t+∆t), dashed lines. Let us assume that 

the bubble and point (i) radii at time (t) are R(t) and ri (t) respectively. After a time step (∆t), the 

bubble expands to radius R(t+∆t). The point (i) has moved to position ri (t+∆t). The object is to 

find R(t+∆t) and ri (t+∆t) in addition to the new temperature and concentration at these positions. 

       

             

             

              
                (a) Liquid Velocity Derivation                             (b) Finite Difference Scheme 
 

Figure (1) Bubble Growth Finite Difference Scheme 
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3-1 Bubble Boundary 

The mass balance of the more volatile component at the bubble boundary is expressed by 
[4]

 

in the form: 
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which can be transformed for a time step (∆t) as follows: 

 

Rr
12

.

1

2

t

3

tt

3 )
r

C
(D)t(R4)}R(uR{C)t(R4})yR()yR{

t3

4










……(12.b) 

 

The left hand side of the above equation is the rate of change of mass of the more volatile 

component in the vapor. The first term on the right represents the evaporated mass of the more 

volatile component due to the density difference between the vapor and liquid phases, convection 

term. The last term is the mass transfer of the more volatile component due to diffusion. 

The energy balance at the bubble interface was derived to avoid any approximation made 

by Scriven 
[4]

, such as constant internal energy and vapor density which are functions of 

composition in addition to temperature for binary mixtures. It can be written in the form: 

 

WQQU coev    ……………………………………………………………. (13) 

where (∆Uυ ) is the rate of change of the vapor internal energy, (Qev ) and (Qco) are the rate of 

heat transfer to the bubble due to evaporation and conduction respectively. The last term (W) is 

the rate of work done on the surrounding liquid due to the bubble expansion during (∆t) time, 

where: 
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The convection term in eqs.(12.b) and (13) can be formulated as a function of the rate of 

change of the vapor mass during time (∆t) in the form: 
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Then, equations (12.b) and (13) can be written in the forms: 
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In the present forms of the mass balance, eq.(14), and the energy balance, eq.(15), the mass 

fraction of the more volatile component, (y), and the vapor internal energy were allowed to vary 

with time. These equations were solved simultaneously by using the Newton iteration method, to 

obtain the new vapor composition after time (∆t) and the new radius of the vapor bubble. 

Assuming an equilibrium condition between the vapor and liquid at the interface determines 

the temperature at the bubble boundary which in turn fixes the concentration there. The 

temperature at the vapor/liquid interface is the saturation bubble point temperature, (TS) at the 

bubble wall composition and the ambient pressure, operating pressure of the boiling process. 

Therefore, the relation between the bubble wall temperature and composition may be presented in 

the form TS(X,p). 

 

3-2 Liquid Domain 

In the liquid domain, eq.(6.a) and eq.(6.b) must be used to predict the rate of temperature 

and concentration distribution throughout the liquid in the vicinity of the bubble wall. The 

temperature distribution in the liquid domain may be written for moving grid line, (i), in terms of 

a position (i) fixed in space as: 
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Therefore, eq.(6.b) may be expressed as: 
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To simplify the application of eq.(16), it was decided to move each node with the local 

velocity of the liquid, u(r)=v(r). Therefore, the last term of eq.(16) is zero. Hence: 
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The above equation was solved for an unequal mesh size, since the nodes were moved with 

different velocities as a function of position. Therefore, an energy balance over a control volume 

must be derived for temperature prediction as a function of position and time, T(r,t). Referring to 

Fig.(1), the energy balance can be written in the form: 
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where Qi-1→i and Qi+1→i are the heat conduction components from nodes (i-1) and (i+1) 

respectively. ∆Qi must equal the rate of change of the internal energy of the liquid in the control 

volume around the node (i). 

The implicit method which is stable for all values of (∆t) and (∆r) was used to derive a 

formula suitable for prediction of temperature distribution throughout the field considered in the 

form: 
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The above equation was applied at the (N-2) nodes in the liquid region of the finite 

difference scheme. 

An analogous equation to that of the energy equation in the system, eq.(19), was derived for 

the mass conservation in the liquid domain 
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ii1ii1i MMM     ……………………........................................................... (20) 

 

where Mi-1→i and Mi+1→i are the mass diffusion components to the control volume whose center is 

(i) from the neighboring nodes (i-1) and (i+1) respectively. (∆Mi) is the rate of change of mass of 

the control volume in equation, where 
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In the above expressions ∆1=(ri-ri-1) and ∆2=(ri+1-ri) for node (i) in the domain considered. 

Substituting these quantities of (Mi+1→i, Mi-1→i & ∆Mi) in eq.(20) yields an equation similar to 

eq.(19) in the form: 
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Equation (21) is also applied for (N-2) nodes in the liquid region. Here, the coefficients are 

defined as those in eq.(19) with B2 expressed as follows: 
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3-3 Initial and Boundary Conditions 

The initial temperature at the bubble boundary was set at a value close to the superheated 

temperature in the liquid in the vicinity of the interface. However, it was found that whatever the 

bubble boundary temperature was set to, the temperature at the interface rose immediately to a 

temperature very close to the superheated liquid temperature. The vapor is in equilibrium with the 

liquid at the bubble boundary and the vapor pressure is the same as that at (r→∞) for the 

asymptotic bubble growth stage. The conditions enable us to determine the liquid mole fraction 

of the more volatile component from a double polynomial fit in the form TS(X,p). The 

determination of the liquid mole fraction at the interface provides the concentration, C1(R,t), 

there. 

In the liquid close to the bubble boundary, it was assumed that the bubble grows in a field 

initially having uniform superheat and concentration: 
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T(r,0)= T0       and     C1(r,0)= C0   ………………………………………………….. (22) 

 

The above initial conditions together with the boundary conditions at the vapor/liquid 

interface, eqs.(14 & 15), and those at infinity, eq.(23) 

 

T(∞,t)= T0     and     C1(∞,t)= C0 ………………………………………………….. (23) 

 

where used in the prediction of bubble radius R(t), temperature distribution T(r,t) and 

concentration distribution C1(r,t) in addition to the condition at the bubble wall. 

The liquid domain was allowed to extend to (2mm) as an infinity limit and the mesh size, 

(∆r), was taken as (5 µm). 

For pure liquid model, the solution of only the energy equation as presented by, eq.(19), is 

required. The temperature distribution in the liquid domain is obtained with the boundary 

conditions for the temperature at the bubble wall and the liquid boundary at infinity: 

 

T(R,t)=TS(p∞)     and      T(∞,t)=T0  ………..……………………………………………. (24) 

 

Here, the temperature at the bubble boundary is constant throughout the bubble life and 

equal to the saturation temperature at the ambient pressure, operating process pressure. The 

energy balance at the bubble boundary gives: 
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4. Case Study 
 

In this section, the model described above was used to predict the bubble growth rate of a 

wide boiling range mixture, such as equimolar n-Pentane/Tetradecene binary mixture at 

atmospheric pressure, as shown in Fig.(2). The boiling range is defined as the temperature 

difference between the dew line temperature and boiling line temperature at the liquid molar 

value. It is equal to (161  ْ C) for the equimolar (Xpen.=0.5) of the above mixture as shown in 

Fig.(2). 

Tarrad and Burnside 
[15]

, predicted the boiling heat transfer coefficient of the above mixture 

by the existing correlations of Thome 
[14]

, Thome 
[16]

, Calus and Leonidopoulos 
[12]

 and Schlünder 
[17]

. They found that the predicted values are much lower than the measured values during 

experiments. This was explained as that these correlations based mainly on the assumption that 

the number of the active sites in boiling mixtures are the molar mean value of pure liquid 

component boiling points at the same pressure which was not the case during experiments of the 

above mixture. These correlations are also depends on the theories of bubble growth rate and 

departure diameter predicted by Scriven or Van Stralen. Therefore, this mixture was used as a 
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typical mixture where the existing theories of prediction the boiling heat transfer coefficient are 

highly unreliable under the present forms. Especially for a wide boiling range mixtures and high 

wall superheats. 

 

 
 

Figure (2) Equilibrium Diagram of n-Pentane/Tetradecene Mixture at 
Atmospheric Pressure 

 

5. Results and Discussion 
 

5-1 Mixture Model 

The bubble growth curve of the equimolar n-Pentane/Tetradecene was predicted for three 

different superheats, (70, 60 & 50) 
o
C, as shown in Fig.(3). At all superheats, the initial bubble 

radius, R(0), and time (t0) were set to (30 µm) and (1µs) respectively. The initial bubble boundary 

temperature, T(R,0) was set to a temperature lower than that of the liquid close to the boundary 

by (0.5
 o
C). 
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Figure (3) Comparison of Bubble Growth Rate for Equimolar                          
n-Pentane/Tetradecene Mixture 

 

Comparison between the curves in Fig.(3) shows that the bubble growth rate increases as 

the superheat increases. For example, at (t=30 ms), the bubble radii, R(t) at superheats             

(70, 60 & 50) 
o
C were (0.94), (0.86), and (0.8) mm respectively. At first sight, it seems that the 

bubble growth rate was very slow when compared to other more familiar mixtures. This was the 

main reason for the low boiling heat transfer coefficients obtained when dealing with                  

n-Pentane/Tetradecene mixture. The corresponding figures for the bubble growth constant, 

b1=R(t)/t
1/2

, were (0.54*10
-2

), (0.5*10
-2

) and (0.45*10
-2

) respectively, as shown in Fig.(4). 

To investigate the effect of mixture composition on the bubble growth rate, the growth 

curves were obtained for different mole fractions at (∆t= 60 ) 
o
C, as shown in Fig.(5). At time 

(t=30 ms), the predicted bubble radii were (0.76), (0.86), (1.07), (1.13) and (1.2) mm for 

(Xpen.=0.4, 0.5, 0.65, 0.7 & 0.75) respectively. These results show that increasing the pentane 

content of the mixture increases the bubble growth rate. 
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Figure (4) Bubble Growth Constants for Equimolar n-Pentane/Tetradecene 
Mixture at Different Superheats 

 

 
 

Figure (5) Bubble Radius v. Time for Different Mixture Composition  
at Superheat of 60 oC 
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The temperature at the vapor/liquid interface was shown to approach a steady state value 

which was less than that of the initial superheat only a few degrees, as shown in Fig.(6).      

Figure (7) shows the bubble growth constant, (b1), for different mixture mole fraction obtained at 

(∆T=60) deg C. It is clear that the bubble growth constant (b1) is nearly constant except in initial 

bubble growth. This could be due to the assumed initial conditions of temperature and 

concentration at the vapor/liquid interface and in the liquid in the vicinity of the bubble wall at 

the end of the inertia bubble growth stage. Table (1) shows a comparison of the calculated 

bubble growth constant, (b1), with the values of Scriven 
[4]

, eq.(8.b) and Van Stralen 
[6]

, eq.(11.b). 

 

 

Figure (6) Vapor/Liquid Interface Temperature Variation with Time for 
Equimolar n-Pentane/Tetradecene Mixture at Superheat of 70 oC 

 
In this table, it can be seen that the predicted values using this analysis are much smaller 

than those predicted from Van Stralen and Scriven's equations. In fact the latter equations are 

similar in their forms and prediction. The discrepancy in the bubble growth constant could be 

explained as follows: 

1. The assumption of a linear approximation for the variation of concentration with temperature 

at the bubble wall in Scriven equation. The equilibrium diagram of n-Pentane/Tetradecene, as 

shown in Fig.(1), is unlikely to obey this relation. 
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2. The assumption made by Van Stralen 
[6]

 concerning the relation between the composition 

and the gradient (dT/dX) at the vapor/liquid interface and their values in the bulk to be equal. 

The present model showed that this assumption is unlikely to be true for the equimolar         

n-Pentane/Tetradecene mixture. 

3. The most sensitive parameter is the superheat (∆T). Van Stralen and Scriven were allowed 

the bubble to grow in an effective superheat expressed by (∆T * NSN) which incorporates the 

mass transfer effect on the bubble growth rate in the form: 
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fg
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    ……………………………………… (26) 

 

The analysis presented here showed that the bubble wall temperature was lower than that in 

the bulk liquid by only a few degrees. Therefore, the effective superheat expressed by Van 

Stralen and Scriven is much higher than the actual superheat and overestimate the bubble growth 

rate in binary mixtures. 

The low values of the predicted bubble growth rate could be due a combination of all the 

above points. 

 

 

Figure (7) Predicted Bubble Growth Constants for Different Mixture 
Composition at Superheat of 60 oC 
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Table (1) Comparison of The Bubble Growth Coefficient With Ref. [4 & 6] at 

Different Mixture Composition and  T = 60 oC 
 

b1*10
2 

Ref. 
[4]

 

b1*10
2 

Ref. 
[6]

 

b1*10
2 

t=30ms 
NSN 

 

Xpen. 

 

2.40 2.55 0.44 0.42 0.40 

2.10 1.90 0.50 0.40 0.50 

3.27 3.46 0.62 0.65 0.65 

3.35 3.60 0.66 0.59 0.70 

3.50 3.70 0.69 0.74 0.75 

 
5-2 Pure Liquids Model 

The verification of the model presented in this investigation is induced from the application 

of this model for available experimental data. Solution of eq. (19) of the temperature distribution 

in the liquid domain together with the boundary conditions presented in eq.(24) predicts the 

profile of temperature distribution in the vicinity of the bubble wall and liquid field. Equation 

(25) was solved for the prediction of the bubble radius, R(t) and bubble growth rate. The 

experiments conducted by Dergarabedian 
[18]

, on nucleate pool boiling of water at atmospheric 

pressure was used at different superheats. Two different superheats, (∆T=3.1 and 4.5) deg C were 

used for comparison of the bubble growth rate. The predicted values are well agreed with the 

available data as shown in Fig.(8). The theory over-predicts the measured bubble radius, the 

maximum errors were 23% and 12% at superheats of 4.5 and 3.1 deg C respectively. However, 

the results agree well with Van Stralen's predicted values. In the pure liquid model, the radius at 

the end of the inertia stage of bubble growth was set equal to 30µm and initial time at both 

superheats was equal to 1µs. 

Figure (9) shows the variation of bubble growth coefficient, β, with time for both 

superheats. It can be seen that, in the early stages of asymptotic bubble growth , β is a function of 

time. This could be due to the unknown temperature distribution at the end of inertia bubble 

growth stage. Later, as the bubble grows, the value of β is essentially independent of time. This 

indicates that the moving boundary analysis, which makes no initial assumption about the form 

of variation of R(t) with time, shows that R(t) is indeed varies with t
1/2

 for asymptotic growth of a 

bubble in an uniformly superheated pure liquid. The β values at the later stages of bubble growth 

for water superheats of 4.5 and 3.1 deg C were about 13.6 and 9.3 respectively. Compared to β 

values of 13.2 and 9.1 as predicted from Van Stralen's 
[6]

, eq.(11.b) with δT=0, for water 

superheats of 4.5 and 3.1 deg C respectively. 
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Figure (8) Comparison of Theoretical Bubble Growth Rate with 
Experimental Data of Dergarabedian [18] Obtained in Water at 1 atm 

 

 
 

Figure (9) Variation of Predicted Bubble Growth Coefficient with  
Time for Water Boiling at 1 atm 
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To show the effect of the presence of the other component on the bubble growth rate of 

pure liquids and to investigate the response of the model of mixtures and its validity, Fig.(10) 

was prepared. Here, the same wall superheat, ∆T=19 
o
C was applied for pure n-pentane and 

(Xpen.=0.95) for n-Pentane/Tetradecene mixture. The prediction of the mixture model produced  

lower bubble growth rate than that of pure liquid model as it will be the logical case. This is 

consistent with other theories where the mixture boiling heat transfer coefficient is always lower 

than that of pure liquids. 

 

 
 

Figure (10) Predicted Bubble Growth Rate of n-Pentane and                       
n-Pentane/Tetradecene Mixture 

 

6. Conclusion 
 

A new approach to the prediction of the bubble growth rate in boiling pure liquids and 

binary mixtures has been developed. A moving boundary numerical analysis has been applied to 

the problem in polar coordinates and includes the convection effect due to the density difference 

between the liquid and vapor phases. Since the effective wall superheat for the bubble growth in 

binary mixtures is much lower than that the apparent wall superheat, the predicted bubble growth 

rate for the n-Pentan/Tetradecene mixture was lower than that calculated by the equations of Van 

Stralen and Scriven. The model which was prepared for bubble growth rate prediction of pure 

liquids well agreed with available experimental data and that predicted by Van Stralen.  
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The moving boundary model presented in this investigation for the bubble growth rate 

prediction of binary mixtures should be tested with existing experimental data for other mixtures. 

Further, measurements of bubble growth rate for binary mixtures having a wide boiling range are 

needed. 
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Nomenclatures 
 

a  : Thermal Diffusivity, (m2/s) 

A : Coefficient in eqs.(19 & 20) 

CP : Specific Heat, (kJ/kg. K) 

C1 : Concentration of More Volatile = Component in Mixture, (kg/m3) 

D : Diffusion Coefficient, (m2/s) 

hf : Liquid Enthalpy, (kJ/kg) 

hg : Vapor Enthalpy, (kJ/kg) 

hfg : Liquid Latent Heat, (kJ/kg) 

J : Jakob Number, eq.(3.b) 

Jm  Modified Jakob Number for Mixtures 

K : Thermal Conductivity, (W/m.K) 

M : Molecular Weight, (kg/kmol) 

NSN : Scriven Number, eq.(26) 

P : Pressure, (kPa) 
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r : Radii Coordinate, (m) 

R : Bubble Radius, (m) 
.

R  : Bubble Growth Rate, (m/s) 

t : Time, (s) 

T : Temperature, (C  ْ  ) 

∆T    : Wall Superheat, (deg C) 

x      : Mass Fraction of Component in Liquid Mixture 

X     : Mole Fraction of Component in Liquid Mixture 

y     : Mass Fraction of Component in Vapor Mixture 

Y     : Mole Fraction of Component in Vapor Mixture 

 

Subscripts 
 

0    : Initial Value 

bu    : Value at Bulk Condition 

l        : Liquid 

pen.  : n-Pentane Content in Mixture 

S       : Saturation Value 

υ       : Vapor 

∞      : Value at Infinity 

1      : More volatile Component (Solution) 

2      : Less Volatile Component (Solvent) 

 

Greek Symbols 
 

αS  : Relative Volatility  

β   : Bubble Growth Coefficient 

δT  :Temperature Difference Between Vapor/Liquid Interface and Bulk 

ε   : Parameter Defined by (1-ρυ/ρι) 

ρ   : Density, (kg/m3) 

µ   : Dynamic Viscosity, (N.s/m2)  

   : Specific Volume, (m3/kg) 

 

 

 


